首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Li  A Tzagoloff 《Cell》1979,18(1):47-53
The mitochondrial DNA segments of two independently isolated rho- clones of S. cerevisiae carrying a genetic marker for a threonine tRNA have been characterized by restriction endonuclease analysis and DNA sequencing. The DNA sequences of the two segments have been used to deduce the primary and secondary structures of the tRNA. The threonine tRNA is unusual in having a leucine anticodon (3'-GAU-5'). Despite the anomalous anticodon, the tRNA is proposed to function in mitochondrial protein synthesis. One of the rho- clones contains an additional coding sequence that has been identified as a valine tRNA genes have been located on the wild-type physical map and determined to be transcribed from two different strands.  相似文献   

2.
The oxi3 locus of yeast mitochondrial DNA is currently thought to code for Subunit 1 of cytochrome oxidase (Tzagoloff, A., Macino, G., and Sebald, W. (1979) Annu. Rev. Biochem. 48, 419-441). The respiratory competent strain of Saccharomyces cerevisiae D273-10B/A48 was used to obtain cytoplasmic "petite" clones enriched for genetic markers in the oci3 locus. The most complex clone studied (DS6) was ascertained to have a mitochondrial genome with a tandemly repeated segment of mtDNA 16.5 kilobases in length. The oxi3 locus was dissected by mutagenesis of DS6 with ethidium bromide and selection of new clones having less complex genotypes. Six derivative clones with genome sizes ranging from 2.3 to 6.1 kilobases have been extensively analyzed. Most of the restriction sites present in the segments of mtDNA retained by the clones have been mapped, thereby providing a detailed restriction map of the oxi3 gene. Based on the physical locations of the most distal oxi3 mutations, the gene spans approximately 10,000 nucleotides and occupies the region of wild type mtDNA from 44 to 58 map units.  相似文献   

3.
From human neuroblastoma-derived SILA cells we have established a rho-0 cell line that is deficient in both respiration and mitochondrial DNA. Lactate dehydrogenase activity, lactate production, and growth in the medium without glucose indicate that these cells shift from aerobic to anaerobic metabolism. Electron microscopic observations revealed abnormal mitochondria with unique cristae structures. Staining with MitoTracker dye showed that the mitochondrial transmembrane potential was reduced by 30-40% from the parent cell levels. These cells were markedly susceptible to H(2)O(2) and died apparently by a necrotic mechanism, a process blocked by deferoxamine in the parent cells but not rho-0 cells. Analysis by inductively coupled plasma-mass spectrometry revealed an approximately 3-fold accumulation of iron in the rho-0 cells at confluence (n = 4-6, three clones, *p < 0.05). Iron and four other metals were all elevated in the cells of one of the rho-0 clones and were similar to control levels in the control cybrid cells, which were replenished with normal mitochondrial DNA. Their sensitivity to H(2)O(2) was also similar to that of the parent cells. These results indicate that a newly established neuronal related rho-0 cell line is highly susceptible to active oxygen species and that these toxicity effects appear to be related to an accumulation of transition metals, which probably occurs through the respiratory impairment.  相似文献   

4.
The region of mitochondrial DNA (mtDNA) containing the oxi 2 locus has been sequenced in a rho- clone (DS40) derived from the respiratory competent strain D273-10B/A48 of Saccharomyces cerevisiae. The DS40 clone was established to have retained only genetic markers in the oxi 2 locus and to have a segment of mtDNA extending from 18.6 to 24.3 units of the wild type map. The mitochondrial genome of DS40 includes a sequence that has been tentatively identified as the structural gene of Subunit 3 of cytochrome oxidase. The coding sequence is 810 nucleotides long and generates a protein with a molecular weight of 30,340. The amino acid composition of the oxi 2 gene product deduced from the nucleotide sequence is in agreement with the composition of the purified Subunit 3 of yeast cytochrome oxidase. The orientation of the DS40 mtDNA segment relative to wild type mtDNA indicates that the oxi 2 gene is transcribed from the same DNA strand as the oxi 1 and several other mitochondrial genes.  相似文献   

