首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bao, Gang, Preet M. Randhawa, and Eugene C. Fletcher.Acute blood pressure elevation during repetitive hypocapnic and eucapnic hypoxia in rats. J. Appl.Physiol. 82(4): 1071-1078, 1997.Using a ratmodel, we investigated whether episodic eucapnic hypoxia was a morepotent stimulus to acute blood pressure (BP) elevation and bradycardiathan episodic hypocapnic hypoxia. We also investigated therole of sympathetic and parasympathetic nervous system in thiscardiovascular response. Sprague-Dawley (SD) and Wistar Kyoto (WKY)rats were exposed to repetitive 30-s cycles of hypocapnic or eucapnichypoxia before and after intravenous injection of the1-adrenergic blocker prazosin,2-adrenergic blocker yohimbine,or atropine. Eucapnic hypoxia caused a threefold elevation in systolicBP from baseline (83.5 ± 3.5 mmHg in WKY, 70.6 ± 4.6 mmHg inSD) and greater bradycardia (178 ± 20 beats/min in WKY,178 ± 21 beats/min in SD) compared with hypocapnic hypoxia (29.8 ± 3.6 mmHg and 43 ± 15 beats/min in WKY,19.0 ± 4.1 mmHg and 45 ± 12 beats/min in SD). Afterprazosin, the BP increase from eucapnic hypoxia was blunted, yohimbineshowed no effect, and atropine blocked the bradycardia. Directmeasurement of sympathetic nerve activity confirmed that addingCO2 to the hypoxic gas mixture caused a 61% increase in sympathetic nerve activity. WKY rats seemmore vulnerable than SD rats to both hypoxia exposures in terms of theelevation in BP. We conclude that, in the rat, eucapnic hypoxia is amore potent stimulus to acute BP elevation and bradycardia than ishypocapnic hypoxia. An increased sympathetic tone appears to beinvolved in the BP response to acute episodic hypoxia.

  相似文献   

2.
Episodic hypoxia evokes a sustained augmentation of respiratorymotor output known as long-term facilitation (LTF). Phrenic LTF isprevented by pretreatment with the 5-hydroxytryptamine (5-HT) receptorantagonist ketanserin. We tested the hypothesis that 5-HT receptoractivation is necessary for the induction but not maintenance ofphrenic LTF. Peak integrated phrenic nerve activity (Phr) wasmonitored for 1 h after three 5-min episodes of isocapnic hypoxia(arterial PO2 = 40 ± 2 Torr; 5-minhyperoxic intervals) in four groups of anesthetized, vagotomized,paralyzed, and ventilated Sprague-Dawley rats [1) control(n = 11), 2) ketanserin pretreatment (2 mg/kg iv; n = 7), and ketanserin treatment 0 and 45 minafter episodic hypoxia (n = 7 each)]. Ketanserintransiently decreased Phr, but it returned to baseline levels within10 min. One hour after episodic hypoxia, Phr was significantlyelevated from baseline in control and in the 0- and 45-min posthypoxia ketanserin groups. Conversely, ketanserin pretreatment abolished phrenic LTF. We conclude that 5-HT receptor activation is necessary toinitiate (during hypoxia) but not maintain (following hypoxia) phrenic LTF.

  相似文献   

3.
Bao, Gang, Naira Metreveli, Rena Li, Addison Taylor, andEugene C. Fletcher. Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J. Appl. Physiol. 83(1): 95-101, 1997.Previousstudies in several strains of rats have demonstrated that 35 consecutive days of recurrent episodic hypoxia (7 h/day) cause an 8- to13-mmHg persistent increase in diurnal systemic blood pressure (BP).Carotid chemoreceptors and the sympathetic nervous system have beenshown to be necessary for development of this BP increase. The presentstudy was undertaken to further define the role of renal arterysympathetic nerves and the adrenal medulla in this BPincrease. Male Sprague-Dawley rats had either adrenalmedullectomy, bilateral renal artery denervation, or sham surgery. Ratsfrom each of these groups were subjected to episodic hypoxia for 35 days. Control groups received either compressed air or were leftunhandled. Adrenal demedullation or renal artery denervation eliminatedthe chronic diurnal mean BP response (measured intra-arterially) toepisodic hypoxia, whereas sham-operated controls continued to showedpersistent elevation of systemic BP. Plasma and renal tissuecatecholamine levels at the end of the experiment confirmed successfuladrenal demedullation or renal denervation in the respectiveanimals. The chronic episodic hypoxia-mediated increase indiurnal BP requires both intact renal artery nerves as well as anintact adrenal medulla.

