首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amphidromy, characterized by freshwater adult and marine larval stages, has been shown to be an important influence on the genetic structure of aquatic populations. Sicydium salvini is a widespread goby species (Teleostei: Gobiidae: Sicydiinae) in the eastern Pacific with a continuous distribution from Mexico to Panama. Here, we use mitochondrial data to infer population genetic and historical demography of this species. Sequences were collected for the mitochondrial gene cytochrome b for 162 specimens sampled across the range of S. salvini with a concentration on rivers in Costa Rica. No genetic structure was detected between regions or rivers in the AMOVA analysis; the phylogeny for this species showed no geographic affinities and very little resolution. Historical demographic analyses indicated a population expansion during the late Pleistocene. These results are consistent with a panmictic population with expansion influenced strongly by Pleistocene glacial cycles and geologic uplift.  相似文献   

2.
Zenger KR  Eldridge MD  Cooper DW 《Heredity》2003,91(2):153-162
Genetic information has played an important role in the development of management units by focusing attention on the evolutionary properties and genetics of populations. Wildlife authorities cannot hope to manage species effectively without knowledge of geographical boundaries and demic structure. The present investigation provides an analysis of mitochondrial DNA and microsatellite data, which is used to infer both historical and contemporary patterns of population structuring and dispersal in the eastern grey kangaroo (Macropus giganteus) in Australia. The average level of genetic variation across sample locations was one of the highest observed for marsupials (h=0.95, HE=0.82). Contrary to ecological studies, both genic and genotypic analyses reveal weak genetic structure of populations, where high levels of dispersal may be inferred up to 230 km. The movement of individuals was predominantly male-biased (average Nem=22.61, average Nfm=2.73). However, neither sex showed significant isolation by distance. On a continental scale, there was strong genetic differentiation and phylogeographic distinction between southern (TAS, VIC and NSW) and northern (QLD) populations, indicating a current and/or historical restriction of gene flow. In addition, it is evident that northern populations are historically more recent, and were derived from a small number of southern founders. Phylogenetic comparisons between M. g. giganteus and M. g. tasmaniensis indicated that the current taxonomic status of these subspecies should be revised as there was a lack of genetic differentiation between the populations sampled.  相似文献   

3.
Analyses of mitochondrial (mt) DNA and microsatellite variation were carried out to examine the relationships between 10 freshwater populations of three-spined sticklebacks Gasterosteus aculeatus along the eastern coast of the Adriatic Sea. Partial sequences of the mtDNA control region and cytochrome b gene, in addition to 15 microsatellite loci, were used to analyse populations from four isolated river catchments. Results uncovered an Adriatic lineage that was clearly divergent from the European lineage, and confirmed that the most divergent and ancient populations are located within the Adriatic lineage as compared with other European populations. Two northern Adriatic populations formed independent clades within the European mitochondrial lineage, suggesting different colonization histories of the different Adriatic populations. Nuclear marker analyses also indicated deep divergence between Adriatic and European populations, albeit with some discordance between the mtDNA phylogeny of the northern Adriatic populations, further highlighting the strong differentiation among the Adriatic populations. The southern populations within the Adriatic lineage were further organized into distinct clades corresponding to respective river catchments and sub-clades corresponding to river tributaries, reflecting a high degree of population structuring within a small geographic region, concurrent with suggestions of existence of several microrefugia within the Balkan Peninsula. The highly divergent clades and haplotypes unique to the southern Adriatic populations further suggest, in accordance with an earlier, more limited survey, that southern Adriatic populations represent an important reservoir for ancient genetic diversity of G. aculeatus.  相似文献   