5.
Cyclic parthenogenesis is the ancestral mode of reproduction in the cladoceran crustacean, Daphnia pulex, but some populations have made the transition to obligate parthenogenesis and this is the only mode of reproduction known to occur in arctic populations. Melanism and polyploidy are also common in arctic populations of this species. Prior allozyme studies of arctic D. pulex revealed substantial levels of clonal diversity on a regional scale. Clonal groupings based on cluster analysis of allozyme genotypes do not conform to groupings based on the presence/absence of melanin or on ploidy level. In order to further elucidate genetic relationships among arctic D. pulex clones, mitochondrial DNA (mtDNA) variation was examined in 31 populations from two Canadian high-arctic sites. The data were also compared to a previous study of mtDNA variation in populations from a Canadian low-arctic site. Cladistic analysis of restriction site variation of the entire mitochondrial genome and nucleotide sequence variation of the mitochondrial control region was used to construct genetic relationships among mitochondrial genotypes. Three distinct mitochondrial lineages were detected. One lineage was associated with diploid, nonmelanic clones and is the same as the lineage that is found in temperate populations of D. pulex. The other two lineages (A & B) were associated with polyploid, melanic clones. Sequence divergence between the A and B lineages was 2.4%. Sequence divergence between D. pulex and either of these two lineages exceeded 3%. It is suggested that the melanic, polyploid clones are hybrids between males of D. pulex (and/or a closely related congener, D. pulicaria) and females of either of two ancestral melanic species that have mitochondrial lineages A and B. Geographic patterns of mitochondrial diversity in ‘melanic’ lineage B support the hypothesis of an high-arctic refuge for the ancestral species during the last glacial period.  相似文献   

6.
I A Zakharov  V P Stépanova 《Biochimie》1977,59(11-12):947-949
When crossing the genetically marked yeast strains obtained from the Gif collection we observed the appearance of haploid nucleo-cytoplasmic hybrids carrying the 3 nuclear markers of the rho- parent and the mitochondrial markers (rho+ ER CR) of the other parent. The frequency of such cytoduction was about 1 per cent. The mitochondrial markers ER and CR were transmited to cytoductants together and did not segregate. The possible mechanisms of the cytoduction and its significance are discussed.  相似文献   

7.
We report evidence for random drift of mitochondrial allele frequencies in zygote clones of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Monofactorial and bifactorial crosses were done, using strains resistant or sensitive to erythromycin (alleles ER, ES), oligomycin (OR, OS), or diuron (DR, DS). The frequencies of resistant and sensitive cells (and thus the frequencies of the resistant and sensitive alleles) were determined for each of a number of clones of diploid cells arising from individual zygotes. Allele frequencies were extremely variable among these zygote clones; some clones were "uniparental," with mitochondrial alleles from only one parent present. These observations suggest random drift of the allele frequencies in the population of mitochondrial genes within an individual zygote and its diploid progeny. Drift would cease when all the cells in a clone become homoplasmic, due to segregation of the mitochondrial genomes during vegetative cell divisions. To test this, we delayed cell division (and hence segregation) for varying times by starving zygotes in order to give drift more time to operate. As predicted, delaying cell division resulted in an increase in the variance of allele frequencies among the zygote clones and an increase in the proportion of uniparental zygote clones. The changes in form of the allele frequency distributions resembled those seen during random drift in finite Mendelian populations. In bifactorial crosses, genotypes as well as individual alleles were fixed or lost in some zygote clones. However, the mean recombination frequency for a large number of clones did not increase when cell division was delayed. Several possible molecular mechanisms for intracellular random drift are discussed.  相似文献   