  相似文献   

4.
We measured thechange in total lung resistance(RL) and that in total lungelastance (EL) induced byhypoxia (n = 7) and compared theresults with those by intravenous histamine bolus (n = 5) at three different positiveend-expiratory pressure (PEEP) levels (2, 5, and 8 hPa) in open-chestand vagotomized rabbits. The percent increase ratio ofRL(PIRR) andEL(PIRE) was defined as the changein RL andEL, respectively, induced byhypoxia compared with that in the normoxic condition, expressed as apercentage. PIR values for the change inRL andEL induced by bolus injection ofhistamine were also calculated. ThePIRR andPIRE induced by hypoxia and byhistamine were positive by a statistically significant amount at everyPEEP level, except for the PIREvalue at 8-hPa PEEP in the hypoxic challenge. ThePIRE-to-PIRRratio values in the hypoxic challenge at 2-hPa PEEP were significantlylarger than those in the histamine challenge (hypoxia: 0.91 ± 0.23%; histamine: 0.37 ± 0.065%,P < 0.05). The increasein EL induced by histamine inthe acute phase has been reported to be mainly derived from tissuedistortion secondary to bronchial constriction. Thus our resultssuggest that a part of the increase inEL by hypoxia was originated indifferent parenchymal responses from histamine and imply that thishypoxic response of lung parenchyma is sensitive to the increase inparenchymal tethering at high PEEP levels.

  相似文献   

5.
The purpose ofthe present investigation was to determine the independent effects ofhypoxia and physical exercise on peripheral cholecystokinin (CCK)metabolism in humans. Thirty-two physically active men wererandomly assigned in a double-blind manner to either a normoxic (N;n = 14) or hypoxic (H; n = 18) group.During the acute study, subjects in the H group only participated in two tests, separated by 48 h, which involved a cycling test to exhaustion in normobaric normoxia and normobaric hypoxia (inspired O2 fraction = 0.21 and 0.16, respectively). In theintermittent study, N and H groups cycle-trained for 4 wk at the samerelative exercise intensity in both normoxia and hypoxia. Acutenormoxic exercise consistently raised plasma CCK during both studies by 290-723%, which correlated with increases in the plasma ratio offree tryptophan to branched chain amino acids (r = 0.58-0.71, P < 0.05). In contrast, acute hypoxicexercise decreased CCK by 7.0 ± 5.5 pmol/l, which correlated withthe decrease in arterial oxygen saturation (r = 0.56, P < 0.05). In the intermittent study, plasma CCKresponse at rest and after normoxic exercise was not altered afterphysical training, despite a slight decrease in adiposity. We concludethat peripheral CCK metabolism 1) is more sensitive to acutechanges than chronic changes in energy expenditure and 2) ispotentially associated with acute changes in tissue PO2 and metabolic precursors of cerebralserotoninergic activity.

