首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Two experiments in the Experimental Lakes Area (ELA) in north-western Ontario, Canada examined the effects of light and two key elements on the net accumulation and elemental composition of epilithon. In Lake (L) 224, benthic algae were grown under different light intensity and phosphorus supply, while in L302S we provided three levels of two different carbon sources (bicarbonate and glucose) to algae colonizing nutrient-diffusing substrata. After 1 month of accumulation, we sampled biofilms for chlorophyll (chl), carbon (C), phosphorus (P) and algal C.
2. Increased C supply did not significantly affect algal growth (C or chl) or elemental composition (C/P ratios) in L302S. However, P enrichment increased chl and algal C, dramatically reduced the C/P ratio of epilithon, and did not affect total organic C in L224. Phosphorus enrichment also increased the proportion of algal material in the total particulate organic matter and altered the taxonomic composition of algae in L224 biofilms. Shading had no significant effect on the C/P ratio and total organic C in epilithon from the L224 experiment.
3. Our results demonstrate that P supply affects the elemental composition of organic matter that collects on rock substrata. It thus appears that low availability of P relative to C and light drives the formation and retention of high C/P organic matter on rock surfaces in oligotrophic boreal lakes.  相似文献   

2.
1. Littoral biota in boreal lakes are known to assimilate epilithon. Being able to predict the stable isotopic composition of these alga will help to identify those systems in which δ13C and δ15N analysis can be used in foodweb investigations of allochthony and biomagnification.
2. In a survey of 15 boreal lakes, the concentration of dissolved organic carbon (DOC) explained 76% of the variation in epilithon δ13C, and 86% of the variation in epilithon δ15N.
3. Because both δ13C and δ15N values were depressed and similar to terrestrial values in humic (high DOC) lakes, it will be more difficult to successfully employ stable isotopic techniques for estimating allochthony in such systems. Lower δ15N values in humic lakes also indicate that trophic positions estimated by stable isotopes are not directly comparable to those of similar biota inhabiting clearwater lakes, unless autochthonous baseline corrections are made.  相似文献   

3.
Azotobacter vinelandii takes up the ammonium analog methylammonium from the external medium and metabolizes it to a less polar compound which has been identified as N-methylglutamine. The enzyme glutamine synthetase appears responsible for methylammonium metabolism in this organism and full activity of the enzyme is required for maximal rates of methylammonium uptake. L-methionine-DL-sulfoximine or L-methionine sulfone, inhibitors of glutamine synthetase activity, were shown to reduce the rate of methylammonium uptake by wild type cultures. A mutant strain with low glutamine synthetase activity was shown to be unable to carry out in vitro N-methylglutamine synthesis or in vivo uptake of methylammonium. Thus, methylammonium uptake assays may prove useful as a method of identifying mutants with altered glutamine synthetase activity.Abbreviations MSX L-methionine-DL-sulfoximine - MSF L-methionine sulfone  相似文献   

4.
Under N2-fixing conditions, Azotobacter vinelandii expresses a specific transport system for methylammonium (ammonium) [E. M. Barnes, Jr. and P. Zimniak (1981) J. Bacteriol. 146, 512–516]. This activity is decreased markedly by culture of cells in the presence of 10 mm ammonium or 2 mm methylammonium; in both cases, the Vmax values for methylammonium uptake were 25% of those of N2-fixing cells. Mixing experiments with assay medium indicate that transport activity is controlled by intracellular rather than extracellular metabolites. Glutamine synthetase activity of cells cultured with ammonium was 33% that of N2-fixing cultures, but activity was unaffected by incubation with methylammonium. Thus ammonium transport and ammonium fixation are regulated independently. When ammonium was removed from the medium, cells recovered over 90% of the initial transport activity after 1 h; this recovery was not affected by addition of chloramphenicol. The loss of uptake activity in cells incubated with ammonium or methylammonium correlated with over sixfold increases in intracellular levels of glutamine and γ-glutamylmethylamide, respectively. Recovery of transport was accompanied by similar reductions in pools of these compounds. Over one-half of methylammonium transport activity could be blocked by direct addition of 10 mm glutamine or γ-glutamylmethylamide to transport assays; these concentrations were similar to those observed in vivo. The glutamine analog, 6-diazo-5-oxo-l-norleucine, was the most potent inhibitor found (68% inhibition at 10 μm). These results indicate that the regulation of ammonium transport by ammonium and methylammonium is due to inhibition of the transporter by intracellular γ-glutamyl amides rather than by repression of transporter synthesis.  相似文献   

