首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycoprotein AM1, a glycoprotein from the submandibular glands of the mouse was isolated from the 100 000 × g tissue extract by polyacrylamide gel electrophoresis. An antiserum to purified glycoprotein AM1 was prepared, and its specificity was tested by immunodiffusion and immunoelectrophoresis. Glycoprotein AM1 could be detected in large quantity only in the submandibular glands of the mouse and in very small amounts in the parotid and sublingual glands and in serum. No glycoprotein AM1 was found in the murine brain, heart, lung, liver, spleen, kidney, pacreas, spinal cord and testis. In addition, glycoprotein AM1 was not detectable in the submandibular glands of the rat and rabbit, and in whole human saliva. No cross-reactivity was found with murine submandibular proteinase A and porcine pacreatic kallikrein. The cellular localization of glycoprotein AM1 was determined by the indirect immunofluorescence technique. In the submandibular glands bright fluorescence was only present in the acinar cells, throughout the whole gland. In the sublingual glands faint fluorescence was detectable as a diffuse network around the acini and possibly in the serous acinar demilune cells. On a subcellular level, glycoprotein AM1 could be demonstrated in the extract of the SMC secretory granular fraction, which originates largely from the acinar cells. On the other hand, glycoprotein AM1 was hardly detectable in the SMB secretory granular fraction, which originates predominantly from the granular convoluted tubular cells. Consomitantly, glycoprotein AM1 was secreted in vivo and could be detected in whole saliva, particularly after stimulation with isoproterenol and carbamylcholine, and also with phenylephrine, but to a much lesser extent.  相似文献   

2.
Although feline salivary glands have been used in investigations on secretion and microlithiasis and both processes involve calcium, nothing is known about its distribution in these glands. Therefore we have demonstrated the presence of calcium by a histochemical technique using glyoxal bis(2-hydroxyanil) and a biochemical technique using dry ashing. The histochemical technique stained serous acinar cells weakly and rarely found mucous acinar cells strongly in the parotid gland, mucous acinar cells moderately to strongly and serous acinar cells weakly in the sublingual gland, and central and demilunar acinar cells moderately to strongly in the submandibular gland. The biochemical technique revealed less calcium in the parotid than in the submandibular and sublingual glands. Both techniques revealed a decrease of calcium in submandibular and sublingual glands following parasympathetic stimulation. The histochemical distribution of calcium, which corresponds to that of acinar secretory glycoprotein, and the loss of calcium following parasympathetic stimulation, which causes release of secretory granules, indicate the presence of calcium in secretory granules. The concentration of calcium in the different types of acinar cell corresponds to the acidity of the secretory glycoprotein and suggests that calcium is present as a cationic shield to allow the condensation of polyionic glycoprotein in secretory granules.  相似文献   

3.
4.
The research was planned to study the subcellular distribution of enzymatic secretory products within the secretory structures of the mouse major salivary glands at light and electron microscopy level by immunogold silver stain (IGSS) technique and double-sided post-embedding immunogold binding and silver amplification in order to speculate about their compartmentation. In particular, we experimented the above immunogold labeling approaches to localize the lysozyme and to verify its distribution patterns in relation to another secretion enzyme, alpha-amylase. Co-presence of lysozyme and alpha-amylase was observed in the convoluted granular tubule cells of the submandibular gland and in the demilunar cells of the sublingual gland as well as in the electron-dense regions of the mottled secretory granules in the parotid gland. Exclusive binding patterns of lysozyme were observed in the acinar cells of the submandibular and sublingual glands where alpha-amylase did not occur.  相似文献   