  相似文献   

6.
Albert, T. S. E., V. L. Tucker, and E. M. Renkin.Atrial natriuretic peptide levels and plasma volume contraction in acute alveolar hypoxia. J. Appl.Physiol. 82(1): 102-110, 1997.Arterial oxygentensions (PaO2), atrial natriureticpeptide (ANP) concentrations, and circulating plasma volumes (PV) weremeasured in anesthetized rats ventilated with room air or 15, 10, or8% O2(n = 5-7). After 10 min ofventilation, PaO2 values were 80 ± 3, 46 ± 1, 32 ± 1, and 35 ± 1 Torrand plasma immunoreactive ANP (irANP) levels were 211 ± 29, 229 ± 28, 911 ± 205, and 4,374 ± 961 pg/ml, respectively. AtPaO2 40 Torr, irANP responses weremore closely related to inspiredO2(P = 0.014) than toPaO2 (P = 0.168). PV was 36.3 ± 0.5 µl/g in controls but 8.5 and9.9% lower (P  0.05) for10 and 8% O2, respectively.Proportional increases in hematocrit were observed in animals withreduced PV; however, plasma protein concentrations were not differentfrom control. Between 10 and 50 min of hypoxia, small increases (+40%)in irANP occurred in 15% O2;however, there was no further change in PV, hematocrit, plasma protein,or irANP levels in the lower O2groups. Urine output tended to fall during hypoxia but was notsignificantly different among groups. These findings are compatiblewith a role for ANP in mediating PV contraction during acute alveolarhypoxia.

  相似文献   

7.
We investigated the effects of repeatedhypercapnic episodes (inspired CO2fraction = 0.10) on posthypercapnic respiratory nerve discharge.Anesthetized (urethan), vagotomized, and artificially ventilated ratswere presented with three consecutive 5-min episodes of hyperoxichypercapnia, separated by 5 min of hyperoxic normocapnia (inspiredO2 fraction = 0.5). Respiratorynerve discharge and blood gases were recorded before and 30 and 60 minafter the final hypercapnic episode. Posthypercapnia, arterialPCO2 was maintained within 1 Torr ofinitial baseline values. Integrated phrenic and hypoglossal burstamplitudes decreased posthypercapnia by up to 46 ± 17 and 55 ± 13% of baseline values, respectively, and remained reduced for atleast 1 h [long-term depression (LTD)]. The protocol wasrepeated in rats pretreated with the2-adrenergic antagonistsyohimbine HCl (0.5 mg/kg; n = 7) or2-[2-(2-methoxy-1,4-benzodioanyl)]imidazoline (RX-821002) HCl (0.25 mg/kg; n = 3).Both drugs attenuated LTD in the phrenic and hypoglossal neurograms.Results indicate that episodic hypercapnia elicits a yohimbine- andRX-821002-sensitive LTD of respiratory nerve activity in rats,suggesting that LTD requires2-receptor activation.

  相似文献   

8.
The ventilatorysensitivity to CO2, in hyperoxia, is increased after an 8-hexposure to hypoxia. The purpose of the present study was to determinewhether this increase arises through an increase in peripheral orcentral chemosensitivity. Ten healthy volunteers each underwent 8-hexposures to 1) isocapnic hypoxia, with end-tidalPO2 (PETO2) = 55 Torr and end-tidal PCO2(PETCO2) = eucapnia; 2)poikilocapnic hypoxia, with PETO2 = 55 Torr and PETCO2 = uncontrolled;and 3) air-breathing control. The ventilatory response toCO2 was measured before and after each exposure with theuse of a multifrequency binary sequence with two levels of PETCO2: 1.5 and 10 Torr above the normalresting value. PETO2 was held at 250 Torr.The peripheral (Gp) and the central (Gc) sensitivities were calculatedby fitting the ventilatory data to a two-compartment model. There wereincreases in combined Gp + Gc (26%, P < 0.05),Gp (33%, P < 0.01), and Gc (23%, P = not significant) after exposure to hypoxia. There were no significant differences between isocapnic and poikilocapnic hypoxia. We conclude that sustained hypoxia induces a significant increase inchemosensitivity to CO2 within the peripheral chemoreflex.

