首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To describe a protocol for incorporating a temporal dimension into historical biogeographical analysis, while maintaining the essential independence of all datasets, involving the generation of general area cladograms. Location Global. Methods General area cladograms (GACs) are a reconstruction of the evolutionary history of a set of areas and unrelated clades within those areas. Nodes on a GAC correspond to speciation events in a group of taxa; general nodes are those at which multiple unrelated clades speciate. We undertake temporal calibration of GACs using molecular clock estimates of splitting events between extant taxa as well as first appearance data from the fossil record. We present two examples based on re‐analysis of previously published data: first, a temporally calibrated GAC generated from secondary Brooks parsimony analysis (BPA) of six extant bird clades from the south‐west of North America using molecular clock estimates of divergence times; and second, an analysis of African Neogene mammals based on a phylogenetic analysis for comparing trees (PACT) analysis. Results A hypothetical example demonstrates how temporal calibration reveals potentially critical information about the timing of both unique and general events, while also illustrating instances of incongruence between dates generated from molecular clock estimates and fossils. For the African Neogene mammal dataset, our analysis reveals that most mammal clades underwent geodispersal associated with the Neogene climatic optimum (c. 16 Ma) and vicariant speciation in central Africa correlated with increased aridity and cooler temperatures around 2.5 Ma. Main conclusions Temporally calibrated GACs are valuable tools for assessing whether coordinated patterns of speciation are associated with large‐scale climatic or tectonic phenomena.  相似文献   

2.
《环境昆虫学报》2014,(5):783-789
大白蚁属Macrotermes是等翅目白蚁科大白蚁亚科(Isoptera: Termitidae: Macrotermitinae)中的一类高等培菌白蚁。本文综述了1996年来有关大白蚁属分子研究的文章,提供了截止目前大白蚁属Macrotermes 生物学信息,并分析了目前大白蚁属的分子研究现状,含等翅目系统关系,大白蚁属种间关系,大白蚁拟工蚁与食性演变,大白蚁属与其共生菌关系,及其分子研究的发展方向,特别是中国大白蚁属分子研究现状。  相似文献   

3.
4.
Abstract.— The Pleistocene Epoch has been frequently cited as a period of intense speciation for a significant portion of temperate continental biotas. To critically assess the role of Pleistocene glaciations on the evolution of the freshwater fish clade Micropterus , we use a phylogenetic analysis of complete gene sequences from two mitochondrial genes (cytochrome b and ND2), and a fossil calibration of the molecular clock to estimate ages of speciation events and rates of diversification. The absence of substantial morphological and ecological divergence together with endemism of five of the eight species in North American tributaries of the Gulf of Mexico may be interpreted as the result of a recent Pleistocene origin for these species. Speciation dates in Micropterus range from 1.01 ± 0.32 to 11.17 ± 1.02 million years ago. Only one speciation event is dated to the Pleistocene, and rates of diversification are not significantly variable in Micropterus. The premise that the Pleistocene was an exceptional period of speciation in Micropterus is not supported. Instead, a Gulf Coast allopatric speciation model is proposed, and predicts periods of dynamic speciation driven by sea level fluctuations in the Late Miocene and Pliocene. The Pleistocene, however, was a period of significant intraspecific mitochondrial lineage diversification. The application of the Gulf Coast allopatric speciation model to the remaining aquatic fauna of the Gulf of Mexico coast in North America will rely on robust phylogenetic hypotheses and accurate age estimations of speciation events.  相似文献   

5.
Estimates of the timing of divergence are central to testing the underlying causes of speciation. Relaxed molecular clocks and fossil calibration have improved these estimates; however, these advances are implemented in the context of gene trees, which can overestimate divergence times. Here we couple recent innovations for dating speciation events with the analytical power of species trees, where multilocus data are considered in a coalescent context. Divergence times are estimated in the bird genus Aphelocoma to test whether speciation in these jays coincided with mountain uplift or glacial cycles. Gene trees and species trees show general agreement that diversification began in the Miocene amid mountain uplift. However, dates from the multilocus species tree are more recent, occurring predominately in the Pleistocene, consistent with theory that divergence times can be significantly overestimated with gene‐tree based approaches that do not correct for genetic divergence that predates speciation. In addition to coalescent stochasticity, Haldane's rule could account for some differences in timing estimates between mitochondrial DNA and nuclear genes. By incorporating a fossil calibration applied to the species tree, in addition to the process of gene lineage coalescence, the present approach provides a more biologically realistic framework for dating speciation events, and hence for testing the links between diversification and specific biogeographic and geologic events.  相似文献   

