共查询到20条相似文献,搜索用时 0 毫秒
1.
Ding K Mani K Cheng F Belting M Fransson LA 《The Journal of biological chemistry》2002,277(36):33353-33360
Cell surface heparan sulfate proteoglycans facilitate uptake of growth-promoting polyamines (Belting, M., Borsig, L., Fuster, M. M., Brown, J. R., Persson, L., Fransson, L.-A., and Esko, J. D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 371-376). Increased polyamine uptake correlates with an increased number of positively charged N-unsubstituted glucosamine units in the otherwise polyanionic heparan sulfate chains of glypican-1. During intracellular recycling of glypican-1, there is an NO-dependent deaminative cleavage of heparan sulfate at these glucosamine units, which would eliminate the positive charges (Ding, K., Sandgren, S., Mani, K., Belting, M., and Fransson, L.-A. (2001) J. Biol. Chem. 276, 46779-46791). Here, using both biochemical and microscopic techniques, we have identified and isolated S-nitrosylated forms of glypican-1 as well as slightly charged glypican-1 glycoforms containing heparan sulfate chains rich in N-unsubstituted glucosamines. These glycoforms were converted to highly charged species upon treatment of cells with 1 mm l-ascorbate, which releases NO from nitrosothiols, resulting in deaminative cleavage of heparan sulfate at the N-unsubstituted glucosamines. S-Nitrosylation and subsequent deaminative cleavage were abrogated by inhibition of a Cu(2+)/Cu(+) redox cycle. Under cell-free conditions, purified S-nitrosylated glypican-1 was able to autocleave its heparan sulfate chains when NO release was triggered by l-ascorbate. The heparan sulfate fragments generated in cells during this autocatalytic process contained terminal anhydromannose residues. We conclude that the core protein of glypican-1 can slowly accumulate NO as nitrosothiols, whereas Cu(2+) is reduced to Cu(+). Subsequent release of NO results in efficient deaminative cleavage of the heparan sulfate chains attached to the same core protein, whereas Cu(+) is oxidized to Cu(2+). 相似文献
2.
Exit of recycling cholesterol from late endosomes is defective in Niemann-Pick C1 (NPC1) and Niemann-Pick C2 (NPC2) diseases. The traffic route of the recycling proteoglycan glypican-1 (Gpc-1) may also involve late endosomes and could thus be affected in these diseases. During recycling through intracellular compartments, the heparan sulfate (HS) side chains of Gpc-1 are deaminatively degraded by nitric oxide (NO) derived from preformed S-nitroso groups in the core protein. We have now investigated whether this NO-dependent Gpc-1 autoprocessing is active in fibroblasts from NPC1 disease. The results showed that Gpc-1 autoprocessing was defective in these cells and, furthermore, greatly depressed in normal fibroblasts treated with U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one), a compound widely used to induce cholesterol accumulation. In both cases, autoprocessing was partially restored by treatment with ascorbate which induced NO release, resulting in deaminative cleavage of HS. However, when NO-dependent Gpc-1 autoprocessing is depressed and heparanase-catalyzed degradation of HS remains active, a truncated Gpc-1 with shorter HS chains would prevail, resulting in fewer NO-sensitive sites/proteoglycan. Therefore, addition of ascorbate to cells with depressed autoprocessing resulted in nitration of tyrosines. Nitration was diminished when heparanase was inhibited with suramin or when Gpc-1 expression was silenced by RNAi. Gpc-1 misprocessing in NPC1 cells could thus contribute to neurodegeneration mediated by reactive nitrogen species. 相似文献
3.
