首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The digestion of single peptidoglycan chains of the recently proposed conformation (Formanek et al., 1974) can be described with the same enzymatic mechanism as proposed by Phillips for a hexasaccharide consisting of alternating N-acetylglucosamine, N-acetylmuramic acid residues (Phillips, 1966). It is shown by model building, that in a peptidoglycan lysozyme complex the peptide chains do not exhibit any sterical hindrance.The digestion of the peptidoglycan sacculus by lysozyme may occur at lattice defects of its paracrystalline structure. A slit of about 30 å lenght and 10–15 å width between peptidoglycan micells may be sufficient for the attachment of lysozyme.  相似文献   

2.
During intraperiplasmic growth of Bdellovibrio bacteriovorus on Escherichia coli, the substrate cell peptidoglycan is extensively modified as it is converted to bdelloplast peptidoglycan. The initially lysozyme-sensitive peptidoglycan of E. coli was rapidly converted to a lysozyme-resistant form. The conversion was due to the N-deacetylation of a large portion of the peptidoglycan amino sugars. Chemically acetylating the isolated peptidoglycan restored its sensitivity to lysozyme digestion. However, approximately half of the products of lysozyme digestion exhibited hydrophobic interactions that were shown not to be due to the presence of protein. This suggests that a molecule capable of hydrophobic interactions, other than protein, becomes linked to the bdelloplast peptidoglycan. The data also suggest that much of the Braun lipoprotein is removed from the E. coli peptidoglycan early during bdellovibrio development.  相似文献   

3.
1. A peptidoglycan preparation N-acetylated at about 30% of glucosamine residues was obtained by the treatment of the lysozyme-resistant cell wall paptidoglycan of Bacillus cereus with acetic anhydride at pH 7. Fractionation of dialyzable material resulting from lysozyme digestion of the glycan component of this peptidoglycan preparation yielded five oligosaccharides designated as S1 to S5 besides the disaccharide GlcNAc-MurAc. 2. Oligosaccharide S3, which accounted for about 30% of the disaccharide units recovered as disaccharides and oligosaccharides, was identified as GlcN-MurAc-GlcNAc-MurAc. Oligosaccharide S1, accounting for about 20% of the disaccharide units recovered, was characterized as GlcN-MurAc-GlcN-MurAc-GlcNAc-MurAc, while oligosaccharide S2, present in a smaller amount, as GlcNAc-MurAc-GlcN-MurAc-glcNAc-MurAc. Oligosaccharides S4, and S5, present in small amounts, were identified as GlcNAc-MurAc-GlcNAc-MurAc and MurAc-GlcNAc-MurAc, respectively. 3. Oligosaccharides S1, S3 and S5 proved to be completely insusceptible to lysozyme, whereas S2 was digsted by lysozyme to produce GlcNAc-MurAc and S3. S1 was found to act as a more potent inhibitor than S3 in lysozyme-catalyzed digestion of polysaccharides. 4. The results obtained show that the lysozyme-catalyzed hydrolysis of peptidoglycan oligosaccharides had an obligatory requirement for the N-acetyl group on the glucosamine residue located in subsite C in the enzyme-substrate complex.  相似文献   

4.
The distribution of penicillin-binding proteins (PBPs) within different membranes of sporulating cells of Bacillus subtilis was examined in an effort to correlate the location of individual PBPs with their proposed involvement in either cortical or vegetative peptidoglycan synthesis. The PBP composition of forespores was determined by two methods: examination of isolated forespore membranes and assay of the in vivo accessibility of the PBPs to penicillin. In both cases, it was apparent that PBP 5*, the major PBP synthesized during sporulation, was present primarily, but not exclusively, in the forespore. The membranes from mature dormant spores were prepared by either chemically stripping the integument layers of the spores, followed by lysozyme digestion, or lysozyme digestion alone of coat-defective gerE spores. PBP 5* was detected in membranes from unstripped spores but was never found in stripped ones, which suggests that the primary location of this PBP is the outer forespore membrane. This is consistent with a role for PBP 5* exclusively in cortex synthesis. In contrast, vegetative PBPs 1 and 2A were only observed in stripped spore preparations that were greatly enriched for the inner forespore membrane, which supports the proposed requirement for these PBPs early in germination. The apparent presence of PBP 3 in both membranes of the spore reinforces the suggestion that it catalyzes a step common to both cortical and vegetative peptidoglycan synthesis.  相似文献   