4.
Galaxiella pusilla is a small, non-migratory freshwater fish, endemic to south-eastern Australia and considered nationally threatened. To assist in the conservation of the species, microsatellite markers were developed and used to characterize genetic variation in 20 geographically distinct populations across its range. Substantial genetic differentiation was found between an eastern (Victoria east of the Otway Ranges and Tasmania) and western (South Australia and Victoria west of, and including, the Otway Ranges) region. This major separation was also observed in data from a mitochondrial gene and supports a previously proposed split. Populations from the eastern region had overall lower genetic diversity for both the microsatellite and mtDNA markers. There was substantial genetic differentiation between populations within the two regions, suggesting that gene flow is limited by the isolation of freshwater streams. Genetic structure, consistent with an isolation-by-distance model, was also evident in both regions. Patterns of genetic variation in this threatened species are compared to those obtained for other taxa across the same region. The need to consider separate conservation strategies for the two sets of populations is emphasized.  相似文献   

5.
Baker AM  Hurwood DA  Krogh M  Hughes JM 《Heredity》2004,93(2):196-207
We measured spatial genetic structure within three previously described mitochondrial lineages of the atyid shrimp, Paratya australiensis, occurring in upland streams of two major catchments within the Sydney Water Supply Catchment, New South Wales, Australia. In all three lineages, there was significant spatial structuring of genetic variation between catchments. In two lineages, recurrent but restricted maternal gene flow has apparently predominated in shaping within-catchment genetic structure, although this framework may be overlaid with episodic contiguous/long-distance expansion events. In the third lineage, there was no evidence of spatial genetic structuring within one of the catchments, because one haplotype was both common and widespread throughout the sampled area. High-frequency haplotypes were also shared among subcatchments in the other two lineages, and we discuss both historical and contemporary processes that may have left these genetic signatures. Our results are generally concordant with previous reports of significant population structuring in P. australiensis, occurring in upland river reaches elsewhere in eastern Australia. We propose that restricted dispersal and gene flow among upland populations of P. australiensis is linked to dramatic architectural structuring within and among mountain streams.  相似文献   

6.
Large vagile mammals typically exhibit little genetic structuring across their range, particularly when their habitat is essentially continuous. We investigated the population genetic structure of a large vagile Australian macropodid, Macropus fuliginosus, which is continuously distributed across most of southern Australia, using nine highly polymorphic nuclear microsatellite loci. Five distinct genetic units were identified across the range, four on the mainland and one on Kangaroo Island. In addition to the predicted historic Nullarbor Plain Barrier, two unexpected mainland barriers to gene flow were identified. Both were associated with landscape discontinuities (Swan River, Flinders Ranges), which appear within the dispersal capabilities of M. fuliginosus. Typical of large vagile mammals, M. fuliginosus displays high genetic diversity (with the exception of an insular population) and weak genetic structuring (within genetic units). However, the expansion of M. fuliginosus from southwestern Australia during the Pleistocene has resulted in significantly reduced genetic diversity in eastern populations. No significant sex-biased dispersal was detected, although differences in habitat, densities and climatic conditions between the eastern and western regions of the range appear to influence dispersal with the effects of isolation by distance only evident in the west. These results suggest that the biogeography of southern Australia is more complex than previously thought and reveal that seemingly minor landscape features can significantly impact genetic structuring in large vagile mammals.  相似文献   

7.
Toon A  Hughes JM 《Heredity》2008,101(2):127-135
Parasites have been recently advocated as useful proxies for unravelling a complex evolutionary history of a host. In the present study, two species of feather lice, Brueelia semiannulata and Philopterus sp. were analysed for mitochondrial variation and compared to mitochondrial and nuclear variation in their host, the Australian magpie Gymnorhina tibicen. Phylogenies constructed using maximum likelihood methods revealed geographic structuring for both species of feather lice and host. Our genetic analysis shows concordance of east-west structure between host and Philopterus sp. indicating that it is an informative proxy for host history. Analysis of the Philopterus sp. phylogeny also suggested cryptic structuring within the eastern magpie population that had not been previously realized through genetic analysis of the host. B. semiannulata however, did not show congruent phylogeographic structuring with the host. Rather than showing an east-west split between lineages, the phylogeny of B. semiannulata showed north-south geographic structuring. It is postulated that this incongruence may be due to ecological habitat differences and/or the dispersal ability of B. semiannulata.  相似文献   

