首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Confusion Effect in a Reptilian and a Primate Predator   总被引:1,自引:0,他引:1  
The confusion effect is claimed to be one benefit of group living with respect to predator avoidance: it is more difficult for predators to capture prey that is surrounded by other conspecifics than to capture an isolated individual. So far, the predictions of the confusion effect have been tested mainly in aquatic predators. As the confusion effect is seen to be a general problem for predators, terrestrial predators of two different vertebrate classes were used to test it. The prey (mealworms and black beetles, Tenebrio molitor ) was harmless and had no chance of predator avoidance. Thus, confounding effects of group defence and enhanced vigilance were controlled. Both leopard geckos ( Eublepharis macularius ) and common marmosets ( Callithrix jacchus ) took longer to catch one out of several prey compared to one single prey. Leopard geckos showed more fixations (changing of head position) when confronted with 20 mealworms than when confronted with only one mealworm, thus showing indications of being 'confused'.  相似文献   

2.
A simple artificial neural network model of image reconstruction in sensory maps is presented to explain the difficulty predators experience in targeting prey in large groups (the confusion effect). Networks are trained to reconstruct multiple randomly conformed "retinal" images of prey groups in an internal spatial map of their immediate environment. They are then used to simulate prey targeting by predators on groups of specific conformation. Networks trained with the biologically plausible associative reward-penalty method produce a more realistic model of the confusion effect than those trained with the popular but biologically implausible backpropagation method. The associative reward-penalty model makes the novel prediction that the accuracy-group size relationship is U shaped, and this prediction is confirmed by empirical data gathered from interactive computer simulation experiments with humans as "predators." The model further predicts all factors known from previous empirical work (and most factors suspected) to alleviate the confusion effect: increased relative intensity of the target object, heterogeneity of group composition, and isolation of the target. Interestingly, group compaction per se is not predicted to worsen predator confusion. This study indicates that the relatively simple, nonattentional mechanism of information degradation in the sensory mapping process is potentially important in generating the confusion effect.  相似文献   

3.
Social animals are capable of enhancing their awareness by paying attention to their neighbors, and prey found in groups can also confuse their predators. Both sides of these sensory benefits have long been appreciated, yet less is known of how the perception of events from the perspectives of both prey and predator can interact to influence their encounters. Here we examined how a visual sensory mechanism impacts the collective motion of prey and, subsequently, how their resulting movements influenced predator confusion and capture ability. We presented virtual prey to human players in a targeting game and measured the speed and accuracy with which participants caught designated prey. As prey paid more attention to neighbor movements their collective coordination increased, yet increases in prey coordination were positively associated with increases in the speed and accuracy of attacks. However, while attack speed was unaffected by the initial state of the prey, accuracy dropped significantly if the prey were already organized at the start of the attack, rather than in the process of self-organizing. By repeating attack scenarios and masking the targeted prey’s neighbors we were able to visually isolate them and conclusively demonstrate how visual confusion impacted capture ability. Delays in capture caused by decreased coordination amongst the prey depended upon the collection motion of neighboring prey, while it was primarily the motion of the targets themselves that determined capture accuracy. Interestingly, while a complete loss of coordination in the prey (e.g., a flash expansion) caused the greatest delay in capture, such behavior had little effect on capture accuracy. Lastly, while increases in collective coordination in prey enhanced personal risk, traveling in coordinated groups was still better than appearing alone. These findings demonstrate a trade-off between the sensory mechanisms that can enhance the collective properties that emerge in social animals and the individual group member’s predation risk during an attack.  相似文献   

4.
Individual swimming behavior of zooplankton can play an importantrole in determining how planktivorous fishselect their prey.Although several studies have documented the effect of preysize, contrast or degree of pigmentation, escape ability, encounterrate and abundance in determining predation risk, the importanceof individual behavior has received relatively little attentionby aquatic ecologists. Recent advances in the technology ofvideo recording and computer analysis of motion have allowedus to collect digitized three-dimensional videorecords of free-swimmingzooplankton such as Daphnia. We found that Daphnia clones, includingthose within a single species, exhibit a wide range of swimmingbehaviors as measured by swimming speed. The individual behaviorof a species cannot be adequately described by looking at oneclone. We alsoshow that different behavior observed in liveDaphnia can play an important role in determining attractivenessto visual predators. Given a choice between two clones of equalsize and visibility contrast, fish selected indi viduals fromthe faster swimming clone. Our results suggest that currentmodels of prey selection would be improved by the incorporationof individual swimming behavior because it is an important factordetermining overall prey visibility.  相似文献   