5.
Glucose mineralization rate by epilithon from some (calcareous) streams increased with increase in added glucose concentration and a straight line relationship was established. With epilithon from other (acid) streams, saturation was achieved hence V max could be estimated by incubation at a single substrate concentration.  相似文献   

6.
Abstract Whiel heterocystous vegetative filaments of A. doliolum exhibited biphasic pattern of methylammonium (ammonium) uptake, its populations of akinetes deficient in chlorophylla, phycocyanin, oxygenic photosynthesis and aerobic nitrogenase activity showed monophasic uptake pattern with no evidence for second phase activity. Such akinetes with monophasic uptake pattern of methylammonium became biphasic by developing second phase activity at a stage during their germination at which oxygenic photosynthesis also developed. It is suggested that first phase activity of the methylammonium uptake process corresponds to plasma membrane regulated uptake activity leading to one methylammonium pool and that second phase activity of the metylammonium uptake process corresponds to the thylakoid membrane regulated uptake activity leading to the other methylammonium pool.  相似文献   

7.
Methylammonium uptake by Rhizobium sp. strain 32H1   总被引:15,自引:9,他引:6       下载免费PDF全文
We present evidence that methylammonium is transported into cowpea Rhizobium sp. strain 32H1 cells by a membrane carrier whose natural substrate is ammonium. After growth in low (0.2%) oxygen, which is necessary for nitrogen fixation by these cells, respiring rhizobial cells took up [14C]methylammonium to high intracellular levels. Cells grown in atmospheric (21%) oxygen did not take up methylammonium. Uptake (transport plus metabolism) was maximal in cells harvested in the early stationary phase of batch culture and had a distinct pH optimum of 6.5 to 7.0. Uptake was inhibited by metabolic poisons that dissipate the proton motive force or inhibit ATP synthesis. Inhibition of uptake by ammonium and the counterflow phenomenon indicated that ammonium and methylammonium share a transport carrier. Of the methylammonium taken up, about 15% was accumulated to intracellular levels 20 times higher than those in the medium; most of the methylammonium was metabolized to gamma-N-methylglutamine.  相似文献   

8.
The ammonium uptake system of Rhodobacter capsulatus B100 was examined using the ammonium analog methylammonium. This analog was not transported when cells were grown aerobically on ammonium. When cultured on glutamate as a nitrogen source, or when nitrogen-starved, cells would take up methylammonium. Therefore, in cells grown under nitrogen-limiting conditions, a second system of ammonium uptake (or a modified form of the first) is present which is distinguished by its capacity for transporting the analog in addition to ammonium. The methylammonium uptake system exhibited saturation kinetics with a K m of 22 M and a V max of about 3 nmol per min · mg protein. Ammonium completely inhibited analog transport with a K i in the range of 1 M. Once inside the cell methylammonium was rapidly converted to -N-methylglutamine; however, a small concentration gradient of methylammonium could still be observed. Kinetic parameters reflect the effects of assimilation.The methylammonium uptake system was temperature and pH dependent, and inhibition studies indicated that energy was required for the system to be operative. A glutamine auxotroph (G29) lacking the structural gene for glutanime synthetase did not accumulate the analog, even when nitrogen starved. The Nif- mutant J61, which is unable to express nitrogenase structural genes, also did not transport methylammonium, regardless of the nitrogen source for growth. However, the mutant exhibited wild-type ammonium uptake and glutamine synthetase activity. These data suggest that transport of ammonium is required for growth on limited nitrogen and is under the control of the Ntr system in R. capsulatus.Abbreviations CCCP carbonyl cyanide-m-chlorophenyl hydrazone - CHES cyclohexylaminoethanesulfonic acid - DMSO dimethyl sulfoxide - GMAD -N-methylglutamine - GS glutamine synthetase - MES 2-(N-morpholino) ethanesulfonic acid - MSX methionine-Dl-sulfoximine - pCMB p-chloromercuribenzoate - Tricine N-tris(hydroxymethyl)methylglycine  相似文献   