Cheng F Mani K van den Born J Ding K Belting M Fransson LA 《The Journal of biological chemistry》2002,277(46):44431-44439
We have previously demonstrated intracellular degradation of the heparan sulfate side chains in recycling glypican-1 by heparanase and by deaminative cleavage at N-unsubstituted glucosamine with nitric oxide derived from intrinsic nitrosothiols (see Ding, K., Mani, K., Cheng, F., Belting, M. and Fransson, L.-A. (2002) J. Biol. Chem. 277, 33353-33360). To determine where and in what order events take place, we have visualized, by using confocal laser-scanning immunofluorescence microscopy, glypican-1 variants in unperturbed cells or arrested at various stages of processing. In unperturbed proliferating cells, glypican-1 was partly S-nitrosylated. Intracellular glypican-1 was enriched in endosomes, colocalized significantly with GM-1 ganglioside, caveolin-1, and Rab9-positive endosomes, and carried side chains rich in N-unsubstituted glucosamine residues. However, such residues were scarce in cell surface glypican-1. Brefeldin A-arrested glypican-1, which was non-S-nitrosylated and carried side chains rich in N-unsubstituted glucosamines, colocalized extensively with caveolin-1 but not with Rab9. Suramin, which inhibits heparanase, induced the appearance of S-nitrosylated glypican-1 in caveolin-1-rich compartments. Inhibition of deaminative cleavage did not prevent heparanase from generating heparan sulfate oligosaccharides that colocalized strongly with caveolin-1. Growth-quiescent cells displayed extensive NO-dependent deaminative cleavage of heparan sulfate-generating anhydromannose-terminating fragments that were partly associated with acidic vesicles. Proliferating cells generated such fragments during polyamine uptake. We conclude that recycling glypican-1 that is associated with caveolin-1-containing endosomes undergoes sequential N-desulfation/N-deacetylation, heparanase cleavage, S-nitrosylation, NO release, and deaminative cleavage of its side chains in conjunction with polyamine uptake. 相似文献
4.
The recycling heparan sulfate (HS)-containing proteoglycan glypican-1 (Gpc-1) is processed by nitric oxide (NO)-catalyzed deaminative cleavage of its HS chains at N-unsubstituted glucosamines. This generates anhydromannose (anMan)-containing HS degradation products that can be detected by a specific antibody. Here we have attempted to identify the intracellular compartments where these products are formed. The anMan-positive degradation products generated constitutively in human bladder carcinoma cell line (T24) or fibroblasts appeared neither in caveolin-1-associated vesicles nor in lysosomes. In Niemann-Pick C-1 (NPC-1) fibroblasts, where deaminative degradation is abrogated, formation of anMan-positive products can be restored by ascorbate. These products colocalized with Rab7, a marker for late endosomes. When NO-catalyzed degradation of HS was depressed in mouse neuroblastoma cell line (N2a) by using 3-beta[2(diethylamino) ethoxy]androst-5-en-17-one (U18666A), both ascorbate and dehydroascorbic acid restored formation of anMan-positive products that colocalized with Rab7. In T24 cells, constitutively generated anMan-positive products colocalized with both Rab7 and Rab9, whereas Gpc-1 colocalized with Rab9, a marker for transporting endosomes. Inhibition of endosomal acidification, which blocks transfer from early (Rab5) to late (Rab7) endosomes, abrogated deaminative degradation of HS. This could also be overcome by the addition of ascorbate, which induced formation of anMan-positive degradation products that colocalized with Rab7. After (35)S-sulfate labeling, similar degradation products were recovered in Rab7-positive vesicles. We conclude that NO-catalyzed degradation of HS may begin in early endosomes but is mainly taking place in late endosomes. 相似文献
5.