8.
A phylogeographic study of an economically important freshwater fish, the striped snakehead, Channa striata in Sundaland was carried out using data from mtDNA ND5 gene target to elucidate genetic patterning. Templates obtained from a total of 280 individuals representing 24 sampling sites revealed 27 putative haplotypes. Three distinct genetic lineages were apparent; 1)northwest Peninsular Malaysia, 2)southern Peninsular, east Peninsular, Sumatra and SW (western Sarawak) and 3) central west Peninsular and Malaysian Borneo (except SW). Genetic structuring between lineages showed a significant signature of natural geographical barriers that have been acting as effective dividers between these populations. However, genetic propinquity between the SW and southern Peninsular and east Peninsular Malaysia populations was taken as evidence of ancient river connectivity between these regions during the Pleistocene epoch. Alternatively, close genetic relationship between central west Peninsular Malaysia and Malaysian Borneo populations implied anthropogenic activities. Further, haplotype sharing between the east Peninsular Malaysia and Sumatra populations revealed extraordinary migration ability of C. striata (>500 km) through ancient connectivity. These results provide interesting insights into the historical and contemporary landscape arrangement in shaping genetic patterns of freshwater species in Sundaland.  相似文献   

9.
Southern South America provides a set of unusual geographic features that make it particularly interesting for studying phylogeography. The Andes Mountains run along a north-to-south axis and act as a barrier to gene flow for much of the biota of this region, with southern portions experiencing extensive historical glaciation. Geological data reveal a series of drainage reversals, shifting from Pacific Ocean outlets to Atlantic Ocean outlets because of glacier formation that dammed and reversed rivers. Once glaciers melted around 13 000 years ago, drainages returned to the Pacific Ocean. This geologic history predicts that aquatic organisms in Pacific rivers should have their closest relationships to their counterparts in Atlantic rivers immediately to their east. We tested this prediction in the trichomycterid catfish Hatcheria macraei from 38 locations using the mitochondrial cytochrome b gene. Our results show that most populations found in Pacific rivers were closely related to fish found in the adjacent Atlantic draining Río Chubut. Surprisingly, one documented drainage reversal (from Río Deseado into Río Baker) did not result in movement of H. macraei. Overall, we found the lowest levels of genetic structure between most Pacific rivers that are adjacent to the Atlantic draining Río Chubut. We also found low levels of population structuring among three of four contemporary river basins that drain to the Atlantic Ocean. Our findings suggest that drainage basin boundaries have historically not played an important long-term role in structuring between nine of 11 drainages, an unusual finding in freshwater biogeography.  相似文献   

10.
Echinometra is a pantropical sea urchin made famous through studies of phylogeny, speciation, and genetic structure of the Indo-West Pacific (IWP) species. We sequenced 630 bp of the cytochrome oxidase I (COI) mitochondrial gene to provide comparable information on the eastern Pacific and Atlantic species, using divergence between those separated by closure of the Isthmus of Panama 3.1 million years ago (Ma) to estimate dates for cladogenic events. Most recently (1.27-1. 62 Ma), the Atlantic species E. lucunter and E. viridis diverged from each other, at a time in the Pleistocene that sea levels fell and Caribbean coral speciation and extinction rates were high. An earlier split, assumed to have been coincident with the completion of the Isthmus of Panama, separated the eastern Pacific E. vanbrunti from the Atlantic common ancestor. Transisthmian COI divergence similar to that in the sea urchin genus Eucidaris supports this assumption. The most ancient split in Echinometra occurred between the IWP and the neotropical clades, due to cessation of larval exchange around South Africa or across the Eastern Pacific Barrier. Gene flow within species is generally high; however, there are restrictions to genetic exchange between E. lucunter populations from the Caribbean and those from the rest of the Atlantic. Correlation between cladogenic and vicariant events supports E. Mayr's contention that marine species, despite their high dispersal potential, form by means of geographical separation. That sympatric, nonhybridizing E. lucunter and E. viridis were split so recently suggests, however, that perfection of reproductive barriers between marine species with large populations can occur in less than 1.6 million years (Myr).  相似文献   