5.
The tendency of predators to preferentially attack phenotypically odd prey in groups (the oddity effect) is a clear example of how predator cognition can impact behaviour and morphology in prey. Through targeting phenotypically odd prey, predators are thought to avoid the cognitive constraints that delay and limit the success of attacks on homogenous prey groups (the confusion effect). In addition to influencing which prey a predator will attack, the confusion and oddity effects would also predict that attacks on odd prey can occur more rapidly than attacking the majority prey type, as odd prey are more easily targeted, but this prediction has yet to be tested. Here, we used kerri tetra fish, Inpaichthys kerri, presented with mixed phenotypic groups of Daphnia dyed red or black to investigate whether odd prey in groups are preferentially attacked and whether these attacks were faster than those on the majority prey type. In agreement with previous work, odd prey were targeted and attacked more often than expected from their frequency in the prey groups, regardless of whether the odd prey was red in a group of black prey or vice versa. However, no difference was found in the time taken to attack odd vs. majority prey items, contrary to our predictions. Our results suggest that the time taken to make an attack is determined by a wider range of factors or is subject to greater variance than the choice of which prey is selectively targeted in a group.  相似文献   

6.
The fundamental currency of normative models of animal decision making is Darwinian fitness. In foraging ecology, empirical studies typically assess foraging strategies by recording energy intake rates rather than realized reproductive performance. This study provides a rare empirical link, in a vertebrate predator-prey system, between a predator's foraging behavior and direct measures of its reproductive fitness. Goshawks Accipiter gentilis selectively kill rare color variants of their principal prey, the feral pigeon Columba livia, presumably because targeting odd-looking birds in large uniform flocks helps them overcome confusion effects and enhances attack success. Reproductive performance of individual hawks increases significantly with their selectivity for odd-colored pigeons, even after controlling for confounding age effects. Older hawks exhibit more pronounced dietary preferences, suggesting that hunting performance improves with experience. Intriguingly, although negative frequency-dependent predation by hawks exerts strong selection against rare pigeon phenotypes, pigeon color polymorphism is maintained through negative assortative mating.  相似文献   

7.
Prey that are unprofitable to attack are typically conspicuous in appearance. Conventional theory assumes that these warning signals have evolved in response to predator receiver biases. However, such biases might be a symptom rather than a cause of warning signals. We therefore examine an alternative theory: that conspicuousness evolves in unprofitable prey to avoid confusion with profitable prey. One might wonder why unprofitable prey do not find a cryptic means to be distinct from profitable prey, reducing both their risk of confusion with profitable prey and their rate of detection by predators. Here we present the first coevolutionary model to allow for Batesian mimicry and signals with different levels of detectability. We find that unprofitable prey do indeed evolve ways of distinguishing themselves using cryptic signals, particularly when appearance traits can evolve in multiple dimensions. However, conspicuous warning signals readily evolve in unprofitable prey when there are more ways to look different from the background than to match it. Moreover, the more unprofitable the prey species, the higher its evolved conspicuousness. Our results provide strong support for the argument that unprofitable species evolve conspicuous signals to avoid confusion with profitable prey and indicate that peak shift in conspicuousness-linked traits is a major factor in its establishment.  相似文献   

8.
The main tenet of Hamilton's 'selfish herd theory' for the evolution of group living is that individual risk of being killed upon attack by a predator is greater when relatively far from conspecifics. Here we examine the role of spacing using video analysis of encounters between redshanks, Tringa totanus, in flocks on saltmarsh, and sparrowhawks, Accipiter nisus, surprise hunting from adjacent woodland. Targeted redshanks were 35% (approx. 5 body lengths) more widely spaced than their nearest non-targeted neighbours, controlling for proximity to the hawk. Although targeted redshanks were also twice as slow to escape, the effect dropped out of a model containing spacing, which alone accounted for twice as much variation as escape delay. Redshanks were more tightly spaced on the riskiest side of the flock, suggesting they attempted to compensate for the greater risk, while birds on the edges of flocks were more widely spaced than those in the centre. Our analysis controls for most of the confounding effects associated with the edge-centre comparisons that are normally used in similar studies and provides strong support for spacing-dependent differential predation risk in the wild. In general, we suggest that positive selection for tight spacing when prey are stationary is largely due to domains of danger, but that this also leads to positive selection when prey are mobile because of predator confusion.  相似文献   