Cheng F Cappai R Ciccotosto GD Svensson G Multhaup G Fransson LÅ Mani K 《The Journal of biological chemistry》2011,286(31):27559-27572
Amyloid β (Aβ) is generated from the copper- and heparan sulfate (HS)-binding amyloid precursor protein (APP) by proteolytic processing. APP supports S-nitrosylation of the HS proteoglycan glypican-1 (Gpc-1). In the presence of ascorbate, there is NO-catalyzed release of anhydromannose (anMan)-containing oligosaccharides from Gpc-1-nitrosothiol. We investigated whether these oligosaccharides interact with Aβ during APP processing and plaque formation. anMan immunoreactivity was detected in amyloid plaques of Alzheimer (AD) and APP transgenic (Tg2576) mouse brains by immunofluorescence microscopy. APP/APP degradation products detected by antibodies to the C terminus of APP, but not Aβ oligomers detected by the anti-Aβ A11 antibody, colocalized with anMan immunoreactivity in Tg2576 fibroblasts. A 50-55-kDa anionic, sodium dodecyl sulfate-stable, anMan- and Aβ-immunoreactive species was obtained from Tg2576 fibroblasts using immunoprecipitation with anti-APP (C terminus). anMan-containing HS oligo- and disaccharide preparations modulated or suppressed A11 immunoreactivity and oligomerization of Aβ42 peptide in an in vitro assay. A11 immunoreactivity increased in Tg2576 fibroblasts when Gpc-1 autoprocessing was inhibited by 3-β[2(diethylamino)ethoxy]androst-5-en-17-one (U18666A) and decreased when Gpc-1 autoprocessing was stimulated by ascorbate. Neither overexpression of Gpc-1 in Tg2576 fibroblasts nor addition of copper ion and NO donor to hippocampal slices from 3xTg-AD mice affected A11 immunoreactivity levels. However, A11 immunoreactivity was greatly suppressed by the subsequent addition of ascorbate. We speculate that temporary interaction between the Aβ domain and small, anMan-containing oligosaccharides may preclude formation of toxic Aβ oligomers. A portion of the oligosaccharides are co-secreted with the Aβ peptides and deposited in plaques. These results support the notion that an inadequate supply of vitamin C could contribute to late onset AD in humans. 相似文献
6.
Mani K Cheng F Havsmark B David S Fransson LA 《The Journal of biological chemistry》2004,279(13):12918-12923
The core protein of glypican-1, a glycosylphosphatidylinositol-linked heparan sulfate proteoglycan, can bind Cu(II) or Zn(II) ions and undergo S-nitrosylation in the presence of nitric oxide. Cu(II)-to-Cu(I)-reduction supports extensive and permanent nitrosothiol formation, whereas Zn(II) ions appear to support a more limited, possibly transient one. Ascorbate induces release of nitric oxide, which catalyzes deaminative degradation of the heparan sulfate chains on the same core protein. Although free Zn(II) ions support a more limited degradation, Cu(II) ions support a more extensive self-pruning process. Here, we have investigated processing of glypican-1 in rat C6 glioma cells and the possible participation of the copper-containing glycosylphosphatidylinositol-linked splice variant of ceruloplasmin in nitrosothiol formation. Confocal microscopy demonstrated colocalization of glypican-1 and ceruloplasmin in endosomal compartments. Ascorbate induced extensive, Zn(II)-supported heparan sulfate degradation, which could be demonstrated using a specific zinc probe. RNA interference silencing of ceruloplasmin expression reduced the extent of Zn(II)-supported degradation. In cell-free experiments, the presence of free Zn(II) ions prevented free Cu(II) ion from binding to glypican-1 and precluded extensive heparan sulfate autodegradation. However, in the presence of Cu(II)-loaded ceruloplasmin, heparan sulfate in Zn(II)-loaded glypican-1 underwent extensive, ascorbate-induced degradation. We propose that the Cu(II)-to-Cu(I)-reduction that is required for S-nitrosylation of glypican-1 can take place on ceruloplasmin and thereby ensure extensive glypican-1 processing in the presence of free Zn(II) ions. 相似文献
7.
Feitsma K Hausser H Robenek H Kresse H Vischer P 《The Journal of biological chemistry》2000,275(13):9396-9402
Cell surface-associated heparan sulfate proteoglycans, predominantly perlecan, are involved in the process of binding and endocytosis of thrombospondin-1 (TSP-1) by vascular endothelial cells. To investigate the structural properties of heparan sulfate (HS) side chains that mediate this interaction, the proteoglycans were isolated from porcine endothelial cells and HS chains obtained thereof by beta-elimination. To characterize the structural composition of the HS chains and to identify the TSP-1-binding sequences, HS was disintegrated by specific chemical and enzymatic treatments. Cell layer-derived HS chains revealed the typical structural heterogeneity with domains of non-contiguously arranged highly sulfated disaccharides separated by extended sequences containing predominantly N-acetylated sequences of low sulfation. Affinity chromatography on immobilized TSP-1 demonstrated that nearly all intact HS chains possessed binding affinity, whereas after heparinase III treatment only a small proportion of oligosaccharides were bound with similar affinity to the column. Size fractioning of the bound and unbound oligosaccharides revealed that only a specific portion of deca- to tetradecasaccharides possessed TSP-1-binding affinity. The binding fraction contained over 40% di- and trisulfated disaccharide units and was enriched in the content of the trisulfated 2-O-sulfated L-iduronic acid-N-sulfated-6-O-sulfated glucosamine disaccharide unit. Comparison with the disaccharide composition of the intact HS chains and competition experiments with modified heparin species indicated the specific importance of N- and 6-O-sulfated glucosamine residues for binding. Further depolymerization of the binding oligosaccharides revealed that the glucosamine residues within the TSP-1-binding sequences are not continuously N-sulfated. The present findings implicate specific structural properties for the HS domain involved in TSP-1 binding and indicate that they are distinct from the binding sequence described for basic fibroblast growth factor, another HS ligand and a potential antagonist of TSP-1. 相似文献
8.
