首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reproductive interactions between two Australian reptile tick species   总被引:1,自引:0,他引:1  
In South Australia the two tick species Amblyomma limbatum and Aponomma hydrosauri share the same common reptile host species, but have allopatric distributions which abut along a narrow parapatric boundary. Reproductive interference is a mechanism that has previously been suggested could contribute to maintaining the boundary. Populations of each species were established in pens within the range of Aponomma hydrosauri. Pens held either each species alone, or the two species together. The performance of females in those pens was monitored over 28 months. There was no indication that the proportion of attached females which mated and engorged was reduced by the presence of heterospecifics. There was no indication that the time taken to mate, engorge and detach was any longer in the presence of heterospecifics. The experiment did not support the hypothesis that reproductive interference contributes to maintaining the parapatric boundary. However, Amblyomma limbatum in the pens had a shorter season of reproductive activity, and achieved much smaller numbers of reproductive females. This may inhibit successful colonization of cooler habitats to the south of its distribution.  相似文献   

2.
Raymond B. Huey 《Oecologia》1979,38(3):249-259
The Sechura Desert of Peru is among the most arid, barren regions of South America. Four species of nocturnal geckos (Phyllodactylus) are parapatric in part of the desert. By comparing niche associations of these species in allopatry and parapatry, I attempt to determine whether the observed parapatric distributions and niche dimension complementarity are related to competition — as is frequently assumed. While parapatry suggests a role for competition, distributional patterns can alternatively be related to adaptations of geckos to different physical environments (sandy desert and rocky foothill) that abut in the study area. Niche complementarity might also be a result of competition, but potentially contradictory evidence suggests that niche complementarity might instead be the result of adaptations developed in allopatry and having no relationship to competition. The ambiguity of these interpretations sets limits on the significance of this kind of evidence: in the absence of attempts to falsify alternative explanations, observations of parapatry or of niche dimension complementarity do not demonstrate conclusively the impact of competition as a force structuring communities.  相似文献   

3.
Summary Few quantitative studies have examined the ecological consequences of similarities and/or differences in mating behaviour of parapatric species. Reproductive interference occurs between several parapatric species of Australian reptile tick, due to similarities in their mating behaviour (Andrews et al. 1982a). Attempts to determine whether reproductive interference serves to maintain parapatry between Amblyomma limbatum and Aponomma hydrosauri have been hindered because of difficulties in providing conditions conducive to conspecific mating in Amb. limbatum. The present study examined whether off-host and/or onhost temperature influenced the subsequent mating behaviour (i.e. the proportion of females that mate and the time when mating occurs) of these two species. Irrespective of the temperature experienced by ticks prior to host attachment, specific on-host temperatures were needed to induce mating in Amb. limbatum (i.e. host cloacal temperatures >32° C prior to the time of peak mating activity). Significantly more Amb. limbatum females were mated and the time taken by females to mate decreased with increasing on-host temperatures. mating in Ap. hydrosauri occurred over a wider range of on-host temperatures and the time when mating occurred did not alter at different on-host temperatures. In addition, significantly more Ap. hydrosauri males moved and each male made more moves on hosts than did Amb. limbatum males. It is suggested that Ap. hydrosauri may in consequence have a competitive mating advantage over Amb. limbatum at a boundary. Similarities in mating behaviour, on the other hand, increase the probability of reproductive interference, hence reduce the reproductive fitness of colonizing females of both species. We propose that similarities and differences in mating behaviour could play a critical role in the maintenance of parapatric boundaries.  相似文献   

4.
Because of introgressive hybridization, closely related species can be more similar to each other in areas of range overlap (parapatry or sympatry) than in areas where they are geographically isolated from each other (allopatry). Here, we report the reverse situation based on nuclear genetic divergence between two fir species, Abies chensiensis and Abies fargesii, in China, at sites where they are parapatric relative to where they are allopatric. We examined genetic divergence across 126 amplified fragment length polymorphism (AFLP) markers in a set of 172 individuals sampled from both allopatric and parapatric populations of the two species. Our analyses demonstrated that AFLP divergence was much greater between the species when comparisons were made between parapatric populations than between allopatric populations. We suggest that selection in parapatry may have largely contributed to this increased divergence.  相似文献   