11.
Aim To test whether the genetic diversity of diadromous and landlocked populations of the small puyen Galaxias maculatus (known as jollytail in Australia and inanga in New Zealand) follow the same structuring patterns observed for migratory and non‐migratory species of the genus Galaxias. This work also aimed to test whether the genetic structuring of a group of populations could be predicted from differences in the geomorphologic history of the region they inhabit. Location Eight landlocked populations were sampled from cold‐temperate lakes in north‐western Patagonia. The study area could be split latitudinally into two sectors that differed in their geomorphology, each of them hosting four populations. The southern sector shows evidence of a higher degree of glacial coverage, and the lakes are probably remnants of a big proglacial palaeolake. Lakes in the northern sector, on the other hand, suggest no common origin. Results Significant genetic structuring was found among the studied populations (Θ = 0.188), being the highest value reported to date for the species. Significant correlation was found between genetic diversity and lake area and perimeter. Diversity also showed a slight latitudinal variation suggesting the presence of genetically distinct groups of populations. The comparison of populations from the two geographical sectors showed that those from the north had a higher diversity, more private alleles and strong structuring, while those from the south were less diverse and much more homogeneous. Main conclusions Non‐migratory populations of G. maculatus show much higher values of genetic structuring than those reported for diadromous populations. This follows the pattern seen when comparing migratory and non‐migratory species of Galaxias. This agrees with population genetics theory which predicts that restricted gene flow would result in greater among‐population divergence. Also, differences between northern and southern populations agreed with what was predicted by the geomorphologic history of the study area. During the Last Glacial Maximum ice cover in that region may have reduced the habitat of G. maculatus to a refuge with an impoverished gene pool. When the ice receded, leaving a great proglacial lake, that former population expanded and became fragmented after water levels descended. This resulted in present day lakes harbouring homogeneous populations with reduced diversity. The northern sector, in contrast, was less affected by glaciers, resulting in more geomorphologically stable lakes holding genetically diverse populations.  相似文献   

12.
Aim Alternative hypotheses concerning genetic structuring of the widespread endemic New Guinean forest pademelons (Thylogale) based on current taxonomy and zoogeography (northern, southern and montane species groupings) and preliminary genetic findings (western and eastern regional groupings) are investigated using mitochondrial sequence data. We examine the relationship between the observed phylogeographical structure and known or inferred geological and historical environmental change during the late Tertiary and Quaternary. Location New Guinea and associated islands. Methods We used primarily museum specimen collections to sample representatives from Thylogale populations across New Guinea and three associated islands. Mitochondrial cytochrome b and control region sequence data were used to construct phylogenies and estimate the timing of population divergence. Results Phylogenetic analyses indicated subdivision of pademelons into ‘eastern’ and ‘western’ regional clades. This was largely due to the genetic distinctiveness of north‐eastern and eastern peninsula populations, as the ‘western’ clade included samples from the northern, southern and central regions of New Guinea. Two tested island groups were closely related to populations north of the Central Cordillera; low genetic differentiation of pademelon populations between north‐eastern New Guinea and islands of the Bismarck Archipelago is consistent with late Pleistocene human‐mediated translocations, while the Aru Islands population showed divergence consistent with cessation of gene flow in the mid Pleistocene. There was relatively limited genetic divergence between currently geographically isolated populations in subalpine and nearby mid‐montane or lowland regions. Main conclusions Phylogeographical structuring does not conform to zoogeographical expectations of a north/south division across the cordillera, nor to current species designations, for this generalist forest species complex. Instead, the observed genetic structuring of Thylogale populations has probably been influenced by geological changes and Pleistocene climatic changes, in particular the recent uplift of the north‐eastern Huon Peninsula and the lowering of tree lines during glacial periods. Low sea levels during glacial maxima also allowed gene flow between the continental Aru Island group and New Guinea. More work is needed, particularly multi‐taxon comparative studies, to further develop and test phylogeographical hypotheses in New Guinea.  相似文献   