Zhang J Xie Z Dong Y Wang S Liu C Zou MH 《The Journal of biological chemistry》2008,283(41):27452-27461
In endothelial cells, the AMP-activated protein kinase (AMPK) is stimulated by sheer stress or growth factors that stimulate release of nitric oxide (NO). We hypothesized that NO might act as an endogenous activator of AMPK in endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to NO donors caused an increase in phosphorylation of both Thr-172 of AMPK and Ser-1177 of endothelial nitric oxide synthase, a downstream enzyme of AMPK. NO-induced activation of AMPK was not affected by inhibition of LKB1, an AMPK kinase. In contrast, inhibition of calcium calmodulin-dependent protein kinase kinase abolished the effect of NO in HUVECs. NO-induced AMPK activation in HeLa S3 cells was abolished by either 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalon-1-one, a potent inhibitor for guanylyl cyclase, or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), an intracellular Ca(2+) chelator, indicating that NO-induced AMPK activation is guanylyl cyclase-mediated and calcium-dependent. Exposure of HUVECs or isolated mice aortas to either calcium ionophore A23187 or bradykinin significantly increased AMPK Thr-172 phosphorylation, which was abolished by N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase. Finally, A23187- or bradykinin-enhanced AMPK activation was significantly greater in aortas from wild type mice than those in the aortas of endothelial nitric oxide synthase knock-out mice. Taken together, we conclude that NO might act as an endogenous AMPK activator. 相似文献
9.
D Shukla J Liu P Blaiklock N W Shworak X Bai J D Esko G H Cohen R J Eisenberg R D Rosenberg P G Spear 《Cell》1999,99(1):13-22
Herpes simplex virus type 1 (HSV-1) binds to cells through interactions of viral glycoproteins gB and gC with heparan sulfate chains on cell surface proteoglycans. This binding is not sufficient for viral entry, which requires fusion between the viral envelope and cell membrane. Here, we show that heparan sulfate modified by a subset of the multiple D-glucosaminyl 3-O-sulfotransferase isoforms provides sites for the binding of a third viral glycoprotein, gD, and for initiation of HSV-1 entry. We conclude that susceptibility of cells to HSV-1 entry depends on (1) presence of heparan sulfate chains to which virus can bind and (2) 3-O-sulfation of specific glucosamine residues in heparan sulfate to generate gD-binding sites or the expression of other previously identified gD-binding receptors. 相似文献
10.
