首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 2-azadecalin ring system was evaluated as a scaffold for the preparation of glucocorticoid receptor (GR) antagonists. High affinity, selective GR antagonists were discovered based on a hypothetical binding mode related to the steroidal GR antagonist RU-43044. 2-Benzenesulfonyl substituted 8a-benzyl-hexahydro-2H-isoquinolin-6-ones exemplified by (R)-37 had low nanomolar affinity for GR with moderate functional activity (200 nM) in a reporter gene assay. These compounds were devoid of affinity for other steroidal receptors (ER, AR, MR, and PR). Analogues based on an alternative putative binding mode (CP-like) were found to be inactive.  相似文献   

2.
3.
The kinetics of steroid binding to rat liver glucocorticoid receptor (GR) and receptor denaturation were dependent upon the nature of the molecule occupying GR. Both the agonist [triamcinolone acetonide (TA)] and the antagonist (Ru38486) however competed for the same saturable binding site. Despite opposing physiological action, both steroid analogues permitted receptor activation as evident by binding to DNA-cellulose and 9S to 4S shift on sucrose gradient sedimentation. It therefore seems necessary to reevaluate a current notion that antagonist action of RU38486 in rat liver is a result of impaired receptor activation.  相似文献   

4.
5.
We have examined the influence of sulfhydryl (SH)-group modifying agents on the interaction of the rat liver glucocorticoid receptor (GR) with its known agonist triamcinolone acetonide (TA) and the newly synthesized antagonist mifepristone (RU486). In the freshly prepared cytosol, [3H]TA or [3H]RU486 bound to macromolecule(s) which sediment as 8-9 moieties: the binding of either ligand can be competed with radioinert TA or RU486. The presence of 2-10 mM dithiothreitol (DTT), beta-mercaptoethanol (beta-MER), and monothioglycerol (MTG) caused a 2-3 fold increase in the [3H]TA and [3H]RU486 binding to GR. Iodoacetamide (IA) and N-ethylmaleimide (NEM) decreased the agonist binding significantly. In contrast, the [3H]RU486 binding to GR increased by 50 percent in the presence of IA. IA and NEM inhibited the binding of the heat-transformed [3H]TA-receptor complex to DNA-cellulose by 70-90 percent whereas DNA binding of [3H]RU486-bound GR was inhibited only slightly. These results indicate that either a) the interaction of GR with the agonist or antagonist steroid ligands causes differential structural alterations, which are more readily detectable in the presence of SH-modifying agents or b) the agonist and the antagonist interact with distinct steroid binding sites.  相似文献   

6.
Sun K  He P  Yang K 《Biology of reproduction》2002,67(5):1450-1455
Glucocorticoids are involved in the modulation of the release of parturition hormones from the fetal membranes and placenta, where their actions are determined by the prereceptor glucocorticoid metabolizing enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD). Two distinct isozymes of 11beta-HSD have been characterized. In the fetal membranes, 11beta-HSD1 is the predominate isozyme; it converts biologically inert 11-ketone glucocorticoid metabolites into active glucocorticoids. Sequence analysis of the cloned 11beta-HSD1 gene revealed a putative glucocorticoid response element in the promoter region. However, whether glucocorticoids modulate 11beta-HSD1 expression in the fetal membranes is unknown. In this study, 11beta-HSD1 and glucocorticoid receptor (GR) were coexpressed in the chorionic trophoblast. Radiometric conversion assay and Northern blot analysis revealed that both 11beta-HSD1 reductase activity and mRNA levels were increased by dexamethasone (1 microM, 0.1 microM) in the cultured chorionic trophoblast, and the effects were blocked by GR antagonist RU486 (1 microM). Prior induction of 11beta-HSD1 by dexamethasone potentiated the subsequent stimulation of prostaglandin H synthetase 2 expression and secretion of prostaglandin E(2) by cortisone in the chorionic trophoblast. There is colocalization of 11beta-HSD1 and GR in the chorionic trophoblast. By binding to GR, glucocorticoids induce the expression of 11beta-HSD1 by a possible intracrine mechanism, thereby amplifying the actions of glucocorticoids on prostaglandin production in the fetal membranes. This cascade of events initiated by glucocorticoids may play an important role in the positive feed-forward mechanisms of labor.  相似文献   