13.
In Australian populations of barramundi Lates calcarifer , phylogenetic reconstruction of mtDNA sequences provided evidence of significant historical levels of gene flow, despite the substantial structuring of contemporary populations. The geographical pattern of mtDNA sequences among the populations was not congruent with previous evidence of a major disjunction between western and eastern populations of barramundi in Australia.  相似文献   

14.
Aim Previous genetic studies of African savanna ungulates have indicated Pleistocene refugial areas in East and southern Africa, and recent palynological, palaeovegetation and fossil studies have suggested the presence of a long‐standing refugium in the south and a mosaic of refugia in the east. Phylogeographic analysis of the common eland antelope, Taurotragus oryx (Bovidae), was used to assess these hypotheses and the existence of genetic signatures of Pleistocene climate change. Location The sub‐Saharan savanna biome of East and southern Africa. Methods Mitochondrial DNA control‐region fragments (414 bp) from 122 individuals of common eland were analysed to elucidate the phylogeography, genetic diversity, spatial population structuring, historical migration and demographic history of the species. The phylogeographic split among major genetic lineages was dated using Bayesian coalescent‐based methods and a calibrated fossil root of 1.6 Ma for the split between the common eland and the giant eland, Taurotragus derbianus. Results Two major phylogeographic lineages comprising East and southern African localities, respectively, were separated by a net nucleotide distance of 4.7%. A third intermediate lineage comprised only three haplotypes, from Zimbabwe in southern Africa. The estimated mutation rate of 0.097 Myr?1 revealed a more recent common ancestor for the eastern lineage (0.21 Ma; 0.07–0.37) than for the southern lineage (0.35 Ma; 0.10–0.62). Compared with the latter, the eastern lineage showed pronounced geographic structuring, lower overall nucleotide diversity, higher population differentiation, and isolation‐by‐distance among populations. Main conclusions The data support the hypothesis of Pleistocene refugia occurring in East and southern Africa. In agreement with palynological, palaeovegetation and fossil studies, our data strongly support the presence of a longer‐standing population in the south and a mosaic of Pleistocene refugia in the east, verifying the efficacy of genetic tools in addressing such questions. The more recent origin of the common eland inhabiting East Africa could result from colonization following extinction from the region. Only two other dated African ungulate phylogenies have been published, applying different methods, and the similarity of dates obtained from the three distinct approaches indicates a significant event c. 200 ka, which left a strong genetic signature across a range of ungulate taxa.  相似文献   

15.
1. Conservation plans are required to safeguard freshwater biodiversity in the face of increasing threats. Traditionally plans have used surrogates for biodiversity that do not account for the evolutionary process, but genetic data in the form of comparative phylogeography can fulfil this role. 2. Comparative phylogeographic analyses of multiple freshwater fish and decapod crustacean species were carried out with specimens from two model systems, namely the sand dune islands of Fraser and North Stradbroke in eastern Australia. 3. Almost all of the species studied from both islands displayed an intraspecific evolutionary split between sides of the island (east/west on North Stradbroke Island, and north/south on Fraser Island), indicating that each side of each island hosts its own distinct community of populations of freshwater animals. 4. The probable process responsible for both of these divergent communities is different source populations for each side of each island. 5. This study shows that biodiversity will not always follow obvious geography and that significant diversity may exist at small scales within multiple species. These evolutionarily relevant units of biodiversity should be incorporated at the beginning of the conservation and resource management planning process.  相似文献   