6.
Driver ants ( i.e. , epigaeic species in the army ant genus Dorylus , subgenus Anomma ) are among the most extreme polyphagous predators, but termites appear to be conspicuously absent from their prey spectrum and attacks by driver ants on termite nests have not yet been described. Here, we report a Dorylus ( Anomma ) rubellus attack on a colony of the fungus-growing termite Macrotermes subhyalinus that was observed during the dry season in a savannah habitat in Nigeria's Gashaka National Park. It was estimated that several hundred thousand termites (probably more than 2.4 kg dry mass) were retrieved. The apparent rarity of driver ant predation on Macrotermes nests may be explained by different habitat requirements, by the fact that these ants mostly forage aboveground, by efficient termite defense behavior and nest architecture that make entry into the nest difficult, and finally by driver ant worker morphology, which differs remarkably from that of subterranean Dorylus species that regularly invade and destroy termite colonies.  相似文献   

7.
The mutualistic symbiosis between fungus-growing termites and Termitomyces fungi originated in Africa and shows a moderate degree of interaction specificity. Here we estimate the age of the mutualism and test the hypothesis that the major splits have occurred simultaneously in the host and in the symbiont. We present a scenario where fungus-growing termites originated in the African rainforest just before the expansion of the savanna, about 31 Ma (19-49 Ma). Whereas rough age correspondence is observed for the four main clades of host and symbiont, the analysis reveals several recent events of host switching followed by dispersal of the symbiont throughout large areas and throughout different host genera. The most spectacular of these is a group of closely related fungi (the maximum age of which is estimated to be 2.4 Ma), shared between the divergent genera Microtermes, Ancistrotermes, Acanthotermes and Synacanthotermes (which diverged at least 16.7 Ma), and found throughout the African continent and on Madagascar. The lack of geographical differentiation of fungal symbionts shows that continuous exchange has occurred between regions and across host species.  相似文献   

8.
West African Mountains of the Cameroon Volcanic Line harbour two montane‐endemic species of laminated‐toothed rats (Otomys), which represent the most westerly occurrence of the genus. We explore here through mtDNA sequencing and cranial morphometrics the taxonomic status and phylogenetic relationships of O. burtoni (Mt Cameroon) and O. occidentalis (Mts Oku and Gotel). We conclude that both species are valid and can be discriminated by molecular data, as well as quantitative and qualitative cranial characters. From molecular data, O. occidentalis and O. burtoni are closest neighbours (p‐distance = 7.5–8.5%) and weakly associated sister species (suggesting a single West African radiation) and both are sister clades to a well supported clade of central, East and northeast African members of the O. typus s.l. and O. tropicalis s.l. species complexes from mountain ranges comprising the East African ‘Montane Circle’ and Ethiopian Highlands. Re‐evaluation of the evolutionary origins of the allopatric Otomys populations in equatorial Africa is undertaken in light of fossil evidence of a southern African origin of the genus. We can conclude that Otomys reached the Cameroon Volcanic Line via corridors of temperate grasslands during the Late Pliocene. Our data support the hypothesis that, following major peripatric speciation events at around 2.3 to 2.03 Ma (from East Africa into West and North Africa respectively), further speciation occurred across neighbouring mountain ranges in West, Central‐East and North‐East Africa. Estimated molecular dates of speciation events in Otomys reveal close congruence with well‐constrained geochronological estimates, pertinently the uplift of the Albertine Rift in the Early Pleistocene. These regional analyses reveal how peripatric speciation events established narrow‐range endemics of Otomys on principal stratovolcanoes across the East African plateau and Cameroon. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 320–344.  相似文献   

9.
Species in the genus Tangara are distributed throughout the New World tropics and vary in their morphology, behavior, and ecology. We used data from the cytochrome b and ND 2 genes to provide the first phylogenetic perspective on the evolution of this diversity. Reconstructions based on parsimony, maximum likelihood, and Bayesian approaches were largely congruent. The genus is monophyletic and consists of two main clades. Within these clades, DNA sequence data confirm the monophyly of most previously recognized species groups within Tangara, indicating general concordance between molecular data and impressions based on geographic distribution, morphology, and behavior. Within some currently recognized species, levels of DNA sequence variation are larger than expected, suggesting multiple taxa may be involved. In contrast, some currently recognized species are only weakly differentiated from their sister species. Biogeographic analyses indicate that many early speciation events occurred in the Andes. More recently, dispersal events followed by subsequent speciation have occurred in other geographic areas of the Neotropics. Assuming a molecular clock, most speciation events occurred well before Pleistocene climatic cycles. The time frame of Tangara speciation corresponds more closely to a period of continued uplift in the Andes during the late Miocene and Pliocene.  相似文献   