8.
1. We have determined the physical location of mitochondrial genetic markers in the 21S region of yeast mtDNA by genetic analysis of petite mutants whose mtDNA has been physically mapped on the wild-type mtDNA. 2. The order of loci, determined in this study, is in agreement with the order deduced from recombination analysis and coretention analysis except for the position of omega+: we conclude that omega+ is located between C321 (RIB-1) and E514 (RIB-3). 3. The marker E514 (RIB-3) has been localized on a DNA segment of 3800 bp, and the markers E354, E553 and cs23 (RIB-2) on a DNA segment of 1100 base pairs; both these segments overlap the 21S rRNA cistron. The marker C321 (RIB-1) has been localized within a segment of 240 bp which also overlaps the 21S rRNA cistron, and we infer on the basis of indirect evidence that this marker lies within this cistron. 4. In all our rho+ as well as rho- strains there is a one-to-one correlation between the omega+ phenotype, the ability to transmit the omega+ allele and the presence of a mtDNA segment of about 1000 bp long, located between sequences specifying RIB-3 and sequences corresponding to the loci RIB-1 and RIB-2. This segment may be inserted at this same position into omega- mtDNA by recombination. 5. The role which the different allelic forms of omega may play in the polarity of recombination is discussed.  相似文献   

9.
F Sor  H Fukuhara 《Cell》1983,32(2):391-396
In the rho- mutants of yeast, the mitochondrial genome is made up of a small segment excised from the wild-type mitochondrial DNA. The segment is repeated either in tandem or in palindrome to form a series of multimeric DNAs. We have asked how the palindromic organization arises. From several palindromic rho- mitochondrial DNAs, we have isolated the restriction fragments that contained the head-to-head or tail-to-tail junction of the repeating units, and have determined their nucleotide sequences. We found that the palindromes were not symmetrical right up to the junction points: at the junction, there was always an asymmetrical sequence of variable length. At both ends of this junction sequence, we found inverted oligonucleotide sequences that were variable in each mutant and that were present in the wild-type DNA. At the moment of excision, a single-strand cut seems to occur at each of these short inverted repeats, in such a way that the two complementary strands of the genome are cut unequally and the single-stranded overhangs become the junction sequences between the palindromic repeating units. This scheme may account for the complex structures of many rho- mitochondrial DNAs.  相似文献   

10.
11.
1. Three methods are described for the genetic analysis of yeast cytoplasmic mutants (mit- mutants) lacking cytochrome oxidase or coenzyme QH2-cytochrome c reductase. The procedures permit mutations in mitochondrial DNA to be mapped relative to each other and with respect to drug-resistant markers. The first method is based upon the finding that crosses of mit- mutants with some but not other isonuclear q- mutants lead to the restoration of respiratory functions. Thus a segment of mitochondrial DNA corresponding to a given mit- mutation or to a set of mutations can be delineated. The second method is based on the appearance of wild-type progeny in mit- X mit- crosses. The third one is based on the analysis of various recombinant classes issued from crosses between mit-, drug-sensitive and mit+, drug-resistant mutants. Representative genetic markers of the RIBI, OLII, OLI2 and PAR1 loci were used for this purpose. 2. The three methods when applied to the study of 48 mit- mutants gave coherent results. At least three distinct regions on mitochondrial DNA in which mutations cause loss of functional cytochrome oxidase have been established. A fourth region represented by closely clustered mutants lacking coenzyme QH2-cytochrome c reductase and spectrally detectable cytochrome b has also been studied. 3. The three genetic regions of cytochrome oxidase and the cytochrome b region were localized by the third method on the circular map, in spans of mitochondrial DNA defined by the drug-resistant markers. The results obtained by this method were confirmed by analysis of the crosses between selected mit- mutants and a large number of q- clones whose retained segments of mitochondrial DNA contained various combinations of drug-resistant markers. 4. All the genetic data indicate that the various regions studied are dispersed on the mitochondrial genome and in some instances regions or clusters of closely linked mutations involved in the same respiratory function (cytochrome oxidase) are separated by other regions which code for entirely different functions such as ribosomal RNA.  相似文献   