  相似文献   

9.
Recurrentepisodic hypoxia (EH) is a feature of sleep apnea that may beresponsible for some chronic cardiovascular sequelae such as systemichypertension. Chronic EH (8 h/day for 35 days) causes elevation ofdiurnal resting (unstimulated) mean arterial blood pressure (MAP) inthe rat. We used in vivo video microscopy to examine arteriolarreactivity in the cremaster muscle of male Sprague-Dawley ratssubjected to 35 days of EH. Cremaster muscles of EH (n = 6) and control (n = 6) rats were exposed to varying doses of norepinephrine (NE) (1010 to 105M), ACh (109 to 105 M), and endothelin-1(1012 to 108 M). In a separate experiment,EH (n = 5) and control (n = 6) ratswere given one dose of a nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methylester (L-NAME; 105 M). We also examinedendothelial NOS mRNA from the kidneys of EH-stimulated and control(unstimulated) rats. Telemetry-monitored EH rats showed a 16-mmHgincrease in MAP over 35 days, whereas control rats showed no change.The response to NE and endothelin-1 were similar for EH and controlrats. ACh vasodilatation of arterioles in EH rats was significantlyattenuated compared with that of controls. The degree ofvasoconstriction in response to blockade of the nitric oxide system byL-NAME was significantly less (83% of baseline diameterwith L-NAME) for arterioles of EH rats compared with thatfor controls (61% of baseline diameter), implying lower basal restingnitric oxide release in the EH rats. Whole kidney mRNA endothelial NOSlevels were not different between groups. These data support thehypothesis that chronic elevation of blood pressure associated with EHinvolves increased peripheral resistance from decreased basal releaseor production of nitric oxide after 35 days of EH.

  相似文献   

10.
Tansley, J. G., C. Clar, M. E. F. Pedersen, and P. A. Robbins. Human ventilatory response to acute hyperoxia during andafter 8 h of both isocapnic and poikilocapnic hypoxia.J. Appl. Physiol. 82(2): 513-519, 1997.During 8 h of either isocapnic or poikilocapnic hypoxia,there may be a rise in ventilation(E) thatcannot be rapidly reversed with a return to higherPO2 (L. S. G. E. Howard and P. A. Robbins. J. Appl. Physiol. 78:1098-1107, 1995). To investigate this further, threeprotocols were compared: 1) 8-hisocapnic hypoxia [end-tidalPCO2(PETCO2 ) held atprestudy value, end-tidal PO2(PETO2) = 55 Torr],followed by 8-h isocapnic euoxia(PETO2 = 100 Torr);2) 8-h poikilocapnic hypoxia followed by 8-h poikilocapnic euoxia; and3) 16-h air-breathing control.Before and at intervals throughout each protocol, theE response to eucapnichyperoxia (PETCO2 held1-2 Torr above prestudy value,PETO2 = 300 Torr) wasdetermined. There was a significant rise in hyperoxic E over 8 hduring both forms of hypoxia (P < 0.05, analysis of variance) that persisted during the subsequent 8-heuoxic period (P < 0.05, analysis ofvariance). These results support the notion that an 8-h period ofhypoxia increases subsequenthyperoxic E, even if acid-base changes have been minimized through maintenance ofisocapnia during the hypoxic period.

  相似文献   

11.
This study aimedto determine the role of protein kinase C (PKC) in signal transductionmechanisms underlying ventilatory regulation in the nucleus tractussolitarii (NTS). Microinjection of phorbol 12-myristate 13-acetate intothe commissural NTS of nine chronically instrumented, unrestrained ratselicited significant cardiorespiratory enhancements that lasted for atleast 4 h, whereas administration of vehicle(n = 15) or the inactive phorbol ester 4-phorbol 12,13-didecanoate (n = 7)did not elicit minute ventilation (E)changes. Peak hypoxic Eresponses (10% O2-balanceN2) were measured in 19 additional animals after NTS microinjection of bisindolylmaleimide(BIM) I, a selective PKC inhibitor (n = 12), BIM V (inactive analog; n = 7),or vehicle (Con; n = 19). In Con,E increased from 139 ± 9 to 285 ± 26 ml/min in room air and hypoxia, respectively, and similarresponses occurred after BIM V. BIM I did not affect room airE but markedly attenuated hypoxia-induced E increases (128 ± 12 to 167 ± 18 ml/min; P < 0.02 vs. Con and BIM V). When BIM I was microinjected into the cerebellum(n = 4), cortex(n = 4), or spinal cord(n = 4),E responses were similar to Con.Western blots of subcellular fractions of dorsocaudal brain stemlysates revealed translocation of PKC, , , , , and  isoenzymes during acute hypoxia, and enhanced overall PKC activity wasconfirmed in the particulate fraction of dorsocaudal brain stem lysatesharvested after acute hypoxia. These studies suggest that, in the adultrat, PKC activation in the NTS mediates essential components of theacute hypoxic ventilatory response.