5.
In several insect species, serum lysozyme and antibacterial peptide concentration increases after injection of bacteria and other foreign substances. The purpose of this study was to characterize the specificity of this induction in the tobacco hornworm, Manduca sexta. By 48 h after injection of killed bacteria, lysozyme activity was approximately tenfold greater than in untreated insects. This maximal response was observed after injection of every bacterial species tested and after injection of purified cell walls of Micrococcus luteus. A variety of acellular particles, soluble molecules, and bacterial cell wall components were either poor lysozyme inducers or elicited no change in lysozyme concentration. The polysaccharide zymosan from yeast cell walls was a moderate lysozyme inducer. Peptidoglycan from M. luteus cell walls was found to induce lysozyme to a level as great or greater than whole cell walls. Small fragments of peptidoglycan generated by hen egg white lysozyme digestion were isolated, partially characterized, and shown to be good inducers of lysozyme as well as other antibacterial peptides. It appears that peptidoglycan provides a signal that initiates antibacterial responses in the insect.  相似文献   

6.
Lysozyme digestion and sonication of sodium dodecyl sulfate (SDS)-purified Klebsiella aerogenes murein sacculi resulted in the quantitative release of both subunits of nitrate reductase, as well as a number of other cytoplasmic membrane polypeptides (5.2%, by weight, of the total membrane proteins). Similar results were obtained after lysozyme digestion of SDS-prepared peptidoglycan fragments, which excluded the phenomenon of simple trapping of the polypeptides by the surrounding peptidoglycan matrix. About 28% of membrane-bound nitrate reductase appears to be tightly associated with the peptidoglycan. Additional evidence for this association was demonstrated by positive immunogold labeling of SDS-murein sacculi and thin sections of plasmolyzed bacteria. Qualitative amino acid analysis of trypsin-treated sacculi, a tryptic product of holo-nitrate reductase, and amino- and carboxypeptidase digests of both nitrate reductase subunits indicated the possible existence of a terminal anchoring peptide containing the following amino acids: (Gly)n, Trp, Ser, Pro, Ile, Leu, Phe, Cys, Tyr, Asp, and Lys.  相似文献   

7.
Bacterial endospore germination is powerfully influenced by inorganic salts, cations having especially important effects. Spores of Clostridium perfringens 8-6 are unusual in lacking a spore coat; these spores germinate only in the presence of lysozyme, which readily digests the exposed cortex. Lysozyme-induced germination showed the same response to ionic strength and valence of cations as does lysozyme hydrolysis of peptidoglycan, and close parallels are evident in the influence of inorganic cations on germination of normal spores. La3+ and transition element cations inhibited lysozyme-induced germination at low concentration, again demonstrating parallels with their action on lysozyme digestion of peptidoglycan and on the germination of normal spores. The poly-cations poly(L-lysine) and Ruthenium Red inhibited at extremely low concentrations. Mn2+ and Co2+, at appropriately low concentrations, stimulated lysozyme germination of 8-6 spores and also lysis of Micrococcus lysodeikticus.  相似文献   

