共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants of an untransformed helper T-cell clone have been derived by chemical mutagenesis followed by selection for cells incapable of proliferating in response to antigen or anti-CD3. The selection was designed to enrich cells bearing mutations distal to the T-cell antigen receptor. The mutants express normal levels of functional T-cell receptors but are uncoupled from cellular responses, including gene induction, lymphokine secretion, proliferation, and phosphatidylinositol turnover. Responses to phorbol ester plus calcium ionophore and to interleukin-2 are unimpaired. Responses to antigen were restored by fusion with a T-cell receptor-negative thymoma, making the mutants valuable for investigating the mechanisms that couple T-cell receptor stimulation to the induction of second messengers and subsequent physiologic responses. 相似文献
2.
The mechanism by which ligand binding to the T-cell antigen receptor triggers the T-cell activation program has long been one of the most fascinating questions in lymphocyte biology. Here, we review recent insights into the transmembrane signaling functions of this multisubunit receptor complex. 相似文献
3.
Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. 总被引:17,自引:3,他引:17 下载免费PDF全文
Stimulation of B-cell antigen receptor (BCR) induces a rapid increase in cytoplasmic free calcium due to its release from intracellular stores and influx from the extracellular environment. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ligand-gated channels that release intracellular calcium stores in response to the second messenger, inositol 1,4,5-trisphosphate. Most hematopoietic cells, including B cells, express at least two of the three different types of IP3R. We demonstrate here that B cells in which a single type of IP3R has been deleted still mobilize calcium in response to BCR stimulation, whereas this calcium mobilization is abrogated in B cells lacking all three types of IP3R. Calcium mobilization by a transfected G protein-coupled receptor (muscarinic M1 receptor) was also abolished in only triple-deficient cells. Capacitative Ca2+ entry, stimulated by thapsigargin, remains unaffected by loss of all three types of IP3R. These data establish that IP3Rs are essential and functionally redundant mediators for both BCR- and muscarinic receptor-induced calcium mobilization, but not for thapsigargin-induced Ca2+ influx. We further show that the BCR-induced apoptosis is significantly inhibited by loss of all three types of IP3R, suggesting an important role for Ca2+ in the process of apoptosis. 相似文献
4.
Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. 总被引:102,自引:0,他引:102
Signaling through the T cell antigen receptor (TCR) results both in rapid increases in tyrosine phosphorylation on a number of proteins and in the activation of the phosphatidylinositol pathway. It is not clear how stimulation of the TCR leads to these signaling events. Mutants of the Jurkat T cell line have been previously isolated that fail to show increases in calcium following receptor stimulation. Analysis of one of these mutants, JCaM1, which is defective in the induction of tyrosine phosphorylation, revealed a defect in the expression of functional lck tyrosine kinase. The lack of lck activity was caused in part by a splicing defect. Expression of the lck cDNA in JCaM1 restores the ability of the cell to respond to TCR stimulation. These results indicate that lck is required for normal signal transduction through the TCR. 相似文献
5.
Functional proteomics analysis of signal transduction pathways of the platelet-derived growth factor beta receptor 总被引:11,自引:0,他引:11
We report efficient methods for using functional proteomics to study signal transduction pathways in mouse fibroblasts following stimulation with PDGF. After stimulation, complete cellular proteins were separated using two-dimensional electrophoresis and phosphorylated proteins were detected with anti-phosphotyrosine and anti-phosphoserine antibodies. About 260 and 300 phosphorylated proteins were detected with the anti-phosphotyrosine and anti-phosphoserine antibodies, respectively, at least 100 of which showed prominent changes in phosphorylation as a function of time after stimulation. Proteins showing major time-dependent changes in phosphorylation were subjected to in-gel digestion with trypsin and identified by mass spectroscopy using MALDI-TOF mass fingerprinting and ESI peptide sequencing. We have observed phosphorylated proteins known to be part of the PDGF signal transduction pathway such as ERK 1, serine/threonine protein kinase akt and protein tyrosine phosphatase syp, proteins such as proto-oncogene tyrosine kinase fgr previously known to participate in other signal transduction pathways, and some proteins such as plexin-like protein with no previously known function in signal transduction. Information about the phosphorylation site was obtained for proto-oncogene tyrosine kinase fgr and for cardiac alpha-actin. The methods used here have proven to be suitable for the identification of time-dependent changes in large numbers of proteins involved in signal transduction pathways. 相似文献
6.