  相似文献   

12.
To examine the effects of chronic cyclichypoxia on neuronal excitability and function in mice, we exposed miceto cyclic hypoxia for 8 h daily (9 cycles/h) for ~2 wk (startingat 2-3 days of age) and examined the properties of freshlydissociated hippocampal neurons obtained from slices. Compared withcontrol (Con) hippocampal CA1 neurons, exposed neurons (CYC) hadsimilar resting membrane potentials (Vm) andaction potentials (AP). CYC neurons, however, had a lower rheobase thanCon neurons. There was also an upregulation of the Na+current density (333 ± 84 pA/pF, n = 18) in CYCcompared with that of Con neurons (193 ± 20 pA/pF,n = 27, P < 0.03). Na+channel characteristics were significantly altered by hypoxia. Forexample, the steady-state inactivation curve was significantly morepositive in CYC than in Con (60 ± 6 mV, n = 8, for CYC and 71 ± 3 mV, n = 14, for Con,P < 0.04). The time constant for deactivation(d) was much shorter in CYC than in Con (at 100 mV,d=0.83 ± 0.23 ms in CYC neurons and 2.29 ± 0.38 ms in Con neurons, P = 0.004). We conclude thatthe increased neuronal excitability in mice neurons treated with cyclichypoxia is due to alterations in Na+ channelcharacteristics and/or Na+ channel expression. Wehypothesize from these and previous data from our laboratory (Gu XQ andHaddad GG. J Appl Physiol 91: 1245-1250, 2001) that thisincreased excitability is a reflection of an enhanced central nervoussystem maturation when exposed to low O2 conditions inearly postnatal life.

  相似文献   

13.
Nucleus raphéobscurus (NRo) modulates hypoglossal (XII) nerve motor output in the invitro transverse brain stem slice of neonatal rats (1-5 days old);chemical ablation of NRo and its focal CO2 acidificationmodulated the bursting rhythm of XII nerves. We microinjected a 4.5 mMsolution of kainic acid into the NRo to disrupt cellular activity andobserved that XII nerve activity was temporarily abolished(n = 10). We also microinjected CO2-acidified (pH = 6.00 ± 0.01) artificialcerebrospinal fluid (aCSF) into the NRo (n = 6), thepre-Bötzinger complex (PBC) (n = 6), as well as acontrol region in the lateral tegmental field equidistant to NRo, PBC,and the XII motor nuclei (n = 12). CO2acidification of the control region had no effect on XII motor output.CO2 acidification of the NRo significantly(P < 0.05) increased the burst discharge frequency ofXII nerves by 77%; integrated burst amplitude and burst durationincreased by 64% and 52%, respectively. CO2 acidificationof the PBC significantly (P < 0.05) increased theburst discharge frequency of XII nerves by 65%, but neither integratedburst amplitude nor burst duration changed. These results demonstratethat chemical ablation of the NRo can abolish XII nerve bursting rhythmand that stimulation of the NRo with CO2-acidified aCSF canexcite XII nerve bursting activity. From these observations, weconclude that, in transverse brain stem slices, the NRo containspH/CO2-sensitive cells that modulate XII motor output.