12.
Induction of petite (cytoplasmic-respiration-deficient, rho-,rho-) mutations in yeast and deletion of mitochondrial drug-resistance genetic markers were compared after after treatment with ethidium and the corresponding photoaffinity probe, ethidium azide. Deletion of mitochondrial drug-resistance markers for chloramphenicol, erythromycin and oligomycin in these petite mutants was observed during prolonged treatment times with ethidium and with ethidium azide in the dark. A similar loss of drug-resistance markers was also observed in petites produced by photolytic treatment with the azide analogue, although the rate of loss appeared to be somewhat less. These results confirmed the usefulness of photoaffinity labeling with ethidium monoazide for studies of mitochondrial mutations.  相似文献   

13.
Allozyme studies of the cladoceran Daphnia pulex have shown that most populations reproduce by obligate parthenogenesis, although some cyclically parthenogenetic populations remain throughout the southern portion of its range. Clonal diversity within the obligate parthenogens is extremely high and has been attributed to the polyphyletic origin of asexuality. Specifically, it has been proposed that the clonal diversity in the obligate parthenogens was generated via the spread of a sex-limited meiosis suppressor through populations of a cyclically parthenogenetic ancestor. In this study, analysis of polymorphism of restriction-endonuclease sites in the mitochondrial genome, in conjunction with allozyme analysis, was used to determine whether obligate parthenogenesis has a monophyletic or polyphyletic origin in D. pulex. An allozyme survey of 77 populations from Ontario and Michigan was first conducted to determine breeding systems and levels of clonal diversity (Hebert et al., 1989). Mitochondrial-DNA variation was then surveyed in one isolate of each clone from each population reproducing by obligate parthenogenesis and in 2–4 isolates from each population reproducing by cyclic parthenogenesis. Seventeen restriction enzymes were used in this analysis. Thirty-five mitochondrial genotypes were found among the 36 obligate clones (as identified by allozyme analysis), while 17 mitochondrial genotypes were identified among 40 cyclic isolates from 14 populations. Five mitochondrial genotypes were found in both groups. Parsimony and phenetic-clustering methods were used to construct trees showing the genetic relationship among mitochondrial genotypes. The results clearly show that obligate parthenogenesis had a polyphyletic origin in this species. The close relationship between cyclic and obligate parthenogens in the Great Lakes region suggests that many obligate clones have recently been derived from cyclic populations and that the generation of clones is still occurring in this area. Patterns of clonal diversity based on the joint consideration of allozyme and mitochondrial-DNA data are discussed.  相似文献   

14.
Accurate identification of Populus clones and cultivars is essential for effective selection, breeding, and genetic resource management programs. The unit of cultivation and breeding in poplars is a clone, and individual cultivars are normally represented by a single clone. Microsatellite DNA markers of 10 simple sequence repeat loci were used for genetic fingerprinting and differentiation of 96 clones/cultivars and varieties belonging to six Populus species (P. deltoides, P. nigra, P. balsamifera, P. trichocarpa, P. grandidentata, and P maximowiczii) from three sections of the genus. All 96 clones/cultivars could be uniquely fingerprinted based on their single- or multilocus microsatellite genotypes. The five P. grandidentata clones could be differentiated based on their single-locus genotypes, while six clones of P. trichocarpa and 11 clones of P. maximowiczii could be identified by their two-locus genotypes. Twenty clones of P. deltoides and 25 clones of P. nigra could be differentiated by their multilocus genotypes employing three loci, and 29 clones of P. balsamifera required the use of multilocus genotypes at five loci for their genetic fingerprinting and differentiation. The loci PTR3, PTR5, and PTR7 were found to be the most informative for genetic fingerprinting and differentiation of the clones. The mean number of alleles per locus ranged from 2.9 in P. trichocarpa or P. grandidentata to 6.0 in P. balsamifera and 11.2 in 96 clones of the six species. The mean number of observed genotypes per locus ranged from 2.4 in P. grandidentata to 7.4 in P. balsamifera and 19.6 in 96 clones of the six species. The mean number of unique genotypes per locus ranged from 1.3 in P. grandidentata to 3.9 in P. deltoides and 8.8 in 96 clones of the six species. The power of discrimination of the microsatellite DNA markers in the 96 clones ranged from 0.726 for PTR4 to 0.939 for PTR7, with a mean of 0.832 over the 10 simple sequence repeat loci. Clones/cultivars from the same species showed higher microsatellite DNA similarities than the clones from the different species. A UPGMA cluster plot constructed from the microsatellite genotypic similarities separated the 96 clones into six major groups corresponding to their species. Populus nigra var. italica clones were genetically differentiated from the P. nigra var. nigra clones. Microsatellite DNA markers could be useful in genetic fingerprinting, identification, classification, certification, and registration of clones, clultivars, and varieties as well as genetic resource management and protection of plant breeders' rights in Populus.  相似文献   