5.
Hybridomas were produced by the fusion of NS1 myeloma cells with spleen cells of a BALB/c mouse immunized with rat submandibular saliva. Growth of hybridomas was evident in 60/96 wells, and colonies secreting antibodies against saliva components were identified in 20 wells by using a solid phase enzyme-linked immunoassay. Cloning of cells from 12 wells yielded originally 43 hybridoma cell lines secreting anti-saliva antibodies. After recloning, one hybridoma (4Cl3) was selected for further studies. The hybridoma (4Cl3) cells were grown as ascites tumors, and the antibodies were purified from the ascitic fluid by diethylaminoethyl Affi-gel Blue chromatography. The purified antibody (MA4), immunoglobulin G1, immunoprecipitated a 39K dalton protein from submandibular saliva, and also reacted with a protein of the same electrophoretic mobility on immunoblots. From extracts of submandibular gland slices, incubated with [3H]leucine, the antibody again immunoprecipitated a 39K protein, indicating that this protein is synthesized in the gland. MA4 was used for immunocytochemical stainings of submandibular glands of rats of different ages. In general, immunostaining was seen only in acinar cells. Thus, there was no staining in the glands of 1-day-old rats that lack differentiated acinar cells. In the glands of 1- to 4-week-old rats the number of immunoreactive cells and the extent of immunostaining paralleled the differentiation of the acinar cells. In the glands of adult rats a uniform staining of the secretory granules of the acinar cells was observed. The immunoreactive 39K protein seemed to be restricted to the acinar cells in the submandibular gland; there was no immunostaining in the parotid, sublingual, or lingual salivary glands, or in the pancreas, colon, and duodenum. Stimulation of saliva secretion by isoproterenol resulted in a virtual depletion of the antigen from the acinar cells. These results indicate the feasibility of producing mouse hybridomas that secrete antibodies against rat saliva components. The monoclonal antibody at hand will be useful in analyzing the differentiation of the acinar cells, and the factors that influence this differentiation process.  相似文献   

6.
We investigated the expression and distribution of osteopontin in mouse salivary glands. Western blot analysis showed intense positive bands at the predicted molecular mass (about 60 kDa) in mouse parotid and sublingual glands. However, a cross-reacted band around 30 kDa was strongly detected in submandibular glands. Indirect immunofluorescent analysis showed that osteopontin was localized at the luminal (apical) membranes of the acinar cells in parotid and sublingual glands. However, it was not detected in acinar cells of submandibular glands. No expression was found in ductal cells of any glands. We also examined the expression of matrix metalloproteinase (MMP)-3 and -7. In parotid gland, MMP-3 was observed at 57 kDa, indicating a latent form, but MMP-7 was not detected. In contrast, MMP-7 definitely was observed at 28 kDa area in submandibular gland, whereas MMP-3 was not detected. These results suggest that osteopontin localizes at luminal sites of acinar cells and may be associated with saliva secretion in mouse salivary gland. It is also suggested that osteopontin may be cleaved by MMP-7 in mouse submandibular gland.  相似文献   

7.
Summary In this study, antiserum to acinar cell-specific mucin was utilized to determine whether mucin could be detected in the mouse submandibular gland prior to cytodifferentiation of acinar cells. Results from radioimmunoassay indicated that mucin occurs in submandibular glands from newborn mice, i.e., before the appearance of mature acinar cells. Additionally, mucin quantitated in various stages of development was found to be antigenically identical to adult mucin. After sections of glands were treated with immunohistochemical reagents, we observed that the mature acinar cell-specific mucin was present in secretory terminal-tubule cells and in proacinar cells of newborn animals. The present findings suggest that in young animals, the proacinar cells are an immediate precursor of acinar cells and that the secretory terminal-tubule cells may represent an earlier stage in development of acinar cells. In adult female glands, mucin was also detected in the granular intercalating-duct cells. This latter observation is consistent with the hypothesis that these cells are an intermediate in the acinar cell replacement process.  相似文献   

8.
Summary Antibodies against murine submandibular and sublingual mucins have been raised in rabbits. Both antisera appeared to be specific. Using these antibodies, the mucins were localized in the acinar cells of the submandibular and sublingual glands respectively.The dyed amylopectin method was used to estimate the activity of amylase in the salivary glands. The enzyme was localized either by a starch-substrate film method or with antibodies against purified parotid amylase. The activity of amylase in parotid homogenates is about 1000-fold higher than that in homogenates of either submandibular or sublingual glands, in which the activity was comparable. Amylase was localized in the acinar cells of the parotid gland with both localization techniques. In the sublingual gland, amylase was found predominantly in the stroma around the acini, and there was some evidence that amylase was present in the demilune cells as well. In the submandibular gland, contradictory results were obtained with both techniques. With the starch-substrate film method, amylase activity was found in the granular convoluted tubular cells, whereas immuno-reactive amylase could only be demonstrated in the acinar cells of this gland. It is concluded that in the submandibular gland amylase and mucin are present in the same cell type.  相似文献   

9.
Summary The roles of sympathetic and parasympathetic nerves in the secretion of saliva from submandibular glands of rats have been tested by electrical stimulation of either nerve for 1 h unilaterally in separate animals. The flows of saliva thereby induced and their protein content were monitored. Structural changes in each gland were assessed by light- and electron microscopy and compared with the unstimulated contralateral control gland, and the extent of the changes was determined morphometrically. Sympathetic nerve stimulation induced a relatively low flow of saliva that was rich in protein and was accompanied by extensive degranulation from both acinar and granular duct cells. In contrast parasympathetic nerve stimulation induced a considerable flow of saliva that had a low protein content and no detectable degranulation occurred from the secretory cells. It is possible, therefore, that some protein in parasympathetic saliva may have arisen from a non-granular pathway.  相似文献   