A L DeFranco 《European journal of biochemistry》1992,210(2):381-388
Lymphocytes provide a powerful defense against infectious agents with their exquisite ability to distinguish between macromolecules of the host and macromolecules of foreign invaders. This ability derives from the antigen receptors, which are created from precursor minigenes by a series of genetic-recombination reactions [1, 2] and from cellular mechanisms that inactivate lymphocytes expressing self-reactive antigen receptors [3, 4]. Central to the problem of distinguishing self from non-self is the means by which these antigen receptors recognize antigen and transmit the information of that recognition to the interior of the cell. This information ultimately leads to lymphocyte activation or inactivation, depending upon the context. In this review, I shall summarize recent advances in understanding the structural elements of the antigen receptor complex of B lymphocytes and in understanding the signal-transduction events initiated by this receptor. 相似文献
7.
Multiple kinases and signal transduction. Phosphorylation of the T cell antigen receptor complex 总被引:19,自引:0,他引:19
Multiple kinases interact at the multicomponent murine T cell antigen receptor. Antigen induces serine phosphorylation of the 21-kDa gamma glycoprotein and tyrosine phosphorylation of p21, a distinct 21-kDa chain. We demonstrate that tyrosine phosphorylation is due to kinase activation, and that all phosphorylated p21 is associated with the antigen receptor. We also show that antigen leads to polyphosphoinositide metabolism and subsequent protein kinase C activation. The two phosphorylation events can be dissociated by protein kinase C depletion, which eliminates phorbol 12-myristate 13-acetate-induced serine but not tyrosine phosphorylation. Activation of a third kinase, cyclic AMP-dependent protein kinase, inhibits both serine and tyrosine events, yet this inhibition can be modulated by addition of the protein kinase C activator, phorbol 12-myristate 13-acetate. Receptor-mediated signal transduction may be understood as the interaction of multiple stimulatory and inhibitory kinase activities. 相似文献
8.
Distinct signal transduction through the tyrosine-containing domains of the granulocyte colony-stimulating factor receptor. 总被引:5,自引:1,他引:5 下载免费PDF全文
The receptor for granulocyte colony-stimulating factor (G-CSFR) is a hemopoietic growth factor receptor, which mediates proliferation and differentiation signals. The cytoplasmic region of G-CSFR carries four tyrosine residues in its C-terminal half. We constructed mutant receptors in which each tyrosine residue of G-CSFR was mutated to phenylalanine. Two mutant receptors (Tyr703 and Tyr728) neither transduced the growth-inhibitory signal nor induced the neutrophil-specific myeloperoxidase (MPO) gene. The Tyr703 mutant did not induce morphological changes in cells, whereas transformants expressing the Tyr728 mutant adhered to plates with a macrophage-like morphology upon G-CSF stimulation. Mutation of the most distal tyrosine residue (Tyr763) abolished the ability of G-CSFR to stimulate the tyrosine phosphorylation of a cellular protein with an M(r) of 54 kDa. These results indicated that the regions around the three tyrosine residues of G-CSFR play essential and distinct roles in signal transduction. 相似文献
9.