  相似文献   

14.
Duringventilatory acclimatization to hypoxia (VAH), the relationship betweenventilation (E) and end-tidalPCO2 (PETCO2) changes.This study was designed to determine 1) whether these changes can be seenearly in VAH and 2) if these changesare present, whether the responses differ between isocapnic andpoikilocapnic exposures. Ten healthy volunteers were studied by usingthree 8-h exposures: 1) isocapnichypoxia (IH), end-tidal PO2(PETO2) = 55 Torr andPETCO2 held at thesubject's normal prehypoxic value;2) poikilocapnic hypoxia (PH),PETO2 = 55 Torr; and3) control (C), air breathing. TheE-PETCO2relationship was determined in hyperoxia (PETO2 = 200 Torr) beforeand after the exposures. We found a significant increase in theslopes ofE-PETCO2 relationship after both hypoxic exposures compared with control (IH vs.C, P < 0.01; PH vs. C,P < 0.001; analysis of covariance with pairwise comparisons). This increase was not significantly different between protocols IH andPH. No significant changes in theintercept were detected. We conclude that 8 h of hypoxia, whetherisocapnic or poikilocapnic, increases the sensitivity of the hyperoxicchemoreflex response to CO2.

  相似文献   

15.
Neurotoxinmicroinjected into the retrotrapezoid nucleus of anesthetized ratsdecreases phrenic activity and eliminates the response toCO2. In unanesthetized rats, suchtreatment has no effect on awake, resting breathing and decreasesCO2 sensitivity by 40% (M. Akilesh, M. Kamper, A. Li, and E. E. Nattie. J. Appl. Physiol. 82: 469-479, 1997). One important factorin explaining these disparate results is the actual size of theanatomic lesion. In the present study, we injected ibotenic acid intothe retrotrapezoid nucleus of anesthetized rats and evaluated lesionsize by using two new approaches: 1)DEAD red, a fluorescent probe that enters impaired cells through leakymembranes and binds to nucleic acids, and2) conjugation of toxin tofluorescent beads. With the use of DEAD red, the region containinglabeled dying cells was 313 ± 104 nl(n = 4), six times larger than theinitial injected volume, and the physiological effects on phrenicamplitude, the CO2 response, andblood pressure began within minutes and were substantial. Withconjugated toxin, in theory, neuronal damage would be limited to theregion of detectable fluorescence (49 ± 10 nl;n = 4). Effects on phrenicamplitude, CO2 sensitivity, andblood pressure were absent until ~2 h postinjection. Controlexperiments, with 2 h of in vitro incubation of theneurotoxin-microbead conjugate and injection of the supernatant aftercentrifugation, showed similar results that suggest release ofconjugated neurotoxin. We conclude that DEAD red provides a usefulmeans to monitor neuronal impairment in acute studies in vivo.Conjugation of neurotoxin to microbeads may be less reliable in this regard.

  相似文献   

16.
Akilesh, Manjapra R., Matthew Kamper, Aihua Li, and EugeneE. Nattie. Effects of unilateral lesions of retrotrapezoid nucleuson breathing in awake rats. J. Appl.Physiol. 82(2): 469-479, 1997.In anesthetizedrats, unilateral retrotrapezoid nucleus (RTN) lesions markedlydecreased baseline phrenic activity and the response toCO2 (E. E. Nattie and A. Li.Respir. Physiol. 97: 63-77,1994). Here we evaluate the effects of such lesions on restingbreathing and on the response to hypercapnia and hypoxia inunanesthetized awake rats. We made unilateral injections [24 ± 7 (SE) nl] of ibotenic acid (IA; 50 mM), an excitatoryamino acid neurotoxin, in the RTN region(n = 7) located by stereotaxic coordinates and by field potentials induced by facial nervestimulation. Controls (n = 6) receivedRTN injections (80 ± 30 nl) of mock cerebrospinal fluid. A secondcontrol consisted of four animals with IA injections (24 ± 12 nl)outside the RTN region. Injected fluorescent beads allowed anatomicidentification of lesion location. Using whole body plethysmography, wemeasured ventilation in the awake state during room air, 7%CO2 in air, and 10%O2 breathing before and for 3 wkafter the RTN injections. There was no statistically significant effectof the IA injections on resting room air breathing in the lesion groupcompared with the control groups. We observed no apnea. The response to7% CO2 in the lesion groupcompared with the control groups was significantly decreased, by 39%on average, for the final portion of the 3-wk study period. There wasno lesion effect on the ventilatory response to 10%O2. In this unanesthetized model,other areas suppressed by anesthesia, e.g., the reticular activatingsystem, hypothalamus, and perhaps the contralateral RTN, may providetonic input to the respiratory centers that counters the loss of RTNactivity.