7.
8.
Compound 1, a potent glucocorticoid receptor ligand, contains a quaternary carbon bearing trifluoromethyl and hydroxyl groups. This paper describes the effect of replacing the trifluoromethyl group on binding and agonist activity of the GR ligand 1. The results illustrate that replacing the CF3 group with a cyclohexylmethyl or benzyl group maintains the GR binding potency. These substitutions alter the functional behavior of the GR ligands from agonists to antagonists. Docking studies suggest that the benzyl analog 19 binds in a similar fashion as the GR antagonist, RU486. The central benzyl group of 19 and the C-11 dimethylaniline moiety of RU486 overlay. Binding of compound 19 is believed to force helix 12 to adopt an open conformation and this leads to the antagonist properties of the non-CF3 ligands carrying a large group at the center of the molecule.  相似文献   

9.
In the absence of detergent, specific binding of [3H]GR65630, a 5-hydroxytryptamine3 (5-HT3) antagonist, determined in the presence of 5-HT3 receptor antagonist ICS205-930, was at most 30% of the total binding. To decrease the level of nonspecific binding, the effects of detergents on [3H]GR65630 binding to rat cortical membranes were investigated. The use of a detergent (0.1% Lubrol PX or Triton X-100) decreased nonspecific binding, increasing the proportion of specific binding to 70% of total binding. In the presence of 0.1% Triton X-100, binding of [3H]GR65630 was rapid, reversible and saturable at 25°C. The rank order of 5-HT3 receptor active drugs in inhibiting [3H]GR65630 binding was quipazine > ICS205-930 > 2-methyl-5-HT = 5-HT > metoclopramide, which confirmed that [3H]GR65630 efficiently labeled 5-HT3 receptors in the presence of Triton X-100. Triton X-100 improved 5-HT3 receptor binding with rat brain membranes.  相似文献   

10.
11.
12.
13.
14.
To analyze functional differences in the interactions of the glucagon receptor (GR) with the two predominant splice variants of Galpha(s), GR was covalently linked to the short and the long forms Galpha(s)-S and Galpha(s)-L to produce the fusion proteins GR-Galpha(s)-S and GR-Galpha(s)-L. GR-Galpha(s)-S bound glucagon with an affinity similar to that of GR, while GR-Galpha(s)-L showed a 10-fold higher affinity for glucagon. In the presence of GTPgammaS, GR-Galpha(s)-L reverted to the low affinity glucagon binding conformation. Both GR-Galpha(s)-L and GR-Galpha(s)-S were constitutively active, causing elevated basal levels of cAMP even in the absence of glucagon. A mutant GR that failed to activate G(s) (G23D1R) was fused to Galpha(s)-L. G23D1R-Galpha(s)-L bound glucagon with high affinity, but failed to elevate cAMP levels, suggesting that the mechanisms of GR-mediated Galpha(s)-L activation and Galpha(s)-L-induced high affinity glucagon binding are independent. Both GR-Galpha(s)-S and GR-Galpha(s)-L bound the antagonist desHis(1)[Nle(9),Ala(11),Ala(16)]glucagon amide with affinities similar to GR. The antagonist displayed partial agonist activity with GR-Galpha(s)-L, but not with GR-Galpha(s)-S. Therefore, the partial agonist activity of the antagonist observed in intact cells appears to be due to GRs coupled to Galpha(s)-L. We conclude that Galpha(s)-S and Galpha(s)-L interact differently with GR and that specific coupling of GR to Galpha(s)-L may account for GTP-sensitive high affinity glucagon binding.  相似文献   

15.
Addition of the 4-fluorophenylpyrazole group to the previously described 2-azadecalin glucocorticoid receptor (GR) antagonist 1 resulted in significantly enhanced functional activity. SAR of the bridgehead substituent indicated that whereas groups as small as methyl afforded high GR binding, GR functional activity was enhanced by larger groups such as benzyl, substituted ethers, and aminoalkyl derivatives. GR antagonists with binding and functional activity comparable to mifepristone were discovered (e.g., 52: GR binding K(i) 0.7 nM; GR reporter gene functional K(i) 0.6 nM) and found to be highly selective over other steroid receptors. Analogues 43 and 45 had >50% oral bioavailability in the dog.  相似文献   