10.
Osteopontin is a multifunctional protein secreted by epithelial cells of various tissues. Its expression in the adult rat major salivary glands has not yet been studied. We examined osteopontin expression by immunohistochemistry using a well characterized monoclonal antibody. Submandibular glands of young adult male rats (70–100 days old) showed specific expression in secretion granules of granular duct cells but also in cells of the striated ducts and excretory duct. In the major sublingual as well as the parotid gland expression was found solely in the duct system. In addition, a few interstitial-like cells exhibiting very strong immunostaining for osteopontin could be found in either organ. Expression could neither be seen in acinar cells nor in cells of the intercalated ducts. Moreover, in submandibular glands of more aged rats (6- to 7-month old) which show well developed granular convoluted tubules, there was almost exclusive expression of osteopontin in granular duct cells as well as in some interstitial-like cells, but barely in the striated/excretory duct system. Western blot analysis of the submandibular gland showed a specific band migrating at approximately 74 kDa, detectable at both age stages. Osteopontin secreted fom granular duct cells may influence the compostion of the saliva, e.g. thereby modulating pathways affecting sialolithiasis. Its expression in striated duct cells may also hint to roles such as cell–cell attachment or cell differentiation. The cell-specific expression detected in the rat major salivary glands differs in part from that reported in mice, human and monkey.Nicholas Obermüller and Nikolaus Gassler contributed equally to this work.  相似文献   

11.
Calnexin (Cnx) has been characterized as a membrane-bound protein that transiently interacts in a unique chaperone system with newly synthesized glycoproteins in order to allow the establishment of their proper tertiary and, in most cases, quarternary structures. The aim of the study was to identify and to locate the expression of Cnx in the three major salivary glands of humans by different methods. Strong expression of Cnx protein and mRNA were generally found in serous salivary secretory units. With regard to mucous secretory units, expression of Cnx was only detectable at a low level in mucous acinar cells of sublingual glands, but not of submandibular glands. Expression of Cnx was always preserved in the surface epithelium of intralobar and interlobular duct segments. In addition, expression of Cnx was detected in sebaceous glands of parotid tissues, with a distribution pattern resembling that seen in sebaceous glands of the normal skin. In conclusion, production of saliva is associated with the expression of Cnx. Synthesis of molecules in mucous secretory units is not necessarily associated with a strong Cnx expression, whereas synthesis in serous secretory units apparently is. The tissue-specific Cnx expression is also paralleled by the observation that the secretions produced by the major salivary glands differ in their composition and amount.  相似文献   

12.
Summary Mouse salivary glands and pancreases were stained with a battery of ten horseradish peroxidase-conjugated lectins. Lectin staining revealed striking differences in the structure of oligosaccharides of stored intracellular secretory glycoproteins and glycoconjugates associated with the surface of epithelial cells lining excretory ducts. The percentage of acinar cells containing terminal -N-acetylgalactosamine residues varied greatly in submandibular glands of 30 male mice, but all submandibular acinar cells contained oligosaccharides with terminal sialic acid and penultimate -galactose residues. The last named dimer was abundant in secretory glycoprotein of all mucous acinar cells in murine sublingual glands and an additional 20–50% of these cells in all glands contained terminalN-acetylglucosamine residues. In contrast, terminal -N-acetylgalactosamine was abundant in sublingual serous demilune secretions. Serous acinar cells in the exorbital lacrimal gland, posterior lingual gland, parotid gland and pancreas exhibited a staining pattern unique to each organ. In contrast, the apical cytoplasm and surface of striated duct epithelial cells in the submandibular, sublingual, parotid and exorbital lacrimal gland stained similarly. A comparison of staining with conjugated lectins reported biochemically to have very similar carbohydrate binding specificity has revealed some remarkable differences in their reactivity, suggesting different binding specificity for the same terminal sugars having different glycosidic linkages or with different penultimate sugar residues.  相似文献   