9.
Many animals respond to predation risk by forming groups. Evolutionary explanations for group formation in previously ungrouped, but loosely associated prey have typically evoked the selfish herd hypothesis. However, despite over 600 studies across a diverse array of taxa, the critical assumptions of this hypothesis have remained collectively untested, owing to several confounding problems in real predator–prey systems. To solve this, we manipulated the domains of danger of Cape fur seal (Arctocephalus pusillus pusillus) decoys to provide evidence that a selfish reduction in a seals'' domain of danger results in a proportional reduction in its predation risk from ambush shark attacks. This behaviour confers a survival advantage to individual seals within a group and explains the evolution of selfish herds in a prey species. These findings empirically elevate Hamilton''s selfish herd hypothesis to more than a ‘theoretical curiosity’.  相似文献   

10.
Aggregations of different-looking animals are frequently seen in nature, despite well-documented selection pressures on individuals to maintain phenotypically homogenous groups. Two well-known theories, the ‘confusion effect’ (reduced ability of a predator to accurately target an individual in a group) and the ‘oddity effect’ (preferential targeting of phenotypically distinct, ‘odd’, individuals) act together to predict the evolution of behaviours in prey that lead to groups of animals that are homogeneous in appearance. In contrast, a recently proposed mechanism suggests that mixed groups could be maintained if one species in a mixed group is more conspicuous against the habitat than the other, as confusion effects generated by the conspicuous species impede predator targeting of the cryptic species; thus, cryptic species benefit from association with conspicuous ones. We test these contrasting predictions from the perspective of both predators and prey, and show that cryptic individual Daphnia are at reduced risk of predation from three-spine sticklebacks Gasterosteus aculeatus when in mixed-phenotype groups, a risk that is reduced further as the number of conspicuous individuals increases, supporting the hypothesis for the evolution of mixed groups. In contrast, while the preference for associating with colour-matched conspecifics by mollies (Poecilia sphenops) was reduced when they were cryptic, we found no evidence for active association with conspicuous conspecifics. We conclude that prey animals must balance the relative risks of oddity and conspicuousness in their social decisions, and that this could potentially lead to the evolution of mixed-phenotype grouping as a response to predation risk alone.  相似文献   

11.
The spatiotemporal dynamics of a space- and time-discrete predator–prey system is considered theoretically using both analytical methods and computer simulations. The prey is assumed to be affected by the strong Allee effect. We reveal a rich variety of pattern formation scenarios. In particular, we show that, in a predator–prey system with the strong Allee effect for prey, the role of space is crucial for species survival. Pattern formation is observed both inside and outside of the Turing domain. For parameters when the local kinetics is oscillatory, the system typically evolves to spatiotemporal chaos. We also consider the effect of different initial conditions and show that the system exhibits a spatiotemporal multistability. In a certain parameter range, the system dynamics is not self-organized but remembers the details of the initial conditions, which evokes the concept of long-living ecological transients. Finally, we show that our findings have important implications for the understanding of population dynamics on a fragmented habitat.  相似文献   

12.
Numerous factors affect the fine-scale social structure of animal groups, but it is unclear how important such factors are in determining how individuals encounter resources. Familiarity affects shoal choice and structure in many social fishes. Here, we show that familiarity between shoal members of sticklebacks (Gasterosteus aculeatus) affects both fine-scale social organization and the discovery of resources. Social network analysis revealed that sticklebacks remained closer to familiar than to unfamiliar individuals within the same shoal. Network-based diffusion analysis revealed that there was a strong untransmitted social effect on patch discovery, with individuals tending to discover a task sooner if a familiar individual from their group had previously done so than if an unfamiliar fish had done so. However, in contrast to the effect of familiarity, the frequency with which individuals had previously associated with one another had no effect upon the likelihood of prey patch discovery. This may have been due to the influence of fish on one another''s movements; the effect of familiarity on discovery of an empty ‘control’ patch was as strong as for discovery of an actual prey patch. Our results demonstrate that factors affecting fine-scale social interactions can also influence how individuals encounter and exploit resources.  相似文献   