8.
1. The peptidoglycan complex excreted in large amounts into the medium by the biotin-requiring mutant Brevibacterium divaricatum NRRL-2311 incubated in the presence of penicillin for 1 h has been investigated. A convenient isolation procedure with high yield for the pure monomeric unit from lysozyme digest of the accumulated polymer is described. 2. It is shown that the released peptidoglycan possesses the linear uncross-linked structure made of repeating disaccharide-pentapeptide unit [GlcNAc-MurNac-Ala-D-Glyn(meso-DAP-D-Ala-D-Ala)] which was isolated by stepwise gel filtration and fractionation of the digestion mixture in 10-mg quantities. Evidence that the minor digestion product of accumulated peptidoglycan possesses the glycan-linked dimer structure is given. Under conditions of beta-elimination, the monomeric unit yielded a lactylpentapeptide which was isolated in pure form by gel filtration. 3. The monomer unit originating from the cultures to which L-[U-14C]glutamic acid was added simultaneously with penicillin incorporated the label exclusively in the peptide chain, whereas that labeled from E11-14C]acetate as the precursor contained radioactivity in both the peptide chain (53%) and N-acetylamino groups (47%) of the glycan portion.  相似文献   

9.
A practical method for preparing peptidoglycan from Ps. aeruginosa and E. coli was devised. After bacterial cells were dissolved in boiling 4% SDS solution, peptidoglycan was collected and washed with water by centrifugation. Peptidoglycan was treated further with pronase and lyophilized. The final preparation of peptidoglycan from Ps. aeruginosa appeared as a filmy coagulation in electron micrograph and its amino acid composition was determined as follows: Glu/Ala/A2pm/Mur/GlcN (100/183/104/61/98). The lysozyme digest showed the same pattern as that of E. coli peptidoglycan. N-Terminal analysis suggested that about half of the peptide chains was interbridged by the peptide bond between Ala and A2pm. The probable ratio of muropeptides in the peptidoglycan was estimated.  相似文献   

10.
A lysoplate assay for Escherichia coli cell wall-active enzymes   总被引:3,自引:0,他引:3  
A benchtop assay based upon digestion of purified Escherichia coli peptidoglycan suspended in an agarose gel matrix is described. Enzymes for which these cell walls are substrates are applied to wells in the gel and diffuse into the gel. Activity is measured visually by the size of clear disks formed around the wells as the peptidoglycan is digested. Using this assay, it is possible to screen large numbers of cell wall-active enzymes for sensitivity to pH, ionic strength, denaturant, temperature, or other factors without interference from endogenous autolytic enzymes. Data are presented to show the limits of detection and linearity of the assay. For an assay time of 14 h, as little as 1 nmol per liter of bacteriophage T4 lysozyme and 200 nmol per liter of hen egg white lysozyme were detected. Longer assay times decrease these limits by as much as an order of magnitude. The salt dependence of T4 lysozyme and several of its temperature-sensitive mutants was also determined. Finally, an example of the use of the assay during lysozyme purification to determine active column fractions is presented.  相似文献   

11.
The peptidoglycan layer of Spirillum serpens cell walls was isolated from intact cells after treatment with sodium dodecylsulfate and digestion with Pronase. The isolated peptidoglycan contained glucosamine, muramic acid, alanine, glutamic acid, and meso-diaminopimelic acid in the approximate molar ratio of 1:1:2:1:1. Aspartic acid and glycine were the only other amino acids found in significant quantities. N-terminal amino acid analyses of the tetrapeptide amino acids in the peptidoglycan revealed that 54% of the diaminopimelic acid molecules are involved in cross-linkage between tetrapeptides. This amount of cross-linkage is greater than that found in the peptidoglycan of previously studied cell walls of gram-negative bacteria. The polysaccharide backbone was isolated, after myxobacter AL-1 enzyme digestion of the peptidoglycan, by fractionation with ECTEOLA-cellulose and Sephadex G-100. An average length of 99 hexosamines for the polysaccharide chains was found (ratio of total hexosamines to reducing end groups).  相似文献   