13.
Salivary glands synthesize and secrete an unusual family of proline-rich proteins (PRPs) that can be broadly divided into acidic and basic PRPs. We studied the tissue-specific expression of these proteins in rabbits, using antibodies to rabbit acidic and basic PRPs as well as antibodies and cDNA probes to human PRPs. By immunoblotting, in vitro translation, and Northern blotting, basic PRPs could be readily detected in the parotid gland but were absent in other salivary glands. In contrast, synthesis in vitro of acidic PRPs was detected in parotid, sublingual, and submandibular glands. Ultrastructural localization with immunogold showed heavy labeling with antibodies to acidic PRPs of secretory granules of parotid acinar cells and sublingual serous demilune cells. Less intense labeling occurred in the seromucous acinar cells of the submandibular gland. With antibodies to basic PRPs, the labeling of the parotid gland was similar to that observed with antibodies to acidic PRPs, but there was only weak labeling of granules of a few sublingual demilune cells, and no labeling of the submandibular gland. These results demonstrate a variable pattern of distribution of acidic and basic PRPs in rabbit salivary glands. These animals are therefore well suited for study of differential tissue expression of PRPs.  相似文献   

14.
Summary Nerve growth factor (NGF) was localized in the submandibular, sublingual, and parotid salivary glands of male and female diabetic mice and their normal littermates by immunoperoxidase staining usingp-phenylenediamine-pyrocatechol as a chromogen for the cytochemical demonstration of peroxidase activity. In the normal male submandibular gland, immunoreactive NGF was localized in the apical regions of granular, intercalated and collecting duct cells, while in the normal female submandibular gland, NGF was present throughout the cytoplasm of granular duct cells. The localization of NGF in the diabetic male and female submandibular glands was similar and resembled that of the normal female. NGF immunoreactivity was also observed in the striated duct cells in the sublingual and parotid glands of all four types of mice.The sympathetic innervation of the submandibular glands of normal and diabetic mice was demonstrated using glyoxylic acid-induced histofluorescence. The pattern of sympathetic innervation and the intensity of catecholamine fluorescence was consistently different in the four types of mice. In the normal male submandibular gland the fluorescence was very intense, particularly in nerves adjacent to the granular ducts. In the normal female submandibular gland, the fluorescence was weak, while in the diabetic male and female the fluorescence was moderate.The correlation between the intensity of the immunocytochemical staining for NGF and the catecholamine fluorescence adjacent to the granular ducts suggests a trophic influence of the NGF-containing granular ducts on their sympathetic innervation.  相似文献   

15.
 Secreted carbonic anhydrase (isozyme VI; CA VI) was localized by immunohistochemistry in the developing postnatal rat submandibular and parotid glands using a specific monoclonal antibody to the rat enzyme. CA VI immunostaining was not detectable in the glands before birth. In the submandibular gland, granular immunostaining for CA VI was detectable in several terminal tubule cells of 1-day-old rats. At 1 week, the CA VI-positive cells were located at the periphery of the terminal tubules and appeared to be budding off the tubules. These cellular buds gradually increased, and, by 4 weeks, formed acini. CA VI was also detected in the duct lumen from day 1. The immunostaining in the parotid gland was detected sporadically in the acinar cells at 2 or 3 weeks. By 4 weeks, when the gland was almost indistinguishable from the adult one, the number of positive acinar cells had increased. Their number, however, was far smaller than in the adult gland, and the enzyme could not be detected in the duct lumen. CA II was also localized using specific antibodies to the rat isozyme. CA II was detectable in the inter- and intralobular striated ducts at 2 weeks after birth in the submandibular gland and at 3 weeks in the parotid gland. These results suggset that CA VI is secreted into saliva from soon after birth and that CA II appears in parallel with the functional maturation of the ducts. In addition, CA II was transiently expressed by the cellular buds of the submandibular gland at 2 and 3 weeks. Accepted: 7 January 1998  相似文献   

16.
Summary Actin and myosin were localized in various salivary glands (parotid, submandibular, sublingual, lingual and Harderian gland) and the exocrine pancreas of rats by indirect immunofluorescence microscopy using specific rabbit antibodies against chicken gizzard myosin and actin. A bright immunofluorescent staining with both antibodies was observed at three main sites: (1) In myoepithelial cells of all salivary glands, (2) in secretory gland cells underneath the cell membrane bordering the acinar lumen (except Harderian and mucous lingual gland), and (3) in epithelial cells of the various secretory ducts (of all glands) in similar distribution as in acinar cells. The present immunohistochemical findings in acinar cells could lend further support to a concept suggesting that myosin and actin are involved in the process of transport and exocytosis of secretory granules.Supported by grants form Deutsche Forschungsgemeinschaft (Dr. 91/1, Ste. 105/19 and U. 34/4). We thank Mrs. Ursula König, Mrs. Christine Mahlmeister and Miss Renate Steffens for excellent technical assistance.  相似文献   