15.
Hybridization saturation analyses of mitochondrial DNA from 11 petite clones genetically characterized with respect to chloramphenicol and erythromycin resistance markers, have been carried out with 11 individual mitochrondrial transfer RNAs. Mitochondrial tRNA cistrons were lost, retained, or amplified in different petite strains. In some cases hybridization levels corrected for kinetic complexity of the mtDNA3 were two- to threefold greater than that for grande mtDNA indicating selective amplification, or increased number of copies, of the segment of mtDNA containing that tRNA cistron. Hybridization levels corrected for reduced kinetic complexity of petite mtDNAs in many cases were only 1 to 10% of that for grande mtDNA suggesting a low level of intracellular molecular heterogeneity of mtDNA with respect to tRNA cistrons. Some petite clones that retained tRNA genes continued to transcribe mitochondrial tRNAs, since tRNA isolated from these strains could be aminoacylated with Escherichia, coli synthetases and hybridized with mtDNA. Hybridization data allow us to order several of the tRNA cistrons on the mitochondrial genome with respect to the chloramphenicol and erythromycin antibiotic resistance markers.  相似文献   

16.
Summary Mitochondrial transfer RNA genes have been ordered relative to the position of five mitochondrial drug resistance markers, namely, chloramphenicol (C), erythromycin (E), oligomycin I and II (OI, OII), and paromomycin (P). Forty-six petite yeast clones that were genetically characterized with respect to these markers were used for a study of these relationships. Different regions of the mitochondrial genome are deleted in these individual mutants, resulting in variable loss of genetic markers. Mitochondrial DNA was isolated from each mutant strain and hybridized with eleven individual mitochondrial transfer RNAs. The following results were obtained: i) Of the seven petite clones that retained C, E, and P resistance markers (but not OI or OII), four carried all eleven transfer RNA genes examined; the other three clones lost several transfer RNA genes, probably by secondary internal deletion; ii) Prolyl and valyl transfer RNA genes were located close to the P marker, whereas the histidyl transfer RNA gene was close to the C marker; iii) Except for a glutamyl transfer RNA gene that was loosely associated with the OI region, no other transfer RNA genes were found in petite clones retaining only the OI and/or the OII markers; and iv) Two distinct mitochondrial genes were found for glutamyl transfer RNA, they were not homologous in DNA sequence and were located at two separate loci.The data indicate that the petite mitochondrial genome is the result of a primary deletion followed by successive additional deletions. Thus an unequivocal gene arrangement cannot be readily established by deletion mapping with petite mutants alone. Nevertheless, we have derived a tentative circular map of the yeast mitochondrial genome from the data; the map indicates that all but one of the transfer RNA genes are found between the C and P markers without forming a tight cluster. The following arrangement is suggested:-P-pro-val-ile-(phe, ala, tyr, asp)-glu2-(lys-leu)-his-C-E-OI-glu1-OII-P-.Supported in part by Cancer Center CCRC 111B-3. Present address: Laboratoire de Biologie Generale, Universite Paris-Sud Orsay, 91405, FranceThe Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U.S. Energy Research and Development Administration under Contract E(11-1)69  相似文献   