9.
Methylammonium is a substrate for the ammonium transport system of Azotobacter vinelandii. During cellular uptake methylammonium is rapidly converted to a less polar metabolite (E. M. Barnes, Jr., and P. Zimniak, J. Bacteriol. 146:512-516, 1981). This metabolite has been isolated from A. vinelandii and identified as gamma-glutamylmethylamide by mass spectroscopy, 1H nuclear magnetic resonance spectroscopy, and cochromatography with the authentic compound. Escherichia coli also accumulated gamma-glutamylmethylamide during methylammonium uptake. The biosynthesis of gamma-glutamylmethylamide in vitro required methylammonium, ATP, L-glutamate, and a soluble cell extract from A. vinelandii. The enzyme responsible for gamma-glutamylmethylamide synthesis was glutamine synthetase. In a crude extract, L-methionine-DL-sulfoximine was equipotent in inhibiting the activities for gamma-glutamyltransferase and for the synthesis of glutamine and gamma-glutamylmethylamide. Likewise, an antiserum against the glutamine synthetase of E. coli precipitated the transferase and both synthetic activities at similar titers. During repression by growth of cells on ammonium medium, the synthesis of glutamine and gamma-glutamylmethylamide in vitro was also inhibited coordinately. A partially purified preparation of glutamine synthetase from A. vinelandii utilized methylammonium as substrate (Km = 78 mM, Vmax = 0.30 mumol/min per mg), although less efficiently than ammonium (Km = 0.089 mM, Vmax = 1.1 mumol/min per mg). The kinetic properties of glutamine synthetase with methylammonium as substrate as well as the insensitivity of this activity to inhibition by T1+ were strikingly different from methylammonium translocation. Thus, methylammonium (ammonium) translocation and intracellular trapping as glutamylamides are experimentally distinguishable processes.  相似文献   

10.
Summary An active transport system specific for ammonium and methylammonium is decribed in wild type cells of Aspergillus nidulans. This system has a Km of less than 5x10-5 M for ammonium as measured by the uptake of 15NH+ 4 and a Km of 2x10-5 M and apparent Vmax of 11 nanomoles/min/mg dry weight for methylammonium, by the uptake of 14C methylammonium. The system concentrates methylammonium at least 120-fold and is probably regulated by the concentration of internal ammonium.Cells of the mutant strain DER-3 possess a reduced rate of ammonium and methylammonium transport under all conditions tested. DER-3 is a double mutant, one mutation being allelic with meaA8 and designated meaA21, the other is unlinked to meaA and designated mod meaA. The heterozygous diploid DER3/+ has wild type transport, indicating that the mutations are recessive. Cells of the mutant strain amrA1 have impaired transport of ammonium and methylammonium, but only under some conditions. amrA1 is recessive. The possible defects of these mutants are discussed.  相似文献   

11.
Summary A methylammonium-resistant mutant, named hereafter strain 2170 (ma-1), was isolated for the first time from a eukaryotic phototrophic organism. Mutant 2170 from Chlamydomonas reinhardtii carries a single mendelian mutation which results in a decreased rate of uptake of both ammonium and methylammonium without being affected either in uptake of nitrate or nitrite or any of the tested enzyme activities related to ammonium assimilation. Mutant cells could not use methylammonium as nitrogen source nor excrete ammonium into the medium but they had derepressed nitrate and nitrite reductases when growing in the presence of ammonium. Mutant 2170 also exhibited a diminished methylammonium transport rate in comparison with the wild-type cells. We conclude that mutant 2170 is affected in a transport system responsible for the entrance of both ammonium and methylammonium into the cells.Abbreviations CHES 2-(N-Cyclohexylamino)ethanesulphonic acid - MOPS 3(N-morpholine)propanesulphonic acid  相似文献   

12.
A diverse range of freshwater plankton communities were tested for their ability to take up [14C]methylammonium. Uptake occurred at low substrate levels by high-affinity, energy-requiring, transport systems which were competitively inhibited by ammonium but not by L-amino acids or nicotinamide. A simple competitive inhibition model was used to examine the effects of increasing ammonium levels on uptake in a eutrophic lake. Apparent K1 values for the labelled substrate markedly increased with increasing ammonium. The transport systems had an approximately five-fold greater affinity for ammonium than for methylammonium. The Vmax for methylammonium uptake was relatively insensitive to large changes in ambient ammonium levels. This kinetic parameter may be a useful comparative measure of ammonium transport capacity in natural waters, particularly where low ambient ammonium concentrations preclude the use of 15N.  相似文献   