17.
This investigation concerns the natural history of microlith in the salivary glands of cat. Microliths were detected in more sublingual than submandibular glands and were almost absent in the parotid. They were found intraparenchymally, intraluminally and interstitially, and ultrastructurally in phagosomes of acinar, ductal and myoepithelial cells, intermixed with the cytoplasm of degenerate acinar cells, and in intraparenchymal macrophages and a multinuclear giant cell. They appear to form in healthy acinar cells during autophagocytosis, and possibly to be discharged luminally, laterally or basally, and to form in the debris of degenerate cells intraparenchymally and intraluminally. They appear to be removed by expulsion in the saliva, scavenging macrophages, and possible eventual degradation in the parenchymal phagosomes. The greater occurrence of microliths in the sublingual gland may relate to a low level of secretory activity, and the near absence of microliths in the parotid to a low level of calcium. The feline salivary glands were found to be an outstanding model for the investigation of microlithiasis.  相似文献   

18.
Aquaporin-5 (AQP5) is a water channel protein and is considered to play an important role in water movement across the plasma membrane. We raised anti-AQP5 antibody and examined the localization of AQP5 protein in rat salivary and lacrimal glands by immunofluorescence microscopy. AQP5 was found in secretory acinar cells of submandibular, parotid, and sublingual glands, where it was restricted to apical membranes including intercellular secretory canaliculi. In the submandibular gland, abundant AQP5 was also found additionally at the apical membrane of intercalated duct cells. Upon stimulation by isoproterenol, apical staining for AQP5 in parotid acinar cells tended to appear as clusters of dots. These results suggest that AQP5 is one of the candidate molecules responsible for the water movement in the salivary glands.  相似文献   

19.
Nitric oxide has been implicated in mechanisms mediating nerve-evoked vasodilatory and secretory responses in salivary glands. In the present study, the occurrence and distribution of nitric oxide synthase (NOS)-immunoreactive nerves in ferret and rat salivary glands were investigated using immunocytochemistry with rabbit and sheep NOS antisera, and using NADPH-diaphorase enzyme histochemistry. In the parotid, submandibular and sublingual glands of the rat and the ferret, NOS-immunoreactive varicose terminals encircled acini and arteries of various sizes. In the ferret, collecting ducts were also supplied with NOS-immunoreactive fibres. In the rat, only the granular ducts of the submandibular gland were supplied with such fibres. The NOS-immunoreactive innervation of acinar cells was more abundant in the rat than in the ferret, whereas the opposite was true for the innervation of blood vessels. No NOS immunoreactivity was observed in the vascular endothelium. In both species, NOS-positive ganglionic cell bodies were found in the hilar regions of the submandibular and sublingual glands, whereas none could be detected in the parotid glands. NADPH-diaphorase reactivity had the same neuronal distribution as NOS immunoreactivity and, in addition, NADPH-diaphorase reactivity was expressed in ductal epithelium. Neither sympathetic denervation (by removal of the superior cervical ganglion) nor treatment with the sensory neurotoxin capsaicin reduced the NOS-immunoreactive innervation of the parotid gland. However, parasympathetic denervation (by cutting the auriculo-temporal nerve) caused an almost total disappearance of the NOS-immunoreactive innervation. The present findings provide a morphological background to the suggested role of nitric oxide in parasympathetic secretory and vascular responses of salivary glands. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

20.
In atrophic parotid glands induced by liquid diet, acinar cell apoptosis is increased while proliferative activity is reduced. This study aimed to clarify how liquid diet affects submandibular and sublingual glands, including acinar cell apoptosis and proliferation. Seven-week-old male Wistar rats were fed either a liquid (experimental group) or pellet diet (control group) from 3 to 21 days, respectively. Submandibular and sublingual glands were weighed and examined histologically, ultrastructurally, and immunohistochemically using antibodies to cleaved caspase-3 (Casp-3) and 5-bromo-2′-deoxyuridine (BrdU). Weights of submandibular and sublingual gland from the experimental group were not significantly different from controls at any time point. Histological and ultrastructural characteristics of experimental acinar cells in both glands were normal. Acinar cells in control and experimental submandibular glands were positively stained with periodic acid Schiff (PAS) and weakly stained by alcian blue (AB). In control and experimental sublingual glands, mucous acinar cells were PAS-positive and strongly AB-positive. Although Casp-3- and BrdU-positive acinar cells were identified in both glands in the experimental group, their labeling indices were not significantly different from controls. In conclusion, liquid diet in rats does not induce atrophic alterations to acinar cells, including apoptosis and proliferative activity in submandibular and sublingual glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号