17.
Ellis TP  Lukins HB  Nagley P  Corner BE 《Genetics》1999,151(4):1353-1363
Mutations in the nuclear AEP2 gene of Saccharomyces generate greatly reduced levels of the mature form of mitochondrial oli1 mRNA, encoding subunit 9 of mitochondrial ATP synthase. A series of mutants was isolated in which the temperature-sensitive phenotype resulting from the aep2-ts1 mutation was suppressed. Three strains were classified as containing a mitochondrial suppressor: these lost the ability to suppress aep2-ts1 when their mitochondrial genome was replaced with wild-type mitochondrial DNA (mtDNA). Many other isolates were classified as containing dominant nuclear suppressors. The three mitochondrion-encoded suppressors were localized to the oli1 region of mtDNA using rho- genetic mapping techniques coupled with PCR analysis; DNA sequencing revealed, in each case, a T-to-C nucleotide transition in mtDNA 16 nucleotides upstream of the oli1 reading frame. It is inferred that the suppressing mutation in the 5' untranslated region of oli1 mRNA restores subunit 9 biosynthesis by accommodating the modified structure of Aep2p generated by the aep2-ts1 mutation (shown here to cause the substitution of proline for leucine at residue 413 of Aep2p). This mode of mitochondrial suppression is contrasted with that mediated by heteroplasmic rearranged rho- mtDNA genomes bypassing the participation of a nuclear gene product in expression of a particular mitochondrial gene. In the present study, direct RNA-protein interactions are likely to form the basis of suppression.  相似文献   

18.
Rhomboid-7 (rho-7) is a mitochondrial-specific intramembranous protease. The loss-of-function mutation rho-7 results in semi-lethality, while escapers have a reduced lifespan with several neurological disorders [1]. Here we show that general, or CNS-specific expression of rho-7 can rescue the lethality of rho-7. General, or CNS-specific over-expression of rho-7 in otherwise wild-type animals caused semi-lethality, with approximately 50% of the animals escaping this lethality, developing into adults displaying a shortened life span with larval locomotory problem. On a cellular level, over-expression resulted in severe depression of ATP levels and cytochrome c oxidase subunit II mRNA levels, a lowered number of mitochondria in neurons and aggregation of mitochondria in the brain indicating mitochondrial malfunction. Over-expression of rho-7 in developing eye discs resulted in an elevated apoptotic index. In the CNS, elevated levels of rho-7 were accompanied by both isoforms of Opa1-like, a dynamin-like GTPase, a mitochondrial component involved in regulating mitochondrial dynamics and function, including apoptosis. Most, but not all, of rho-7 over-expression phenotypes were suppressed by introducing a heterozygous mutation for Opa1-like. Our results suggest that rho-7 and Opa1-like function in a common molecular pathway affecting mitochondrial function and apoptosis in Drosophila melanogaster.  相似文献   

19.
20.
Simultaneous inhibition of oxidative phosphorylation by rho- mutation and adenine nucleotide exchange by op1 mutation or bongkrekic acid results in intramitochondrial energy depletion and cessation of growth in yeast. Effect of energy depletion of mitochondria on mitochondrial biogenesis was studied in intact yeast cells. Immunoblot analysis revealed an overall decrease in cellular content of two mitochondrial proteins - ADP/ATP translocase and beta subunit of mitochondrial ATPase - together with their lower ability to reach the proper intramitochondrial compartment. Both effects indicate disturbed biogenesis of energy depleted mitochondria. Quantitative differences in growth abilities and mitochondrial damage observed in two studied systems - op1 rho- double mutants and rho- cells treated with bongkrekic acid - can be explained by different degree of intramitochondrial energy depletion due to leakiness of op1 mutation in op1 rho- cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号