16.
Freshwater fish are a group that is especially susceptible to biodiversity loss as they often exist naturally in small, fragmented populations that are vulnerable to habitat degradation, pollution and introduction of exotic species. Relatively little is known about spatial dynamics of unperturbed populations of small-bodied freshwater fish species. This study examined population genetic structure of the purple spotted gudgeon (Mogurnda adspersa, Eleotridae), a small-bodied freshwater fish that is widely distributed in eastern Australia. The species is threatened in parts of its range but is common in coastal streams of central Queensland where this study took place. Microsatellite (msat) and mitochondrial DNA (mtDNA) variation was assessed for nine sites from four stream sections in two drainage basins. Very high levels of among population structure were observed (msat F(ST) = 0.18; mtDNA Φ(ST) = 0.85) and evidence for contemporary migration among populations was rare and limited to sites within the same section of stream. Hierarchical structuring of variation was best explained by stream section rather than by drainage basin. Estimates of contemporary effective population size for each site was low (range 28 - 63, Sibship method), but compared favorably with similar estimates for other freshwater fish species, and there was no genetic evidence for inbreeding or recent population bottlenecks. In conclusion, within a stable part of its range, M adspersa exists as a series of small, demographically stable populations that are highly isolated from one another. Complimentary patterns in microsatellites and mtDNA indicate this structuring is the result of long-term processes that have developed over a remarkably small spatial scale. High population structure and limited dispersal mean that recolonisation of locally extinct populations is only likely to occur from closely situated populations within stream sections. Limited potential for recolonisation should be considered as an important factor in conservation and management of this species.  相似文献   

17.
The palaeoceanography of southern Australia has been characterized by fluctuating sea levels during glacial periods, changing temperature regimes and modified boundary currents. Previous studies on genetic structuring of species in southeastern Australia have focused mainly on the differentiation of eastern and western populations while the potential role of Bass Strait as a region of overlap for three biogeographic provinces (Peronia, Maugea, and Flindersia) has been largely ignored. This study aimed to explore the likely roles of historic and contemporary factors in determining divergence patterns in the habitat‐forming intertidal seaweed Hormosira banksii in southeastern Australia with a special focus on postglacial dispersal into Bass Strait. We examined the genetic diversity of 475 Hormosira specimens collected from 19 sites around southern Australia using DNA sequence analysis of cytochrome oxidase 1. Three major haplotype groups were identified (western, centre and eastern) corresponding with the three existing biogeographical provinces in this region. Historic break points appeared to be retained and reinforced by modern day dispersal barriers. Phylogeographic grouping of Hormosira reflected a combination of historic and contemporary oceanography. As western and eastern group haplotypes were largely absent within Bass Strait, re‐colonization after the last glacial maximum appeared to have originated from refuges within or near present day Bass Strait. Patterns of genetic structure for Hormosira are consistent with other marine species in this region and highlight the importance of biogeographical barriers in contributing to modern genetic structure.  相似文献   

18.
Many tropical reef fishes are divided into Atlantic and East Pacific taxa, placing similar species in two very different biogeographic regimes. The tropical Atlantic is a closed ocean basin with relatively stable currents, whereas the East Pacific is an open basin with unstable oceanic circulation. To assess how evolutionary processes are influenced by these differences in oceanography and geography, we analyze a 630-bp region of mitochondrial cytochrome b from 171 individuals in the blenniid genus Ophioblennius. Our results demonstrate deep genetic structuring in the Atlantic species, O. atlanticus, corresponding to recognized biogeographic provinces, with divergences of d = 5.2-12.7% among the Caribbean, Brazilian, St. Helena/Ascension Island, Gulf of Guinea, and Azores/Cape Verde regions. The Atlantic phylogeny is consistent with Pliocene dispersal from the western to eastern Atlantic, and the depth of these separations (along with prior morphological comparisons) may indicate previously unrecognized species. The eastern Pacific species, O. steindachneri, is characterized by markedly less structure than O. atlanticus, with shallow mitochondrial DNA lineages (dmax = 2.7%) and haplotype frequency shifts between locations in the Sea of Cortez, Pacific Panama, Clipperton Island, and the Galapagos Islands. No concordance between genetic structure and biogeographic provinces was found for O. steincdachneri. We attribute the phylogeographic pattern in O. atlanticus to dispersal during the reorganization of Atlantic circulation patterns that accompanied the shoaling of the Isthmus of Panama. The low degree of structure in the eastern Pacific is probably due to unstable circulation and linkage to the larger Pacific Ocean basin. The contrast in genetic signatures between Atlantic and eastern Pacific blennies demonstrates how differences in geology and oceanography have influenced evolutionary radiations within each region.  相似文献   