13.
When cultured with glutamate or glutamine as the nitrogen source, Escherichia coli expresses a specific ammonium (methylammonium) transport system. Over 95% of the methylammonium transport activity in washed cells was blocked by incubation with 100 microM L-glutamine in the presence of chloramphenicol (100 micrograms/ml). The time course for the onset of this glutamine inhibition followed a first-order rate expression with a t1/2 of 2.8 min. The inhibition of transport by L-glutamine was noncompetitive (Ki = 18 microM) with respect to the [14C]methylammonium substrate. D-Glutamine had no significant effect. The glutamine analogs gamma-L-glutamyl hydroxamate (Ki = 360 microM) and gamma-L-glutamyl hydrazide (Ki = 800 microM) were also noncompetitive inhibitors of methylammonium transport, suggesting that glutamine metabolism is not required. The role of the intracellular glutamine pool in the regulation of ammonium transport was investigated by using mutants carrying defects in the operon of glnP, the gene for the glutamine transporter. The glnP mutants had normal rates of methylammonium transport but were refractory to glutamine inhibition. Glycylglycine, a noncompetitive inhibitor of methylammonium uptake in wild-type cells (Ki = 43 microM), was equipotent in blocking transport in glnP mutants. Although ammonium transport is also subject to repression by growth of E. coli in the presence of ammonia, this phenomenon is unrelated to glutamine inhibition. A GlnL RegC mutant which constitutively expressed ammonium transport activity exhibited a sensitivity to glutamine inhibition similar to that of wild-type cells. These findings indicate that ammonium transport in E. coli is regulated by the internal glutamine pool via feedback inhibition.  相似文献   

14.
1. Lake 302S in the Experimental Lakes Area of Canada was acidified from pH 6.7 (1981) to 5.1 (1986). The pH was further reduced to 4.5 in 1987 and held at that level until 1991. From 1992 to 1995, the pH was allowed to increase to a target value of 5.8.
2. The response of the phytoplankton community to decreasing pH from 6.0 to 5.1 was similar to that observed in another experimentally acidified lake (223) and in other atmospherically acidified lakes. Acidification affected species diversity of both the phytoplankton and epilithon. Phytoplankton diversity was positively correlated with pH. Epilithic algal diversity was more variable and did not correlate with pH.
3. Phytoplankton biomass was enhanced by acidification as the assemblage shifted from a dominance of chrysophytes to large dinoflagellates ( Gymnodinium sp. and Peridinium inconspicuum ). Epilithon biomass was unaffected, but dominance shifted from filamentous cyanophytes ( Lyngbya ) to acidophilic diatoms ( Tabellaria quadriseptata and Anomoeonis brachysira ).
4. The only taxon to be similarly affected in both the phytoplankton and epilithon was the cyanobacteria, being significantly reduced below pH 5.1. During early recovery (pH 5.5–5.8), cyanobacteria increased and species present prior to acidification recolonized both habitats.
5. In the early stages of recovery, planktonic and benthic assemblages remained more similar to acidified than natural assemblages, but more profound change began at pH > 5.5.  相似文献   

15.
The ability of the cyanobacterium Synechocystis PCC6803 to transport inorganic carbon in the form of bicarbonate rapidly decreased following a shift from bicarbonate-limited growth to either excess bicarbonate supply or to photoheterotrophic growth on glucose. Nonmetabolizable analogs of glucose did not exert this effect. The rate at which the bicarbonate uptake rate declined was too rapid to be accounted for by dilution of the activity by culture growth and suggested that posttranslational modification may be involved. Several proteins that were unphosphorylated during bicarbonate-limited growth became phosphorylated during the shifts to high CO2 conditions and to photoheterotrophic growth. A similar alteration in the profile of phosphopolypeptides was observed following a shift into the dark. The changes in protein phosphorylation were not blocked by chloramphenicol or rifampicin.  相似文献   