Function of a heterologous muscarinic receptor in T cell antigen receptor signal transduction mutants 总被引:7,自引:0,他引:7
M A Goldsmith D M Desai T Schultz A Weiss 《The Journal of biological chemistry》1989,264(29):17190-17197
Previously we have described a system of somatic cell genetics (J.CaM1 and J.CaM2) for analyzing signal transduction via the T cell antigen receptor complex (CD3/Ti). Here we describe a third mutant, J.CaM3, which also expresses high levels of receptors that are functionally impaired. Like J.CaM1, J.CaM3 demonstrates partial signal transduction via CD3/Ti to only certain stimuli. J.CaM1, J.CaM2, and J.CaM3 define three non-Ti complementation groups involved in receptor function. To evaluate the mutations further we have introduced a heterologous receptor, the human muscarinic receptor 1 (HM1), into the parental Jurkat and mutant cell lines. This receptor demonstrates signal transduction competence in all these hosts, indicating that 1) T cells express the necessary apparatus for the coupling of HM1 to second messenger generation and 2) the mutations in the J.CaM family all affect molecules that are specific to CD3/Ti, and not HM1, function. Finally, the HM1 receptor exhibits partial sensitivity to cholera toxin in Jurkat cells, in contrast to the virtually complete sensitivity of CD3/Ti to cholera toxin. 相似文献
10.
Peter Speck Masato Ikeda Akiko Ikeda Howard M Lederman Richard Longnecker 《The Journal of biological chemistry》2002,277(6):4123-4127
The rare human genetic disorder ataxia-telangiectasia (A-T) has multiple consequences including a variable degree of immunodeficiency. Khanna and co-workers (Khanna, K. K., Yan, J., Watters, D., Hobson, K., Beamish, H., Spring, K., Shiloh, Y., Gatti, R. A., and Lavin, M. F. (1997) J. Biol. Chem. 272, 9489-9495) evaluated signaling in Epstein-Barr virus (EBV) immortalized A-T lymphoblastoid cell lines (LCLs), derived from the B cells of A-T patients. They showed that A-T lymphoblastoid cells lack signaling through the B cell antigen receptor and concluded that the fault in A-T encompasses intracellular signaling in B cells. However, it is established that EBV latent membrane protein 2A (LMP2A) blocks signaling in EBV-bearing cells by interaction with cellular tyrosine kinases. To test whether the reported fault in A-T B cells was not inherent in A-T but the result of influence of wild-type EBV, we derived A-T LCLs with wild-type or LMP2A-deleted EBV and studied signaling in these cells in response to cross-linking the B cell antigen receptor. We report that intracellular calcium mobilization and tyrosine phosphorylation in LMP2A-depleted LCLs derived from A-T patients is indistinguishable from that in LMP2A-depleted LCLs derived from normal controls. Further, signaling is blocked similarly in A-T and normal lymphoblastoid cells bearing wild-type EBV. In conclusion there is no evidence of any defect in B cell receptor signal transduction in A-T B cells. 相似文献
11.
Chaohong Liu Margaret K. Fallen Heather Miller Arpita Upadhyaya Wenxia Song 《生物学前沿》2013,8(5):475-485
The B cell antigen receptor (BCR) is the sensor on the B cell surface that surveys foreign molecules (antigen) in our bodies and activates B cells to generate antibody responses upon encountering cognate antigen. The binding of antigen to the BCR induces signaling cascades in the cytoplasm, which provides the first signal for B cell activation. Subsequently, BCRs internalize and target bound antigen to endosomes, where antigen is processed into T cell recognizable forms. T helper cells generate the second activation signal upon binding to antigen presented by B cells. The optimal activation of B cells requires both signals, thereby depending on the coordination of BCR signaling and antigen transport functions. Antigen binding to the BCR also induces rapid remodeling of the cortical actin network of B cells. While being initiated and controlled by BCR signaling, recent studies reveal that this actin remodeling is critical for both the signaling and antigen processing functions of the BCR, indicating a role for actin in coordinating these two pathways. Here we will review previous and recent studies on actin reorganization during BCR activation and BCR- mediated antigen processing, and discuss how actin remodeling translates BCR signaling into rapid antigen uptake and processing while providing positive and negative feedback to BCR signaling. 相似文献
12.