10.
Oriental voles of the genus Eothenomys are predominantly distributed along the Southeastern shoulder of the Qinghai-Tibetan Plateau. Based on phylogenetic analyses of the mitochondrial cytochrome b gene (1143 bp) obtained from 23 specimens (eight species) of Oriental voles collected from this area, together with nucleotide sequences from six specimens (two species) of Japanese red-backed voles (Eothenomys andersoni and Eothenomys smithii) and five species of the closely related genus Clethrionomys, we revised the systematic status of Eothenomys. We also tested if vicariance could explain the observed high species diversity in this area by correlating estimated divergence times to species distribution patterns and corresponding paleo-geographic events. Our results suggest that: (1) the eight species of Oriental voles form a monophyletic group with two distinct clades, and that these two clades should be considered as valid subgenera--Eothenomys and Anteliomys; (2) Eothenomys eleusis and Eothenomys miletus are not independent species; (3) Japanese red-backed voles are more closely related to the genus Clethrionomys than to continental Asian Eothenomys taxa; and (4) the genus Clethrionomys, as presently defined, is paraphyletic. In addition, the process of speciation of Oriental voles appears to be related to the Trans-Himalayan formation via three recent uplift events of the Qinghai-Tibetan Plateau within the last 3.6 million years, as well as to the effects of the mid-Quaternary ice age.  相似文献   

11.
Summary The foraging pattern of four sympatric fungus-growing termite species was followed for five months of the dry season in a semi-arid savanna (Senegal). Experimental plots were established with and without termites (exclusion with insecticide) and amended with different litter quality: Acacia leaves, millet canes, ground millet (<500 µm), Combretum wood and cattle manure. Results showed different foraging patterns between the fungus-growing species. Odontotermes nilensis, for example, rapidly developed its foraging activity on the litter. In contrast, Macrotermes subhyalinus delayed its foraging activity but, extensively collected the food after its discovery. Differences in food preference were evident between the termite species: Odonto-termes nilensis foraged preferentially on millet, canes and Acacia leaves, Macrotermes subhyalinus preferred cane and ground millet. Ancistrotermes guineensis selected the millet, and Microtermes sp. was mostly recorded foraging on pieces of dead wood. Relationships between different foraging parameters were established to assess the relative intensity of this activity over the dry season. The comparison between untreated plots and plots treated with Fipronil® (Aventis) clearly demonstrated that the exclusion of termites from part of the savanna is possible and that this possibility can be used to study their role on the soil and organic matter cycle in situ.  相似文献   

12.
Molecular systematics is frequently beset with phylogenetic results that are not fully resolved. Researchers either state that the absence of resolution is due to character conflict, explosive speciation, or some combination of the two, but seldom do they carefully examine their data to distinguish between these causes. In this study, we exhaustively analyze a set of nuclear and mitochondrial nucleotide data for the Asian tropical butterfly genus Arhopala so as to highlight the causes of polytomies in the phylogenetic trees, and, as a result, to infer important biological events in the history of this genus. We began by using non-parametric statistical methods to determine whether the ambiguously resolved regions in these trees represent hard or soft polytomies. In addition we determined how this correlated to number of inferred changes on branches, using parametric maximum likelihood estimations. Based on congruent patterns in both mitochondrial and nuclear DNA sequences, we concluded that at two stages in the history of Arhopala there have been accelerated instances of speciation. One event, at the base of the phylogeny, generated many of the groups and subgroups currently recognized in this genus, while a later event generated another major clade consisting of both Oriental and Papuan species groups. Based on comparisons of closely related taxa, the ratio of instantaneous rate of evolution between mitochondrial and nuclear DNA evolution is established at approximately 3:1. The earliest radiation is dated between 7 and 11 Ma by a molecular clock analysis, setting the events generating much of the diversity of Arhopala at well before the Pleistocene. Periodical flooding of the Sunda plateau during interglacial periods was, therefore, not responsible for generating the major divisions in the genus Arhopala. Instead, we hypothesize that large-scale climatic changes taking place in the Miocene have induced the early acceleration in speciation.  相似文献   