16.
Abstract— (1) The effects of gamma-hydroxybutyrate, imidazole-4-acetic acid and pento-barbitone on mouse brain glucose, glycogen and lactate levels have been studied. All the drugs significantly increased the brain glucose content, but did not significantly alter brain glycogen levels. The increase in brain glucose following imidazole-4-acetic acid or hypnotic doses of pentobarbitone was matched by corresponding decreases in the lactate level; this was not the case with gamma-hydroxybutyrate where the total glucose equivalents in the brain, expressed as the tissue level of (glucose) + (lactate/2), were significantly increased.
(2) All drugs except imidazole-4-acetic acid significantly decreased the rate of appearance of [14C]glucose into the bloodstream in vivo but had no effect on the uptake of glucose into rat diaphragm in vitro when present at 2·5 mM concentration.
(3) Only imidazole-4-acetic acid significantly inhibited glucose uptake into the brain in vivo but at 2·5 mM had no significant effect on glucose uptake into rat cerebral cortical slices in vitro.
(4) It is concluded that the very large increase in brain glucose level observed following the injection of hypnotic doses of gamma-hydroxybutyrate cannot be explained in terms of an increased net uptake of glucose into the brain.  相似文献   

17.
18.
Ammonium and methylammonium are rapidly taken up by cultures of Azotobacter vinelandii respiring in the presence of succinate. The rate of methylamine uptake increased with external pH from 5.5 to 7.5 but increasing the pH further to 8.5 had little effect on activity, indicating that methylammonium cation rather than uncharged methylamine is the permeant species. The kinetics of methylammonium entry followed the Michaelis-Menten relationship, yielding a Km of 25 μM and a Vmax of 3.8 nmol/min per mg of cell protein. At saturating concentrations ammonium was taken up at rates 30-fold higher than those for methylammonium. Ammonium was a competitive inhibitor of methylammonium uptake and gave an inhibition constant of 1 μM. Ammonium derivatives were inhibitors of methylammonium entry in order of effectiveness: hydrazine > methylhydrazine > formamidine > guanidine > dimethylamine > ethylamine; amides and amino acids did not block uptake. Likewise, metal cations inhibited in the order Tl+ > Cs+ > Rb+, whereas Na+, K+, and Li+ produced no significant effect. Methylammonium uptake was blocked in cells exposed to an uncoupler, p-trifluorome-thoxycarbonyl cyanide-phenyl hydrazone or gramicidin D, but not with dicyclo-hexylcarbodiimide or arsenate. Valinomycin stimulated methylammonium entry into cells in a K+-free medium but prevented entry in the presence of 10 mM K+. Monensin and nigericin had little effect on transport. These results indicate that methylammonium and ammonium ions enter A. vinelandii electrogenically via a specific transporter.  相似文献   

19.
Low-affinity potassium uptake system in Bacillus acidocaldarius.   总被引:4,自引:4,他引:0       下载免费PDF全文
Cells of Bacillus acidocaldarius that were grown with 2.7 mM K+ expressed a low-affinity K+ uptake system. The following observations indicate that its properties closely resemble those of the Escherichia coli Trk and Streptococcus faecalis KtrI systems: (i) the B. acidocaldarius system took up K+ with a Km of 1 mM; (ii) it accepted Rb+ (Km of 6 mM; same Vmax as for K+); (iii) it was still active in the presence of low concentrations of sodium; (iv) the observed accumulation ratio of K+ maintained by metabolizing cells was consistent with K+ being taken up via a K+-H+ symporter; and (v) K+ uptake did not occur in cells in which the ATP level was low. Under the latter conditions, the cells still took up methylammonium ions via a system that was derepressed by growth with low levels of ammonium ions, indicating that in the acidophile ammonium (methylammonium) uptake requires a high transmembrane proton motive force rather than ATP.  相似文献   

20.
Basolateral membranes from rat jejunal enterocytes have been obtained by self-orienting Percoll-gradient centrifugation. Bicarbonate and L-glucose uptake into osmotically active basolateral membrane vesicles has been studied by a rapid filtration technique. In closed vessels and at pH 8.2 the uptake kinetics of both [14C]bicarbonate and L[3H]glucose have been followed for 30 min at 18 degrees C. Bicarbonate uptake seems to be fast and in efflux experiments SITS and DIDS effect is negligible. This work demonstrates that it is possible to determine bicarbonate flux across basolateral membrane vesicles at pH and temperature values close to usual experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号