Chen H Montagnani M Funahashi T Shimomura I Quon MJ 《The Journal of biological chemistry》2003,278(45):45021-45026
Adiponectin is secreted by adipose cells and mimics many metabolic actions of insulin. However, mechanisms by which adiponectin acts are poorly understood. The vascular action of insulin to stimulate endothelial production of nitric oxide (NO), leading to vasodilation and increased blood flow is an important component of insulin-stimulated whole body glucose utilization. Therefore, we hypothesized that adiponectin may also stimulate production of NO in endothelium. Bovine aortic endothelial cells in primary culture loaded with the NO-specific fluorescent dye 4,5-diaminofluorescein diacetate (DAF-2 DA) were treated with lysophosphatidic acid (LPA) (a calcium-releasing agonist) or adiponectin (10 microg/ml bacterially produced full-length adiponectin). LPA treatment increased production of NO by approximately 4-fold. Interestingly, adiponectin treatment significantly increased production of NO by approximately 3-fold. Preincubation of cells with wortmannin (phosphatidylinositol 3-kinase inhibitor) blocked only adiponectin- but not LPA-mediated production of NO. Using phospho-specific antibodies, we observed that either adiponectin or insulin treatment (but not LPA treatment) caused phosphorylation of both Akt at Ser473 and endothelial nitric-oxide synthase (eNOS) at Ser1179 that was inhibitable by wortmannin. We next transfected bovine aortic endothelial cells with dominant-inhibitory mutants of Akt (Akt-AAA) or AMP-activated protein kinase (AMPK) (AMPKK45R). Neither mutant affected production of NO in response to LPA treatment. Importantly, only AMPKK45R, but not Akt-AAA, caused a significant partial inhibition of NO production in response to adiponectin. Moreover, AMPK-K45R inhibited phosphorylation of eNOS at Ser1179 in response to adiponectin but not in response to insulin. We conclude that adiponectin has novel vascular actions to directly stimulate production of NO in endothelial cells using phosphatidylinositol 3-kinase-dependent pathways involving phosphorylation of eNOS at Ser1179 by AMPK. Thus, the effects of adiponectin to augment metabolic actions of insulin in vivo may be due, in part, to vasodilator actions of adiponectin. 相似文献
11.
12.
Glycoconjugate Journal - Heparan sulfate (HS) with various sulfation patterns is one of important modulators of cancer cell fate through interacting with numerous growth factors. Here we found HS... 相似文献
13.
Ding K Sandgren S Mani K Belting M Fransson LA 《The Journal of biological chemistry》2001,276(50):46779-46791
Cell surface heparan sulfate proteoglycans facilitate uptake of growth-promoting polyamines (Belting, M., Persson, S., and Fransson, L.-A. (1999) Biochem. J. 338, 317-323; Belting, M., Borsig, L., Fuster, M. M., Brown, J. R., Persson, L., Fransson, L.-A., and Esko, J. D. (2001) Proc. Natl. Acad. Sci. U. S. A., in press). Here, we have analyzed the effect of polyamine deprivation on the structure and polyamine affinity of the heparan sulfate chains in various glypican-1 glycoforms synthesized by a transformed cell line (ECV 304). Heparan sulfate chains of glypican-1 were either cleaved with heparanase at sites embracing the highly modified regions or with nitrite at N-unsubstituted glucosamine residues. The products were separated and further degraded by heparin lyase to identify sulfated iduronic acid. Polyamine affinity was assessed by chromatography on agarose substituted with the polyamine spermine. In heparan sulfate made by cells with undisturbed endogenous polyamine synthesis, free amino groups were restricted to the unmodified, unsulfated segments, especially near the core protein. Spermine high affinity binding sites were located to the modified and highly sulfated segments that were released by heparanase. In cells with up-regulated polyamine uptake, heparan sulfate contained an increased number of clustered N-unsubstituted glucosamines and sulfated iduronic acid residues. This resulted in a greater number of NO/nitrite-sensitive cleavage sites near the potential spermine-binding sites. Endogenous degradation by heparanase and NO-derived nitrite in polyamine-deprived cells generated a separate pool of heparan sulfate oligosaccharides with an exceptionally high affinity for spermine. Spermine uptake in polyamine-deprived cells was reduced when NO/nitrite-generated degradation of heparan sulfate was inhibited. The results suggest a functional interplay between glypican recycling, NO/nitrite-generated heparan sulfate degradation, and polyamine uptake. 相似文献
14.