13.
钱茜  李赛飞  文华安 《菌物学报》2011,30(4):556-565
培菌性白蚁能在存在于蚁巢或分散在其周围土壤中的菌圃上培养真菌。菌圃在无白蚁存在下培养会生长出炭角菌的子实体。对分别采集自我国西南四川、云南两省的4个土白蚁属菌圃采用原位培养法分离并纯化得到40株炭角菌,划分为13个形态型,ITS1-5.8S-ITS2序列分析确定为两种炭角菌。采用建立ITS基因文库的方法分析了白蚁菌圃真菌群落多样性,结果表明有白蚁存在的菌圃,蚁巢伞为单一优势菌;废弃的蚁巢中的菌圃,木霉、炭角菌等其他真菌成为优势菌。  相似文献   

14.
15.
16.
Multiple geological and climatic events have created geographical or ecological barriers associated with speciation events, playing a role in biological diversification in North and Central America. Here, we evaluate the influence of the Neogene and Quaternary geological events, as well as the climatic changes in the diversification of the colubrid snake genus Rhadinaea using molecular dating and ancestral area reconstruction. A multilocus sequence dataset was generated for 37 individuals of Rhadinaea from most of the biogeographical provinces where the genus is distributed, representing 19 of the 21 currently recognized species, and two undescribed species. Our analyses show that the majority of the Rhadinaea species nest in two main clades, herein identified as “Eastern” and “Southern”. These clades probably diverged from each other in the early Miocene, and their divergence was followed by 11 divergences during the middle to late Miocene, three divergences during the Pliocene, and six divergences in the Pleistocene. The ancestral distribution of Rhadinaea was reconstructed across the Sierra Madre del Sur. Our phylogenetic analyses do not support the monophyly of Rhadinaea. The Miocene and Pliocene geomorphology, perhaps in conjunction with climate change, appears to have triggered the diversification of the genus, while the climatic changes during the Miocene probably induced the diversification of Rhadinaea in the Sierra Madre del Sur. Our analysis suggests that the uplifting of the Trans‐Mexican Volcanic Belt and Chiapan–Guatemalan highlands in this same period resulted in northward and southward colonization events. This was followed by more recent, independent colonization events in the Pliocene and Pleistocene involving the Balsas Basin, Chihuahuan Desert, Pacific Coast, Sierra Madre Occidental, Sierra Madre Oriental, Sierra Madre del Sur, Trans‐Mexican Volcanic Belt, and Veracruz provinces, probably driven by the climatic fluctuations of the time.  相似文献   

17.
Species level phylogenetic hypotheses can be used to explore patterns of divergence and speciation. In the tropics, speciation is commonly attributed to either vicariance, perhaps within climate-induced forest refugia, or ecological speciation caused by niche adaptation. Mimetic butterflies have been used to identify forest refugia as well as in studies of ecological speciation, so they are ideal for discriminating between these two models. The genus Ithomia contains 24 species of warningly colored mimetic butterflies found in South and Central America, and here we use a phylogenetic hypothesis based on seven genes for 23 species to investigate speciation in this group. The history of wing color pattern evolution in the genus was reconstructed using both parsimony and likelihood. The ancestral pattern for the group was almost certainly a transparent butterfly, and there is strong evidence for convergent evolution due to mimicry. A punctuationist model of pattern evolution was a significantly better fit to the data than a gradualist model, demonstrating that pattern changes above the species level were associated with cladogenesis and supporting a model of ecological speciation driven by mimicry adaptation. However, there was only one case of sister species unambiguously differing in pattern, suggesting that some recent speciation events have occurred without pattern shifts. The pattern of geographic overlap between clades over time shows that closely related species are mostly sympatric or, in one case, parapatric. This is consistent with modes of speciation with ongoing gene flow, although rapid range changes following allopatric speciation could give a similar pattern. Patterns of lineage accumulation through time differed significantly from that expected at random, and show that most of the extant species were present by the beginning of the Pleistocene at the latest. Hence Pleistocene refugia are unlikely to have played a major role in Ithomia diversification.  相似文献   