13.
Area-restricted searches have been described as important componentsof the foraging behavior of many organisms. It is unclear, however,whether individual foragers can use learning to fine-tune theirsearches, or even whether these searches are efficiently performed.I used a simulation model to make qualitative predictions aboutsearch behavior in a laboratory system. The simulation modelindicates that the sinuosity and path length of searches stronglyaffect search efficiency. The model predicts that, for a rate-maximizingforager, path length should increase and search sinuosity shoulddecrease as prey become less clumped. Foraging animals may thereforebe selected to learn the path length and sinuosity of searchesin response to changing degrees of dumping of prey. These predictionswere tested in a laboratory system involving ferrets (Mustelaputorius furo) foraging for oil-drop "prey items." Search pathschanged in a graded manner to experimental manipulations ofthe dumping of prey. As predicted by the model, ferrets learnedto perform longer and less sinuous search paths as prey becameless clumped. This study provides the first evidence that area-restrictedsearch behavior is learned and can be fine-tuned to efficientlyexploit different spatial distributions of food.  相似文献   

14.
王文婷  王万雄 《生态学报》2014,34(16):4596-4602
在Dubis动力系统的基础上,建立了具有Allee效应的捕食系统模型。对系统的稳定性进行了分析,受Allee效应的影响,食饵种群可能因为种群大小处于临界点以下而趋于灭绝。通过对系统进行模拟,结果表明:不受Allee效应的影响,系统的演化属于一种理想化的情形系统到达P(平衡)点的时间较不受Allee效应影响时系统到达P点的时间短,不利于生物的进化,而在Allee效应的影响下,系统的演化将达到一个平衡状态。由此,说明Allee效应为濒临灭绝物种的管理提供了重要的理论依据,对管理部门的决策有参考指导作用。  相似文献   

15.
Predation can result in differing patterns of local prey diversity depending on whether predators are selective and, if so, how they select prey. A recent study comparing the diversity of juvenile fish assemblages among coral reefs with and without predators concluded that decreased prey diversity in the presence of predators was most likely caused by predators actively selecting rare prey species. We used several related laboratory experiments to explore this hypothesis by testing: (1) whether predators prefer particular prey species, (2) whether individual predators consistently select the same prey species, (3) whether predators target rare prey, and (4) whether rare prey are more vulnerable to predation because they differ in appearance/colouration from common prey. Rare prey suffered greater predation than expected and were not more vulnerable to predators because their appearance/colouration differed from common prey. Individual predators did not consistently select the same prey species through time, suggesting that prey selection behaviour was flexible and context dependent rather than fixed. Thus, selection of rare prey was unlikely to be explained by simple preferences for particular prey species. We hypothesize that when faced with multiple prey species predators may initially focus on rare, conspicuous species to overcome the sensory confusion experienced when attacking aggregated prey, thereby minimizing the time required to capture prey. This hypothesis represents a community-level manifestation of two well-documented and related phenomena, the “confusion effect” and the “oddity effect”, and may be an important, and often overlooked, mechanism by which predators influence local species diversity.  相似文献   

16.
The confusion effect is often cited as an antipredatory benefitof group living and has been demonstrated by numerous studiesacross a range of taxa. However, there have been relativelyfew studies examining the mechanisms behind the effect and noexperimental test of its supposed theoretical basis (informationdegradation in neural networks) using a natural predator–preypairing. In agreement with other studies, we demonstrate thatattack success of the three-spined stickleback (Gasterosteusaculeatus L.) is reduced by an increase in Daphnia magna groupsize. Neural network models attempt to explain this trend withmultiple prey inducing poor neural mapping of target prey, thusleading to an increase in the spatial error of each attack.We explicitly tested this prediction and demonstrate that thedecrease in attack success by sticklebacks does correspond toan increase in spatial targeting error with larger prey groupsize. Finally, we show that the number of targets, rather thanthe density or area occupied by the group, has the greatesteffect on reducing the rate of attack. These results are discussedin the context of the information processing constraints ofpredators, the ultimate cause of the confusion effect.  相似文献   