5.
Chromosomal rearrangements can promote reproductive isolation by reducing recombination along a large section of the genome. We model the effects of the genetic barrier to gene flow caused by a chromosomal rearrangement on the rate of accumulation of postzygotic isolation genes in parapatry. We find that, if reproductive isolation is produced by the accumulation in parapatry of sets of alleles compatible within but incompatible across species, chromosomal rearrangements are far more likely to favor it than classical genetic barriers without chromosomal changes. New evidence of the role of chromosomal rearrangements in parapatric speciation suggests that postzygotic isolation is often due to the accumulation of such incompatibilities. The model makes testable qualitative predictions about the genetic signature of speciation.  相似文献   

6.
Abrupt range limits of parapatric species may serve as a model system to understand the factors that determine species’ range borders. Theory suggests that parapatric range limits can be caused by abiotic conditions along environmental gradients, biotic interactions or a combination of both. Geographic ranges of the parapatric salamanders, Salamandra salamandra and S. atra, meet in small contact zones in the European Alps and to date, the cause of parapatry and the restricted range of S. atra remain elusive. We combine multivariate approaches and climatic data analysis to explore niche differentiation among the two salamanders with respect to the available climatic environment at their contact zones. Our purpose is to evaluate whether climatic conditions explain the species’ sharp range limits or if biotic interactions may play a role for range delimitation. Analyses were carried out in three contact zones in Switzerland to assess possible geographic variation. Our results indicate that both species occur at localities with different climatic conditions as well as the presence of a strong climatic gradient across the species’ range limits. Although the species’ climatic niches differ moderately (with a wider niche breadth for S. atra), interspecific niche overlap is found. Comparisons among the contact zones confirm geographic variation in the species’ climatic niches as well as in the conditions within the geographically available space. Our results suggest that the change in climatic conditions along the recognized gradient represents a determining factor for species’ range limits within contact zones. However, our analyses of geographic variation in climatic conditions reveal that both salamander species can occur in a much wider range of conditions than observed within contact zones. This finding and the interspecific climatic niche overlap within each contact zone provides indirect evidence that biotic interactions (likely competition) between the two species may also determine their range limits.  相似文献   

7.
The integrity of species is not fixed and may vary geographically. Here we investigate the geographic distributions and interactions of species in the Tegenaria atrica group (Araneae: Agelenidae). Detailed mapping of T. saeva and T. gigantea in England and Wales shows them to be broadly allopatric in southern England with a tightly defined, and possibly long-standing, narrow zone of parapatry in central southern England. In the north of England (Yorkshire), by contrast, the species are broadly sympatric as a result of recent range expansions. GIS techniques are used to map the species distributions and to quantify, we believe for the first time, the intimacy of interspecific interactions. The extent and nature of hybridization in these two areas is examined through regression and multivariate analyses of morphology. We show that the relative incidence of hybridization is much greater in Yorkshire than within the parapatric zone in the south. Clear patterns of asymmetric introgression are observed in both northern and southern England, with a greater impact of T. gigantea on T. saeva than vice versa. We find no sign of morphological reproductive character displacement at the zone of parapatry that might indicate reinforcement, although we cannot exclude more subtle effects, for example via cuticular pheromones. The integrity of these two species seems to be breaking down in northern England, a process that might gain momentum as the gene pools become more similar.  相似文献   

8.
Reproductive interference between animal species   总被引:1,自引:0,他引:1  
Although sexual interactions between species (reproductive interference) have been reported from a wide range of animal taxa, their potential for determining species coexistence is often disregarded. Here, we review evidence from laboratory and field studies illustrating that heterospecific sexual interactions are frequently associated with fitness loss and can have severe ecological and evolutionary consequences. We define reproductive interference as any kind of interspecific interaction during the process of mate acquisition that adversely affects the fitness of at least one of the species involved and that is caused by incomplete species recognition. We distinguish seven types of reproductive interference: signal jamming, heterospecific rivalry, misdirected courtship, heterospecific mating attempts, erroneous female choice, heterospecific mating, and hybridization. We then discuss the sex-specific costs of these types and highlight two typical features of reproductive interference: density-dependence and asymmetry. Similar to competition, reproductive interference can lead to displacement of one species (sexual exclusion), spatial, temporal, or habitat segregation, changes in life history parameters, and reproductive character displacement. In many cases, patterns of coexistence might be shaped by reproductive interference rather than by resource competition, as the presence of a few heterospecifics might substantially decrease reproductive success. Therefore, interspecific sexual interactions should receive more attention in ecological research. Reproductive interference has mainly been discussed in the context of invasive species or hybrid zones, whereas its influence on naturally-occurring sympatric species pairs has rarely been addressed. To improve our knowledge of the ecological significance of reproductive interference, findings from laboratory experiments should be validated in the field. Future studies should also focus on ecological mechanisms, such as temporal spatial, or habitat partitioning, that might enable sexually interacting species to coexist. Reproductive interference also has implications for the management of endangered species, which can be threatened by sexual interactions with invasive or common species. Studies of reproductive interference might even provide new insights for biological pest control.  相似文献   