12.
Analytical work on the fractionation of the glycan strands of Streptococcus pneumoniae cell wall has led to the observation that an unusually high proportion of hexosamine units (over 80% of the glucosamine and 10% of the muramic acid residues) was not N-acetylated, explaining the resistance of the peptidoglycan to the hydrolytic action of lysozyme, a muramidase that cleaves in the glycan backbone. A gene, pgdA, was identified as encoding for the peptidoglycan N-acetylglucosamine deacetylase A with amino acid sequence similarity to fungal chitin deacetylases and rhizobial NodB chitooligosaccharide deacetylases. Pneumococci in which pgdA was inactivated by insertion duplication mutagenesis produced fully N-acetylated glycan and became hypersensitive to exogenous lysozyme in the stationary phase of growth. The pgdA gene may contribute to pneumococcal virulence by providing protection against host lysozyme, which is known to accumulate in high concentrations at infection sites.  相似文献   

13.
Streptococcus mutans BHT was grown in Todd-Hewitt dialysate medium containing N-acetyl[14C]glucosamine for 6 to 11 generations. After treatment with cold and hot trichloroacetic acid and trypsin, 52 to 65% of the radioactivity remained present in insoluble peptidoglycan-containing residues. Hen egg white lysozyme or mutanolysin treatment of the peptidoglycan residues resulted in the release of 80 and 97%, respectively, of the 14C label to the supernatant fraction. Hydrochloric acid hydrolysates of such supernatants showed that essentially all of the radioactivity present in insoluble peptidoglycan fractions was present in compounds that comigrated on paper chromatography with glucosamine (~60%) or muramic acid (~30%). Treatment of whole cells with low and high concentrations of lysozyme alone resulted in losses of 45 and 70% of the insoluble peptidoglycan, respectively, yet release of deoxyribonucleic acid from cells was not detected. Sequential addition of appropriate concentrations of selected inorganic salts after lysozyme treatment did result in the liberation of deoxyribonucleic acid. Deoxyribonucleic acid release was correlated with a further release of peptidoglycan from the insoluble fraction. However, the total amount of peptidoglycan lost effected by the low concentration of lysozyme and NaSCN (lysis) was significantly less than the amount of peptidoglycan hydrolyzed by high concentrations of lysozyme alone (no lysis), suggesting that the overall amount of peptidoglycan lost did not correlate well with cellular lysis. The total amount of insoluble peptidoglycan lost at the highest salt concentrations tested was found to be greater than could be accounted for by lysozyme-sensitive linkages of the peptidoglycan, possibly implicating autolysins. The results obtained suggested that hydrolysis of peptidoglycan bonds in topologically localized, but strategically important, sites was a more significant factor in the sequence that results in loss of cellular integrity (lysis).  相似文献   

14.
On N-acetylmuramyl-L-alanine-amidase treatment followed by lysozyme digestion, peptidoglycan N-unacetylated partially at glucosamine residues yielded three oligosaccharides with N-unacetylated glucosamine residues, GlcN-MurNAc-GlcNAc-MurNAc1, GlcN-MurNAc-GlcN-MurNAc-GlcNAc-MurNAc, and GlcNAc-MurNAc-GlcN-MurNAc-GlcNAc-MurNAc. Lysozyme can not hydrolyze the former two saccharides, whereas it cleaves the latter one into GlcNAc-MurNAc and GlcN-MurNAc-GlcNAc-MurNAc. This confirms requirement for the acetamido group of the N-acetylglucosamine in the interaction with subsite C of lysozyme.  相似文献   