17.
This paper presents an extension of the Red Queen Hypothesis (hereafter, RQH) that we call the Red Tooth Hypothesis (RTH). This hypothesis suggests that predator-prey relations may play a role in the maintenance of sexual reproduction in many higher animals. RTH is based on an interaction between learning on the part of predators and evolution on the part of prey. We present a simple predator-prey computer simulation that illustrates the effects of this interaction. This simulation suggests that the optimal escape strategy from the prey's standpoint would be to have a small number of highly reflexive, largely innate (and, therefore, very fast) escape patterns, but that would also be unlearnable by the predator. One way to achieve this would be for each individual in the prey population to have a small set of hard-wired escape patterns, but which were different for each individual.We argue that polymorphic escape patterns at the population level could be produced via sexual reproduction at little or no evolutionary cost and would be as, or potentially more, efficient than individual-level protean (i.e., random) escape behavior. We further argue that, especially under high predation pressure, sexual recombination would be a more rapid, and therefore more effective, means of producing highly variable escape behaviors at the population level than asexual reproduction.  相似文献   

18.
Unique in the insect world for their extremely sedentary predatory behavior, pit-dwelling larval antlions dig pits, and then sit at the bottom and wait, sometimes for months, for prey to fall inside. This sedentary predation strategy, combined with their seemingly innate ability to detect approaching prey, make antlions unlikely candidates for learning. That is, although scientists have demonstrated that many species of insects possess the capacity to learn, each of these species, which together represent multiple families from every major insect order, utilizes this ability as a means of navigating the environment, using learned cues to guide an active search for food and hosts, or to avoid noxious events. Nonetheless, we demonstrate not only that sedentary antlions can learn, but also, more importantly, that learning provides an important fitness benefit, namely decreasing the time to pupate, a benefit not yet demonstrated in any other species. Compared to a control group in which an environmental cue was presented randomly vis-à-vis daily prey arrival, antlions given the opportunity to associate the cue with prey were able to make more efficient use of prey and pupate significantly sooner, thus shortening their long, highly vulnerable larval stage. Whereas "median survival time," the point at which half of the animals in each group had pupated, was 46 days for antlions receiving the Learning treatment, that point never was reached in antlions receiving the Random treatment, even by the end of the experiment on Day 70. In addition, we demonstrate a novel manifestation of antlions' learned response to cues predicting prey arrival, behavior that does not match the typical "learning curve" but which is well-adapted to their sedentary predation strategy. Finally, we suggest that what has long appeared to be instinctive predatory behavior is likely to be highly modified and shaped by learning.  相似文献   

19.
A system consisting of a population of predators and two types of prey is considered. The dynamics of the system is described by differential equations with controls. The controls model how predators forage on each of the two types of prey. The choice of these controls is based on the standard assumption in the theory of optimal foraging which requires that each predator maximizes the net rate of energy intake during foraging. Since this choice depends on the densities of populations involved, this allows us to link the optimal behavior of an individual with the dynamics of the whole system. Simple qualitative analysis and some simulations show the qualitative behavior of such a system. The effect of the optimal diet choice on the stability of the system is discussed.  相似文献   

20.
We present the results of simulations in an individual-based model describing spatial movement and predator-prey interaction within a closed rectangular habitat. Movement of each individual animal is determined by local conditions only, so any collective behavior emerges owing to self-organization. It is shown that the pursuit of prey by predators entails predator interference, manifesting itself at the population level as the dependency of the trophic function (individual ration) on predator abundance. The stabilizing effect of predator interference on the dynamics of a predator-prey system is discussed. Inclusion of prey evasion induces apparent cooperation of predators and further alters the functional response, giving rise to a strong Allee effect, with extinction of the predator population upon dropping below critical numbers. Thus, we propose a simple mechanistic interpretation of important but still poorly understood behavioral phenomena that underlie the functioning of natural trophic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号