  相似文献   

17.
Hybertson, Brooks M., Roger P. Kitlowski, Eric K. Jepson,and John E. Repine. Supercritical fluid-aerosolized vitamin Epretreatment decreases leak in isolated oxidant-perfused rat lungs.J. Appl. Physiol. 84(1): 263-268, 1998.We hypothesized that direct pulmonary administration ofsupercritical fluid-aerosolized (SFA) vitamin E would decrease acuteoxidative lung injury. We previously reported that rapid expansion ofsupercritical CO2 formedrespirable particles of vitamin E and that administering SFA vitamin Eto rats increased lung vitamin E levels and decreased neutrophil-mediated lung leak. In the present investigation, we foundthat pretreatment with SFA vitamin E protected isolated rat lungsagainst the oxidant-induced lung leak caused by perfusion with xanthineoxidase (XO) and purine, an enzyme system that generates superoxideanion () and hydrogenperoxide. SFA vitamin E droplets were 0.7-3 µm in diameter, andinhalation of the airborne droplets for 30 min deposited ~55 µg ofvitamin E in rat lungs. Isolated rat lungs perfused with XO (0.02 U/ml) and purine (10 mM) gained more weight (1.75 ± 0.12 g,n = 8), retained more Ficoll(11.5 ± 1.2 mg/left lung,n = 7), and accumulated more Ficoll intheir lung lavages (700 ± 146 µg/ml,n = 8) than control lungs [0.25 ± 0.06 g (n = 10), 6.2 ± 1.2 mg/left lung (n = 9), and 141 ± 31 µg/ml (n = 8), respectively,P < 0.05]. In contrast,isolated lungs from rats that were pretreated with SFA vitamin E haddecreased (P < 0.05) weight gains(0.32 ± 0.06 g, n = 7), Ficollretentions (3.3 ± 1.1 mg/left lung,n = 7), and lung lavage Ficollconcentrations (91 ± 26 µg/ml,n = 6) after perfusion with XO andpurine compared with isolated lungs from control rats perfused with XOand purine. This protective effect was not observed in rat lungs givensham treatments (CO2 alone orvitamin E acetate aerosolized with supercriticalCO2). Our results suggest thatdirect pulmonary supplementation of vitamin E decreases susceptibilityto vascular leakage caused by XO-derived oxidants.

  相似文献   

18.
Ventilatory acclimatization tohypoxia is associated with an increase in ventilation under conditionsof acute hyperoxia(Ehyperoxia) and an increase in acute hypoxic ventilatory response (AHVR). Thisstudy compares 48-h exposures to isocapnic hypoxia( protocol I) with 48-hexposures to poikilocapnic hypoxia ( protocolP) in 10 subjects to assess the importance ofhypocapnic alkalosis in generating the changes observed in ventilatoryacclimatization to hypoxia. During both hypoxic exposures,end-tidal PO2 was maintained at60 Torr, with end-tidal PCO2 held at the subject's prehypoxic level( protocol I) or uncontrolled( protocol P).Ehyperoxiaand AHVR were assessed regularly throughout the exposures.Ehyperoxia(P < 0.001, ANOVA) and AHVR(P < 0.001) increased during thehypoxic exposures, with no significant differences betweenprotocols I andP. The increase inEhyperoxiawas associated with an increase in slope of theventilation-end-tidal PCO2 response(P < 0.001) with no significantchange in intercept. These results suggest that changes in respiratorycontrol early in ventilatory acclimatization to hypoxiaresult from the effects of hypoxia per se and not the alkalosisnormally accompanying hypoxia.