15.
The composition and fine structure of the vegetative cell wall peptidoglycan from Bacillus subtilis were determined by analysis of its constituent muropeptides. The structures of 39 muropeptides, representing 97% of the total peptidoglycan, were elucidated. About 99% analyzed muropeptides in B. subtilis vegetative cell peptidoglycan have the free carboxylic group of diaminopimelic acid amidated. Anhydromuropeptides and products missing a glucosamine at the nonreducing terminus account for 0.4 and 1.5%, respectively, of the total muropeptides. These two types of muropeptides are suggested to end glycan strands. An unexpected feature of B. subtilis muropeptides was the occurrence of a glycine residue in position 5 of the peptide side chain on monomers or oligomers, which account for 2.7% of the total muropeptides. This amount is, however, dependent on the composition of the growth media. Potential attachment sites for anionic polymers to peptidoglycan occur on dominant muropeptides and account for 2.1% of the total. B. subtilis peptidoglycan is incompletely digested by lysozyme due to de-N-acetylation of glucosamine, which occurs on 17.3% of muropeptides. The cross-linking index of the polymer changes with the growth phase. It is highest in late stationary phase, with a value of 33.2 or 44% per muramic acid residue, as determined by reverse-phase high-pressure liquid chromatography or gel filtration, respectively. Analysis of the muropeptide composition of a dacA (PBP 5) mutant shows a dramatic decrease of muropeptides with tripeptide side chains and an increase or appearance of muropeptides with pentapeptide side chains in monomers or oligomers. The total muropeptides with pentapeptide side chains accounts for almost 82% in the dacA mutant. This major low-molecular-weight PBP (DD-carboxypeptidase) is suggested to play a role in peptidoglycan maturation.  相似文献   

16.
Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show that YycFG is a regulator of cell wall metabolism. We have identified five new members of the YycFG regulon: YycF activates expression of yvcE, lytE and ydjM and represses expression of yoeB and yjeA. YvcE(CwlO) and LytE encode endopeptidase-type autolysins that participate in peptidoglycan synthesis and turnover respectively. We show that a yvcE lytE double mutant strain is not viable and that cells lacking LytE and depleted for YvcE exhibit defects in lateral cell wall synthesis and cell elongation. YjeA encodes a peptidoglycan deacetylase that modifies peptidoglycan thereby altering its susceptibility to lysozyme digestion and YdjM is also predicted to have a role in cell wall metabolism. A genetic analysis shows that YycFG essentiality is polygenic in nature, being a manifestation of disrupted cell wall metabolism caused by aberrant expression of a number of YycFG regulon genes.  相似文献   

17.
The diversity of cell shapes across the bacterial kingdom reflects evolutionary pressures that have produced physiologically important morphologies. While efforts have been made to understand the regulation of some prototypical cell morphologies such as that of rod‐shaped Escherichia coli, little is known about most cell shapes. For Caulobacter crescentus, polar stalk synthesis is tied to its dimorphic life cycle, and stalk elongation is regulated by phosphate availability. Based on the previous observation that C. crescentus stalks are lysozyme‐resistant, we compared the composition of the peptidoglycan cell wall of stalks and cell bodies and identified key differences in peptidoglycan crosslinking. Cell body peptidoglycan contained primarily DD‐crosslinks between meso‐diaminopimelic acid and D‐alanine residues, whereas stalk peptidoglycan had more LD‐transpeptidation (meso‐diaminopimelic acid‐meso‐diaminopimelic acid), mediated by LdtD. We determined that ldtD is dispensable for stalk elongation; rather, stalk LD‐transpeptidation reflects an aging process associated with low peptidoglycan turnover in the stalk. We also found that lysozyme resistance is a structural consequence of LD‐crosslinking. Despite no obvious selection pressure for LD‐crosslinking or lysozyme resistance in C. crescentus, the correlation between these two properties was maintained in other organisms, suggesting that DAP‐DAP crosslinking may be a general mechanism for regulating bacterial sensitivity to lysozyme.  相似文献   