19.
This study investigates the genetic structure and phylogeography of a broadcast spawning bivalve mollusc, Pinctada maxima, throughout the Indo‐West Pacific and northern Australia. DNA sequence variation of the mitochondrial cytochrome oxidase subunit I (COI) gene was analysed in 367 individuals sampled from nine populations across the Indo‐West Pacific. Hierarchical AMOVA indicated strong genetic structuring amongst populations (ΦST = 0.372, P < 0.001); however, sequence divergence between the 47 haplotypes detected was low (maximum 1.8% difference) and no deep phylogenetic divergence was observed. Results suggest the presence of genetic barriers isolating populations of the South China Sea and central Indonesian regions, which, in turn, show patterns of historical separation from northern Australian regions. In P. maxima, historical vicariance during Pleistocene low sea levels is likely to have restricted planktonic larval transport, causing genetic differentiation amongst populations. However, low genetic differentiation is observed where strong ocean currents are present and is most likely due to contemporary larval transport along these pathways. Geographical association with haplotype distributions may indicate signs of early lineage sorting arising from historical population separations, yet an absence of divergent phylogenetic clades related to geography could be the consequence of periodic pulses of high genetic exchange. We compare our results with previous microsatellite DNA analysis of these P. maxima populations, and discuss implications for future conservation management of this species. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 632–646.  相似文献   

20.
Spatial genetic variation within species is influenced by both contemporary and historical factors. We attempted to assess the impact of increased aridity and lower temperatures associated with the last glacial maximum on possible refugia and the structuring of genetic variation in Banksia hookeriana, a shrub species restricted to deep sands on the Eneabba sandplain and adjacent Gingin Scarp/Dandaragan Plateau, centred 300 km north of Perth, Western Australia. We used optically stimulated luminescence (OSL) dating to estimate the last time these sands were mobile, as well as amplified fragment length polymorphisms (AFLP) to infer spatial patterns and the phylogeographical history of genetic variation among 15 populations of B. hookeriana. While genetic variation at the species level was high, with 96.6% of 238 AFLP markers polymorphic, average within population gene diversity was low (H(pop) = 0.16). Of the total genetic variation, an analysis of molecular variance (amova) partitioned 70% within populations, 24% among populations within substrate and 6% between substrates. There was an isolation-by-distance effect among populations within the same substrate, but not across substrates, and ordination highlighted genetic differentiation between the sandplain and scarp/plateau populations. A neighbour-joining tree identified the sandplain populations as a distinct clade, with the exception of the most northern sandplain population, which clustered with two northern and eastern plateau populations. The most southern plateau populations formed a clade sister to the sandplain clade. OSL dating of sand at six extant populations suggested that dunes were last mobile 15,000-35,000 years ago, with no clear difference in the ages of sandplain and plateau dunes. These data are consistent with a historical scenario of (re)colonization from isolated refugia of smaller populations either within the patchily vegetated sandplain and/or refugia at the northern, eastern and southern sandplain/scarp margins following postglacial climate amelioration and dune stabilization. Historic interpretations were confounded by the possible effects of long-distance dispersal, natural selection by substrate, and weak and/or ancient introgression with the sister species, Banksia prionotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号