16.
Glucocorticoids inhibit inflammation by acting through the glucocorticoid receptor (GR) and powerfully repressing NF-kappaB function. Ligand binding to the C-terminal of GR promotes the nuclear translocation of the receptor and binding to NF-kappaB through the GR DNA binding domain. We sought how ligand recognition influences the interaction between NF-kappaB and GR. Both dexamethasone (agonist) and RU486 (antagonist) promote efficient nuclear translocation, and we show occupancy of the same intranuclear compartment as NF-kappaB with both ligands. However, unlike dexamethasone, RU486 had negligible activity to inhibit NF-kappaB transactivation. This failure may stem from altered co-factor recruitment or altered interaction with NF-kappaB. Using both glutathione S-transferase pull-down and bioluminescence resonance energy transfer approaches, we identified a major glucocorticoid ligand effect on interaction between the GR and the p65 component of NF-kappaB, with RU486 inhibiting recruitment compared with dexamethasone. Using the bioluminescence resonance energy transfer assay, we found that RU486 efficiently recruited NCoR to the GR, unlike dexamethasone, which recruited SRC1. Therefore, RU486 promotes differential protein recruitment to both the C-terminal and DNA binding domain of the receptor. Importantly, using chromatin immunoprecipitation, we show that impaired interaction between GR and p65 with RU486 leads to reduced recruitment of the GR to the NF-kappaB-responsive region of the interleukin-8 promoter, again in contrast to dexamethasone that significantly increased GR binding. We demonstrate that ligand-induced conformation of the GR C-terminal has profound effects on the functional surface generated by the DNA binding domain of the GR. This has implications for understanding ligand-dependent interdomain communication.  相似文献   

17.
The raphe-hippocampal serotonin (5-HT) system is involved in the regulation of the hypothalamus-pituitary-adrenal axis. The purpose of this study was to determine and compare the roles of 5-HT in the regulation of glucocorticoid receptor (GR) binding in the raphe nuclei and in the hippocampus. The effects of 5-HT, 5-HT agonists, and the 5-HT reuptake inhibitor citalopram on GR binding sites were studied in primary cultures of the fetal raphe nuclei and the hippocampus. Exposure of hippocampal cells to 5-HT, (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI; a 5-HT2 agonist), or citalopram resulted in an increase in number of GR binding sites. The effect of DOI was blocked by ketanserin (a 5-HT2 antagonist). Specific and saturable GR binding was found in raphe cells. Exposure of raphe cells to 5-HT, (+/-)-8 hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; a 5-HT1A agonist), or citalopram induced a significant decrease in number of GR binding sites. The effect of 8-OH-DPAT was reversed by WAY 100135 [N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropiona mide; a 5-HT1A antagonist]. These results show that the regulation of GRs during fetal life is structure-dependent and involves different 5-HT receptor subtypes. Moreover, the regulation of hippocampal GRs by citalopram suggests an action of antidepressants independent of their effects on monoamines.  相似文献   

18.
19.
Series of benzyl-phenoxybenzyl amino-phenyl acid derivatives (8a-q) are reported as non-steroidal GR antagonist. Compound 8g showed excellent h-GR binding and potent antagonistic activity (in vitro). The lead compound 8g exhibited significant oral antidiabetic and antihyperlipidemic effects (in vivo), along with liver selectivity. These preliminary results confirm discovery of potent and liver selective passive GR antagonist for the treatment of T2DM.  相似文献   

20.
A pure glucocorticoid agonist RU 28362 and the potent antagonist RU 38486 were compared with dexamethasone for the evolution and the molecular nature of the GR during insulin-dependent conversion of 3T3-F442A preadipocytes into mature cells. In the whole cell assay system, the affinity for preadipocyte GR was observed in the order RU 38486 greater than RU 28362 greater than dexamethasone. The GR complex was most stable in presence of dexamethasone followed by the antagonist RU 38486 = the agonist RU 28362. Similar results were obtained in mature adipocytes but the binding of RU 38486 was more equivocal. An insulin-dependent differentiation process did not alter any of these parameters but increased the number of GR nearly fivefold over a 2-week period. Ion-exchange analysis of the cytosolic receptor revealed that the differentiation process was not accompanied by the appearance of any novel or new forms of GR, contrary to the situation in the liver, since both RU 38486 and dexamethasone were bound to identical molecular species of GR. These data provide a defined system for further analysis of cellular receptor as a function of steroid, tissue, and species, contrary to the classical dogma where GR is generally thought to be identical as a passive vehicle for the steroid in all circumstances, and affinity for steroid is generally equated with receptor stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号