9.
A common pattern in tropical avifaunas is for closely related species to inhabit largely parapatric elevational distributions such that they replace one another along the elevational gradient. A long‐standing hypothesis for this pattern is that parapatry is maintained by interspecific interference competition mediated by interspecific aggression. However, empirical tests of this hypothesis remain scarce. We used reciprocal playback experiments to measure interspecific aggression in five species‐pairs of New Guinean passerine elevational replacements. We found evidence of interspecific aggression in three species‐pairs. In these three cases, interspecific aggression was asymmetric, with the lower elevation species more aggressive towards the upper elevation species than vice versa. Two patterns suggest that this interspecific aggression is a learned response to the presence of a heterospecific competitor rather than misdirected intraspecific aggression or an evolved response to a competitor. First, when present, interspecific aggression was always strongest at the upper elevation range margin of the lower elevation species (i.e. in the elevational zone in which the two species were found in close proximity and thus interacted with each other), and diminished over very short distances away from this zone. Secondly, the two species‐pairs that did not exhibit interspecific aggression had narrow ‘no man's land’ gaps between their elevational distributions such that heterospecifics did not encounter one another, possibly explaining the lack of interspecific aggression in these examples. Our results support the hypothesis that interspecific aggression is one factor influencing elevational limits in species‐pairs of New Guinean elevational replacements.  相似文献   

10.
Sequential mate choice strategies predict how females should alter their choosiness based on the availability of attractive males. There are many studies on sequential mate choice within species, but few have asked whether females apply these strategies to interactions between species and how these strategies may affect hybridization. We tested how previous interactions with conspecific and heterospecific males affect mate preference and sexual isolation in two threespine stickleback species (benthics and limnetics: Gasterosteus spp.). Consistent with previous work, we found that within species, stickleback females gauge male attractiveness relative to previously encountered males. If females extend these decision rules between species, we predicted that previous interactions with conspecifics should make heterospecifics less attractive, whereas interactions with heterospecifics should make conspecifics more attractive. However, females found heterospecifics less attractive after prior experience, largely independent of the species of male first encountered. Thus, sequential mate choice strategies are used within but not between species in sticklebacks. Further, learning from prior courtship interactions acts to enhance existing sexual isolation between species.  相似文献   

11.
Reproductive character displacement is the adaptive evolution of traits that minimize deleterious reproductive interactions between species. When arising from selection to avoid hybridization, this process is referred to as reinforcement. Reproductive character displacement generates divergence not only between interacting species, but also between conspecific populations that are sympatric with heterospecifics versus those that are allopatric. Consequently, such conspecific populations can become reproductively isolated. We compared female mate preferences in, and evaluated gene flow between, neighbouring populations of spadefoot toads that did and did not occur with heterospecifics (mixed- and pure-species populations, respectively). We found that in mixed-species populations females significantly preferred conspecifics. Such females also tended to prefer a conspecific call character that was dissimilar from heterospecifics. By contrast, females from pure-species populations did not discriminate conspecific from heterospecific calls. They also preferred a more exaggerated conspecific call character that resembles heterospecific males. Moreover, gene flow was significantly reduced between mixed- and pure-species population types. Thus, character displacement (and, more specifically, reinforcement) may initiate reproductive isolation between conspecific populations that differ in interactions with heterospecifics.  相似文献   

12.
Sexual selection of high-quality mates can conflict with species recognition if traits that govern intraspecific mate preferences also influence interspecific recognition. This conflict might be resolved by developmental plasticity and learned mate preferences, which could drive preference divergence in populations that differ in local species composition. We integrate field and laboratory experiments on two calopterygid damselfly species with population genetic data to investigate how sex differences in developmental plasticity affect population divergence in the face of gene flow. Whereas male species recognition is fixed at emergence, females instead learn to recognize heterospecifics. Females are therefore more plastic in their mate preferences than males. We suggest that this results from sex differences in the balance between sexual selection for high-quality mates and selection for species recognition. As a result of these sex differences, females develop more pronounced population divergence in their mate preferences compared with males. Local ecological community context and presence of heterospecifics in combination with sex differences in plasticity and canalization therefore shape population divergence in mate preferences. As ongoing environmental change and habitat fragmentation bring formerly allopatric species into secondary contact, developmental plasticity of mate preferences in either or both sexes might facilitate coexistence and prevent local species extinction.  相似文献   