Kubatzky KF Ruan W Gurezka R Cohen J Ketteler R Watowich SS Neumann D Langosch D Klingmüller U 《Current biology : CB》2001,11(2):110-115
Hematopoietic cytokine receptors, such as the erythropoietin receptor (EpoR), are single membrane-spanning proteins. Signal transduction through EpoR is crucial for the formation of mature erythrocytes. Structural evidence shows that in the unliganded form EpoR exists as a preformed homodimer in an open scissor-like conformation precluding the activation of signaling. In contrast to the extracellular domain of the growth hormone receptor (GHR), the structure of the agonist-bound EpoR extracellular region shows only minimal contacts between the membrane-proximal regions. This evidence suggests that the domains facilitating receptor dimerization may differ between cytokine receptors. We show that the EpoR transmembrane domain (TM) has a strong potential to self interact in a bacterial reporter system. Abolishing self assembly of the EpoR TM by a double point mutation (Leu 240-Leu 241 mutated to Gly-Pro) impairs signal transduction by EpoR in hematopoietic cells and the formation of erythroid colonies upon reconstitution in erythroid progenitor cells from EpoR(-/-) mice. Interestingly, inhibiting TM self assembly in the constitutively active mutant EpoR R129C abrogates formation of disulfide-linked receptor homodimers and consequently results in the loss of ligand-independent signal transduction. Thus, efficient signal transduction through EpoR and possibly other preformed receptor oligomers may be determined by the dynamics of TM self assembly. 相似文献
13.
Kurosaki T 《Nature reviews. Immunology》2002,2(5):354-363
An important role has emerged for adaptor molecules in linking cell-surface receptors, such as the B-cell antigen receptor, with effector enzymes. Adaptor proteins direct the appropriate subcellular localization of effectors and regulate their activity by inducing conformational changes, both of which, in turn, contribute to the spatio-temporal precision of B-cell signal-transduction events. In addition, adaptor molecules participate in establishing negative- or positive-feedback regulatory loops in signalling networks, thereby fine-tuning the B-cell response. 相似文献
14.
In this report, we analyzed the expression and kinase activities of Csk and CHK kinases in normal breast tissues and breast tumors and their involvement in HRG-mediated signaling in breast cancer cells. Csk expression and kinase activity were abundant in normal human breast tissues, breast carcinomas, and breast cancer cell lines, whereas CHK expression was negative in normal breast tissues and low in some breast tumors and in the MCF-7 breast cancer cell line. CHK kinase activity was not detected in human breast carcinoma tissues (12 of 12) or in the MCF-7 breast cancer cell line (due to the low level of CHK protein expression), but was significantly induced upon heregulin (HRG) stimulation. We have previously shown that CHK associates with the ErbB-2/neu receptor upon HRG stimulation via its SH2 domain and that it down-regulates the ErbB-2/neu-activated Src kinases. Our new findings demonstrate that Csk has no effect on ErbB-2/neu-activated Src kinases upon HRG treatment and that its kinase activity is not modulated by HRG. CHK significantly inhibited in vitro cell growth, transformation, and invasion induced upon HRG stimulation. In addition, tumor growth of wt CHK-transfected MCF-7 cells was significantly inhibited in nude mice. Furthermore, CHK down-regulated c-Src and Lyn protein expression and kinase activity, and the entry into mitosis was delayed in the wt CHK-transfected MCF-7 cells upon HRG treatment. These results indicate that CHK, but not Csk, is involved in HRG-mediated signaling pathways, down-regulates ErbB-2/neu-activated Src kinases, and inhibits invasion and transformation of breast cancer cells upon HRG stimulation. These findings strongly suggest that CHK is a novel negative growth regulator of HRG-mediated ErbB-2/neu and Src family kinase signaling pathways in breast cancer cells. 相似文献
15.