18.
We used mitochondrial [cytochrome c oxidase subunit I (CO I ), cytochrome b , and 16S] and nuclear [internal transcribed spacer (ITS) phylogenies of Skistodiaptomus copepods to test hypotheses of Pleistocene divergence and speciation within the genus. Mitochondrial (mt)DNA sequence divergences do not support hypotheses for Pleistocene speciation and instead suggest much more ancient speciation events in the genus. Skistodiaptomus oregonensis and Skistodiaptomus pygmaeus (i.e. two morphologically similar and parapatric species) exhibited uncorrected mtDNA sequence divergences exceeding 20%. Similarly, we identified three divergent clades of Skistodiaptomus pallidus that exhibited mtDNA sequence divergences exceeding 15%, suggesting that even intraspecific divergence within this morphospecies predates the Pleistocene. We found clear evidence of CO I pseudogenes in S. pygmaeus , but their presence did not lead to significant overestimates of sequence divergences for this gene. Substitution saturation and strong purifying selection have most likely led to underestimates of sequence divergences and divergence times among Skistodiaptomus . The widespread phenomenon of morphological stasis among genetically divergent copepod groups indicates that speciation often occurs with little or no morphological change. Instead, morphological evolution may occur idiosyncratically after speciation and create discordant patterns of morphological similarity, shared ancestry and divergence time. Cryptic species complexes are therefore common in copepods, and morphological species concepts underestimate their true species diversity.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 150–165.  相似文献   

19.
Stigall AL 《PloS one》2010,5(12):e15584
During the Late Devonian Biodiversity Crisis, the primary driver of biodiversity decline was the dramatic reduction in speciation rates, not elevated extinction rates; however, the causes of speciation decline have been previously unstudied. Speciation, the formation of new species from ancestral populations, occurs by two primary allopatric mechanisms: vicariance, where the ancestral population is passively divided into two large subpopulations that later diverge and form two daughter species, and dispersal, in which a small subset of the ancestral population actively migrates then diverges to form a new species. Studies of modern and fossil clades typically document speciation by vicariance in much higher frequencies than speciation by dispersal. To assess the mechanism behind Late Devonian speciation reduction, speciation rates were calculated within stratigraphically constrained species-level phylogenetic hypotheses for three representative clades and mode of speciation at cladogenetic events was assessed across four clades in three phyla: Arthropoda, Brachiopoda, and Mollusca. In all cases, Devonian taxa exhibited a congruent reduction in speciation rate between the Middle Devonian pre-crisis interval and the Late Devonian crisis interval. Furthermore, speciation via vicariance is almost entirely absent during the crisis interval; most episodes of speciation during this time were due to dispersal. The shutdown of speciation by vicariance during this interval was related to widespread interbasinal species invasions. The lack of Late Devonian vicariance is diametrically opposed to the pattern observed in other geologic intervals, which suggests the loss of vicariant speciation attributable to species invasions during the Late Devonian was a causal factor in the biodiversity crisis. Similarly, modern ecosystems, in which invasive species are rampant, may be expected to exhibit similar shutdown of speciation by vicariance as an outcome of the modern biodiversity crisis.  相似文献   

20.
Phylogenetic relationships within the genus Muscisaxicola, a primarily Andean group of tyrant-flycatchers, were studied using complete sequences of the mitochondrial genes COII and ND3. Relationships among Muscisaxicola species were found to differ substantially from those of previous views, suggesting convergence in traditional avian taxonomic characters within the genus. The 11 species of large, gray, "typical" Muscisaxicola flycatchers (including M. grisea, newly restored to species status) formed a distinct clade, consisting of two major groups: a clade of 6 species breeding primarily in the central Andes and a clade of 5 species breeding primarily in the southern Andes. The other 2 species traditionally placed in this genus, M. fluviatilis, an Amazonian species, and M. maculirostris, were both rather divergent genetically from the typical species, although M. maculirostris may be the sister taxon to the typical clade. The patterns of sympatry exhibited by Muscisaxicola species in the high Andes appear to be the consequence of speciation and secondary contact within regions of the Andes, rather than a result of dispersal between regions. Diversification of the typical Muscisaxicola species appears to have occurred during the middle and late Pleistocene, suggesting generally that taxa of the high Andes and Patagonia may have been greatly influenced by mid-to-late Pleistocene events. There were likely several independent developments of migration within this genus, but migration is probably ancestral in the southern clade, with subsequent loss of migration in two taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号