13.
Speciation can be viewed as a continuum, potentially divisible into several states: (1) continuous variation within panmictic populations, (2) partially discontinuous variation with minor reproductive isolation, (3) strongly discontinuous variation with strong but reversible reproductive isolation and (4) complete and irreversible reproductive isolation. Research on sticklebacks (Gasterosteidae) reveals factors that influence progress back and forth along this continuum, as well as transitions between the states. Most populations exist in state 1, even though some of these show evidence of disruptive selection and positive assortative mating. Transitions to state 2 seem to usually involve strong divergent selection coupled with at least a bit of geographic separation, such as parapatry (e.g. lake and stream pairs and mud and lava pairs) or allopatry (e.g. different lakes). Transitions to state 3 can occur when allopatric or parapatric populations that evolved under strong divergent selection come into secondary contact (most obviously the sympatric benthic and limnetic pairs), but might also occur between populations that remained in parapatry or allopatry. Transitions to state 4 might be decoupled from these selective processes, because the known situations of complete, or nearly complete, reproductive isolation (Japan Sea and Pacific Ocean pair and the recognized gasterosteid species) are always associated with chromosomal rearrangements and environment‐independent genetic incompatibilities. Research on sticklebacks has thus revealed complex and shifting interactions between selection, adaptation, mutation and geography during the course of speciation.  相似文献   

14.
Mesibov R 《ZooKeys》2011,(156):71-84
The parapatric boundary between Tasmaniosoma compitale Mesibov, 2010 and Tasmaniosoma hickmanorum Mesibov, 2010 (Polydesmida: Dalodesmidae) in northwest Tasmania was mapped in preparation for field studies of parapatry and speciation. Both millipede species can be collected as adults throughout the year, are often abundant in eucalypt forest and tolerate major habitat disturbance. The parapatric boundary between the two species is ca 100 m wide in well-sampled sections and ca 230 km long. It runs from sea level to 600-700 m elevation, crosses most of the river catchments in northwest Tasmania and several major geological boundaries, and one portion of the boundary runs along a steep rainfall gradient. The location of the boundary is estimated here from scattered sample points using a method based on Delaunay triangulation.  相似文献   

15.
When interactions with heterospecifics prevent females from identifying conspecific mates, natural selection can promote the evolution of mating behaviours that minimize such interactions. Consequently, mating behaviours may diverge among conspecific populations in sympatry and in allopatry with heterospecifics. This divergence in conspecific mating behaviours-reproductive character displacement-can initiate speciation if mating behaviours become so divergent as to generate reproductive isolation between sympatric and allopatric conspecifics. We tested these ideas by using artificial neural networks to simulate the evolution of conspecific mate recognition in populations sympatric and allopatric with different heterospecifics. We found that advertisement calls diverged among the different conspecific populations. Consequently, networks strongly preferred calls from their own population to those from foreign conspecific populations. Thus, reproductive character displacement may promote reproductive isolation and, ultimately, speciation among conspecific populations.  相似文献   

16.
We used mitochondrial [cytochrome c oxidase subunit I (CO I ), cytochrome b , and 16S] and nuclear [internal transcribed spacer (ITS) phylogenies of Skistodiaptomus copepods to test hypotheses of Pleistocene divergence and speciation within the genus. Mitochondrial (mt)DNA sequence divergences do not support hypotheses for Pleistocene speciation and instead suggest much more ancient speciation events in the genus. Skistodiaptomus oregonensis and Skistodiaptomus pygmaeus (i.e. two morphologically similar and parapatric species) exhibited uncorrected mtDNA sequence divergences exceeding 20%. Similarly, we identified three divergent clades of Skistodiaptomus pallidus that exhibited mtDNA sequence divergences exceeding 15%, suggesting that even intraspecific divergence within this morphospecies predates the Pleistocene. We found clear evidence of CO I pseudogenes in S. pygmaeus , but their presence did not lead to significant overestimates of sequence divergences for this gene. Substitution saturation and strong purifying selection have most likely led to underestimates of sequence divergences and divergence times among Skistodiaptomus . The widespread phenomenon of morphological stasis among genetically divergent copepod groups indicates that speciation often occurs with little or no morphological change. Instead, morphological evolution may occur idiosyncratically after speciation and create discordant patterns of morphological similarity, shared ancestry and divergence time. Cryptic species complexes are therefore common in copepods, and morphological species concepts underestimate their true species diversity.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 150–165.  相似文献   