  相似文献   

19.
Gautier, Henry, Cristina Murariu, and Monique Bonora.Ventilatory and metabolic responses to ambient hypoxia orhypercapnia in rats exposed to CO hypoxia. J. Appl. Physiol.83(1): 253-261, 1997.We have investigated at ambienttemperatures (Tam) of 25 and5°C the effects of ambient hypoxia(Hxam; fractional inspired O2 = 0.14) and hypercapnia(fractional inspiredCO2 = 0.04) on ventilation (),O2 uptake(O2), andcolonic temperature (Tc) in 12 conscious rats before and after carotid body denervation (CBD). Therats were concomitantly exposed to CO hypoxia (HxCO; fractional inspired CO = 0.03-0.05%), which decreases arterial O2 saturation by ~25-40%.The results demonstrate the following. 1) AtTam of 5°C, in both intact andCBD rats,/O2 islarger when Hxam orCO2 is associated withHxCO than with normoxia. At Tam of 25°C, this is also thecase except for CO2 in CBD rats. 2) AtTam of 5°C, the changes inO2 andTc seem to result from additiveeffects of the separate changes induced byHxam,CO2, andHxCO. It is concluded that, inconscious rats, central hypoxia does not depress respiratory activity.On the contrary, particularly whenO2 is augmented during acold stress, both/O2during HxCO and the ventilatoryresponses to Hxam andCO2 are increased. The mechanismsinvolved in this relative hyperventilation are likely to involvediencephalic integrative structures.

  相似文献   

20.
Yang, X. X., W. S. Powell, M. Hojo, and J. G. Martin.Hyperpnea-induced bronchoconstriction is dependent ontachykinin-induced cysteinyl leukotriene synthesis. J. Appl. Physiol. 82(2): 538-544, 1997.The purposeof the study was to test the hypothesis that tachykinins mediatehyperpnea-induced bronchoconstriction indirectly by triggeringcysteinyl leukotriene (LT) synthesis in the airways. Guinea pigs(350-600 g) were anesthetized with xylazine and pentobarbital sodium and received hyperpnea challenge (tidal volume 3.5-4.0 ml,frequency 150 breaths/min) with either humidified isocapnic gas(n = 6) or dry gas(n = 7). Dry gas challenge wasperformed on animals that received MK-571(LTD4 antagonist; 2 mg/kg iv; n = 5), capsaicin(n = 4), neurokinin (NK) antagonists[NK1 (CP-99994) + NK2 (SR-48968) (1 mg/kg iv);n = 6], or theH1 antihistamine pyrilamine (2 mg/kg iv; n = 5). We measured thetracheal pressure and collected bile for 1 h before and 2 h afterhyperpnea challenge. We examined the biliary excretion of cysteinylLTs; the recovery of radioactivity in bile after instillation of 1 µCi [3H]LTC4intratracheally averaged 24% within 4 h(n = 2). The major cysteinyl LTidentified was LTD4 (32% recoveryof radioactivity). Cysteinyl LTs were purified from bile of animalsundergoing hyperpnea challenge by using reverse-phase high-pressureliquid chromatography and quantified by radioimmunoassay. There was asignificant increase in the peak value of tracheal pressure afterchallenge, indicating bronchoconstriction in dry gas-challenged animalsbut not after humidified gas challenge. MK-571, capsaicin, and NKantagonists prevented the bronchoconstriction; pyrilamine didnot. Cysteinyl LT levels in the bile after challenge weresignificantly increased from baseline in dry gas-challenged animals(P < 0.05) and were higher than inthe animals challenged with humidified gas or dry gas-challengedanimals treated with capsaicin or NK antagonists (P < 0.01). The results indicatethat isocapnic dry gas hyperpnea-induced bronchoconstriction is LTmediated and the role of tachykinins in the response is indirectthrough release of LTs. Endogenous histamine does not contribute to theresponse.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号