Yanzhong Yang Weiying Zou Xiangfei Kong Hanzhou Wang Hongliang Zong Jianhai Jiang Yanlin Wang Yi Hong Yayun Chi Jianhui Xie Jianxin Gu 《Journal of cellular biochemistry》2010,109(5):1013-1024
The androgen‐signaling pathway plays critical roles in normal prostate development, benign prostatic hyperplasia, established prostate cancer, and in prostate carcinogenesis. In this study, we report that trihydrophobin 1 (TH1) is a potent negative regulator to attenuate the androgen signal‐transduction cascade through promoting androgen receptor (AR) degradation. TH1 interacts with AR both in vitro and in vivo, decreases the stability of AR, and promotes AR ubiquitination in a ligand‐independent manner. TH1 also associates with AR at the active androgen‐responsive prostate‐specific antigen (PSA) promoter in the nucleus of LNCaP cells. Decrease of endogenous AR protein by TH1 interferes with androgen‐induced luciferase reporter expression and reduces endogenous PSA expression. Taken together, these results indicate that TH1 is a novel regulator to control the duration and magnitude of androgen signal transduction and might be directly involved in androgen‐related developmental, physiological, and pathological processes. J. Cell. Biochem. 109: 1013–1024, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
16.
J A Augustine J P Secrist J K Daniels P J Leibson R T Abraham 《Journal of immunology (Baltimore, Md. : 1950)》1991,146(9):2889-2897
The T cell Ag (Ti-CD3) receptor complex has been proposed to regulate phosphoinositide-specific phospholipase C (PLC) through a cholera toxin (CTX)-sensitive guanine nucleotide-binding (G) protein. In this study, we have used CTX and staurosporine as pharmacologic probes to further define the linkage between the Ti-CD3 receptor and PLC activity in the human T cell line, Jurkat. CTX pretreatment inhibited Ti-CD3 receptor-dependent phosphoinositide hydrolysis and, concomitantly, protein tyrosine kinase activation in intact cells. Studies with electrically permeabilized Jurkat cells revealed that guanosine 5'-(3-O-thio) triphosphate stimulated an increase in PLC activity, that unlike the response to Ti-CD3 receptor ligation, was not affected by cellular pretreatment with CTX. In contrast, the phosphotyrosine phosphatase inhibitors, orthovanadate and molybdate anions, stimulated phosphoinositide hydrolysis in permeabilized cells through a CTX-sensitive mechanism of PLC activation. Additional studies with a known PTK inhibitor, staurosporine, supported the results obtained with CTX. Staurosporine pretreatment inhibited the phosphoinositide hydrolysis induced by anti-CD3 antibodies or phosphotyrosine phosphatase inhibitors, but failed to alter the G protein-dependent PLC activation response to guanosine 5'-(3-O-thio) triphosphate. The results of this study indicate that PLC activity(s) in Jurkat cells are regulated by both G protein- and PTK-dependent coupling mechanisms. However, the differential inhibitory effects of CTX and staurosporine on these PLC activation pathways strongly suggest that a protein tyrosine kinase activation event, rather than a G protein, mediates the functional linkage between the Ti-CD3 receptor and PLC activity in Jurkat cells. 相似文献
17.
We have examined the role of autophosphorylation in insulin signal transmission by oligonucleotide directed mutagenesis of seven potential tyrosine autophosphorylation sites in the human insulin receptor. Chinese hamster ovary cells transfected with these receptors were analyzed for insulin stimulated 2-deoxyglucose uptake, thymidine incorporation, endogenous substrate phosphorylation, and in vitro kinase activity. We found that phosphorylation on tyrosine residues 953, 1316, and 1322 were not necessary for receptor-mediated signal transduction. Mutation of tyrosine 960 reduced but did not abolish the signaling capabilities of the receptor. Finally, the simultaneous mutation of tyrosine residues 1146, 1150, and 1151 (the numbering system is that of Ullrich et al. (Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y. C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) resulted in a biologically inactive receptor, suggesting that the insulin receptor can be inactivated by removal of key autophosphorylation sites. 相似文献
18.
19.
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed. 相似文献
20.
《Critical reviews in biochemistry and molecular biology》2013,48(2):194-206
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed. 相似文献