17.
Abstract There is accumulating evidence that sexual interactions among species (reproductive interference) could have dramatic effects for species’ coexistence. It has been shown that the fitness of individuals can be substantially reduced as a consequence of reproductive interference. This might subsequently lead to displacement of a species (sexual exclusion). On the other hand, some evolutionary and ecological mechanisms might enable species to coexist, such as the divergence of mate recognition systems (reproductive character displacement), habitat partitioning, clumped dispersion patterns or different colonization capabilities. We have previously shown that the two ground‐hopper species Tetrix subulata and Tetrix ceperoi interact sexually in the laboratory as well as in the field. At sites where both species co‐occur niche overlap was high, suggesting that coexistence is maintained by different niche breadths rather than by habitat partitioning. To test the hypothesis that habitat partitioning does not contribute to species’ coexistence, we examined whether allotopic and syntopic populations of these two species differ in niche overlap (competitive release). Our results show that niche overlap is higher in syntopic than in allotopic populations, suggesting that the site‐specific habitat structure (heterogeneity) has a stronger influence on microhabitat utilization than the presence of heterospecifics. Hence, our data do not support the hypothesis that habitat partitioning plays a substantial role for the coexistence of these sexually interacting species.  相似文献   

18.
Two forms showing different male-to-male aggressiveness, different male morphologies and different diapause attributes are known in Stigmaeopsis miscanthi (Saito), a social spider mite infesting Chinese silver grass (Miscanthus sinensis Anderss). Reproductive isolation exists between the forms, although it is not always complete, and the details of their distributional patterns are unknown, but expected to be parapatric. We searched for the contact zone at Mt. Unzen (Nagasaki Pref., Japan) where both forms are known to occur at different altitudes. We found the two forms together in several M. sinensis stands, suggesting there is frequent contact between the forms in their boundary area. We discuss the mechanism(s) that maintain the parapatry related to their frequent contact and the pattern of reproductive isolation between them.  相似文献   

19.
Interactions with heterospecifics can promote the evolution of divergent mating behaviours between populations that do and do not occur with heterospecifics. This process--reproductive character displacement--potentially results from selection to minimize the risk of mating with heterospecifics. We sought to determine whether heterospecific interactions lead to divergence of female preferences for aspects of conspecific male signals. We used artificial neural network models to simulate a mate recognition system in which females co-occur with different heterospecifics in different populations. Populations that evolved conspecific recognition in the presence of different heterospecifics varied in their preferences for aspects of conspecific male signals. When we tested networks for their preferences of conspecific versus heterospecific signals, however, we found that networks from allopatric populations were usually able to select against heterospecifics. We suggest that female preferences for aspects of conspecific male signals can result in a concomitant reduction in the likelihood that females will mate with heterospecifics. Consequently, even females in allopatry may discriminate against heterospecific mates depending on the nature of their preferences for conspecifics. Such a pattern could potentially explain cases where reproductive character displacement is expected, but not observed.  相似文献   

20.
1. The persistence of both geographical and reproductive boundaries between related species poses a fundamental puzzle in biology. Reproductive interactions between species can have a substantial impact on the maintenance of a boundary, potentially contributing to its collapse (e.g. via hybridisation) or facilitating reproductive isolation (e.g. via reinforcement). 2. The degree to which two parapatric insect species in the genus Phymata are reproductively isolated was evaluated and several mechanisms that could contribute to the maintenance of species boundaries were assessed. 3. Behavioural assays showed no indication of species‐assortative mating, nor any fecundity costs associated with heterospecific mating. Thus, there was no evidence of prezygotic mechanisms of reproductive isolation between the two species. 4.In laboratory crosses, it was found that the two species were indeed capable of producing viable F1 hybrids. Morphologically, these hybrids were phenotypically intermediate to the two parental species, and similar to the phenotypes seen in natural populations thought to occur in a hybrid zone. F1 hybrids did not show reduced viability, although there was some suggestion of ‘hybrid breakdown’, evident from the lower viability observed for progeny of ‘natural hybrids’. 5. Collectively, we show that despite genetically based morphological differences between species, P. americana and pennsylvanica can, and probably do hybridise. More studies are needed to understand the mechanisms that maintain the distinct phenotypes and geographical ranges of these species, despite the considerable potential for introgression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号