18.
The genomes of Bacillus cereus and its closest relative Bacillus anthracis contain 10 polysaccharide deacetylase homologues. Six of these homologues have been proposed to be peptidoglycan N-acetylglucosamine deacetylases. Two of these genes, namely bc1960 and bc3618, have been cloned and expressed in Escherichia coli, and the recombinant enzymes have been purified to homogeneity and further characterized. Both enzymes were effective in deacetylating cell wall peptidoglycan from the Gram(+) Bacillus cereus and Bacillus subtilis and the Gram(-) Helicobacter pylori as well as soluble chitin substrates and N-acetylchitooligomers. However, the enzymes were not active on acetylated xylan. These results provide insight into the substrate specificity of carbohydrate esterase family 4 enzymes. It was revealed that both enzymes deacetylated only the GlcNAc residue of the synthetic muropeptide N-acetyl-D-glucosamine-(beta-1,4)-N-acetylmuramyl-L-alanine-D-isoglutamine. Analysis of the constituent muropeptides of peptidoglycan from B. subtilis and H. pylori resulting from incubation of the enzymes BC1960 and BC3618 with these polymers and subsequent hydrolysis by Cellosyl and mutanolysin, respectively, similarly revealed that both enzymes deacetylate GlcNAc residues of peptidoglycan. Kinetic analysis toward GlcNAc(2-6) revealed that GlcNAc4 was the favorable substrate for both enzymes. Identification of the sequence of N-acetychitooligosaccharides (GlcNAc(2-4)) following enzymatic deacetylation by using 1H NMR revealed that both enzymes deacetylate all GlcNAc residues of the oligomers except the reducing end ones. Enzymatic deacetylation of chemically acetylated vegetative peptidoglycan from B. cereus by BC1960 and BC3618 resulted in increased resistance to lysozyme digestion. This is the first biochemical study of bacterial peptidoglycan N-acetylglucosamine deacetylases.  相似文献   

19.
Teichuronic acid-peptidoglycan complex isolated from Micrococcus luteus cells by lysozyme digestion in osmotically stabilized medium was treated with mild acid to cleave the linkage joining teichuronic acid to peptidoglycan. This labile linkage was shown to be the phosphodiester which joins N-acetylglucosamine, the residue located at the reducing end of the teichuronic acid, through its anomeric hydroxyl group to a 6-phosphomuramic acid, a residue of the glycan strand of peptidoglycan. 31P nuclear magnetic resonance spectroscopy of the lysozyme digest of cell walls demonstrated the presence of a phosphodiester which was converted to a phosphomonoester by the conditions which released teichuronic acid from cell walls. Reduction of acid-liberated reducing end groups by NaB3H4 followed by complete acid hydrolysis yielded [3H] glucosaminitol from the true reducing end residue of teichuronic acid and [3H]glucitol from the sites of fragmentation of teichuronic acid. The amount of N-acetylglucosamine detected was approximately stoichiometric with the amount of phosphate in the complex. Partial fragmentation of teichuronic acid provides an explanation of the previous erroneous identification of the reducing end residue.  相似文献   

20.
《Insect Biochemistry》1990,20(5):501-509
The pericardial cell-heart complex (pericardial complex) of fifth instar Manduca sexta larvae has been shown to contain, to synthesize and to release lysozyme. Lysozyme activity was present in homogenates of pericardial complex. Immunocytochemical analysis demonstrated that lysozyme in the pericardial complex was located in pericardial cells. Injection of peptidoglycan elicitors, which markedly increase levels of hemolymph lysozyme, also elevated lysozyme activity in homogenates of pericardial complex, but only moderately. Lysozyme synthesis in the pericardial complex was demonstrated in vitro by the incorporation of [3H]leucine into immunoprecipitable lysozyme. This tissue did exhibit an increase in the release of a variety of newly synthesized proteins but not a selective increase in the synthesis and release of lysozyme after peptidoglycan stimulation.In similar experiments, cultured fat body from naive larvae incorporated [3H]leucine into secreted, immunoprecipitable lysozyme at a rate 100-fold greater than that observed for pericardial complex and exhibited a selective increase in lysozyme synthesis and release to 6.5 times its basal level when stimulated with peptidoglycan.We conclude that, of these two tissues, fat body is the primary source of hemolymph lysozyme. On the other hand, pericardial cell lysozyme may function in the intracellular, lysosomal degradation of pinocytosed fragments of bacterial invaders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号