Expression of endothelial nitric oxide synthase in the vascular wall during arteriogenesis 总被引:6,自引:0,他引:6
Cai WJ Kocsis E Luo X Schaper W Schaper J 《Molecular and cellular biochemistry》2004,264(1-2):193-200
Nitric oxide (NO) has been demonstrated to play an important role in angiogenesis, and also to be involved in collateral vessel growth. The expression of endothelial NO synthase (eNOS) is moderated partly by blood flow-induced mechanical factors, i.e., shear stress. The purpose of this study was to evaluate how the expression of eNOS correlates with the development of collateral vessels in dog heart, induced by chronic occlusion of the left circumflex artery. Immunoconfocal microscopy using an antibody against eNOS was used to detect expression of eNOS in different stages of arteriogenesis. Collateral vessels were classified into normal, growing and mature vessels by using the cytoskeleton marker desmin. Expression of the growth factors bFGF and metallproteinase-2 (MMP-2) was also examined. The data show that in normal arteriolar vessels, expression of eNOS is very low, but in growing collateral vessel there is a 6.2-fold increase, which, however, returned to normal levels in mature collateral vessels. The expression of eNOS was localized only in endothelium, either in normal or growing vessels. bFGF was very weakly stained in normal vessels, but highly expressed in growing collateral vessels. MMP-2 was strongly stained in neointima, but very weak in endothelium. In addition, we also examined expression of iNOS because iNOS may be induced in vessel injury or in disease states, but it was not detected in either normal or growing collateral vessels. Our findings indicate that the expression pattern of eNOS is closely associated with the development of collateral vessels, suggesting that eNOS plays an important role in arteriogenesis. 相似文献
15.
Wei-jun Cai Elisabeth Kocsis Xuegang Luo Wolfgang Schaper Jutta Schaper 《Molecular and cellular biochemistry》2005,264(1-2):193-200
Nitric oxide (NO) has been demonstrated to play an important role in angiogenesis, and also to be involved in collateral vessel growth. The expression of endothelial NO synthase (eNOS) is moderated partly by blood flow-induced mechanical factors, i.e., shear stress. The purpose of this study was to evaluate how the expression of eNOS correlates with the development of collateral vessels in dog heart, induced by chronic occlusion of the left circumflex artery. Immunoconfocal microscopy using an antibody against eNOS was used to detect expression of eNOS in different stages of arteriogenesis. Collateral vessels were classified into normal, growing and mature vessels by using the cytoskeleton marker desmin. Expression of the growth factors bFGF and metallproteinase-2 (MMP-2) was also examined. The data show that in normal arteriolar vessels, expression of eNOS is very low, but in growing collateral vessel there is a 6.2-fold increase, which, however, returned to normal levels in mature collateral vessels. The expression of eNOS was localized only in endothelium, either in normal or growing vessels. bFGF was very weakly stained in normal vessels, but highly expressed in growing collateral vessels. MMP-2 was strongly stained in neointima, but very weak in endothelium. In addition, we also examined expression of iNOS because iNOS may be induced in vessel injury or in disease states, but it was not detected in either normal or growing collateral vessels. Our findings indicate that the expression pattern of eNOS is closely associated with the development of collateral vessels, suggesting that eNOS plays an important role in arteriogenesis. (Mol Cell Biochem 264: 193–200, 2004) 相似文献
16.
Myung-Jin Oh Prashant Desai 《Biochemical and biophysical research communications》2010,391(1):176-181
Heparan sulfate (HS) moieties on cell surfaces are known to provide attachment sites for many viruses including herpes simplex virus type-1 (HSV-1). Here, we demonstrate that cells respond to HSV-1 infection by enhancing filopodia formation. Filopodia express HS and are subsequently utilized for the transport of HSV-1 virions to cell bodies in a surfing-like phenomenon, which is facilitated by the underlying actin cytoskeleton and is regulated by transient activation of a small Rho GTPase, Cdc42. We also demonstrate that interaction between a highly conserved herpesvirus envelope glycoprotein B (gB) and HS is required for surfing. A HSV-1 mutant that lacks gB fails to surf and quantum dots conjugated with gB demonstrate surfing-like movements. Our data demonstrates a novel use of a common receptor, HS, which could also be exploited by multiple viruses and quite possibly, many additional ligands for transport along the plasma membrane. 相似文献
17.
Metabolism of endothelial cell-bound lipoprotein lipase. Evidence for heparan sulfate proteoglycan-mediated internalization and recycling 总被引:3,自引:0,他引:3
Lipoprotein lipase (LPL) hydrolyzes triglyceride in plasma lipoprotein primarily while bound to vascular endothelial cells. LPL metabolism by cultured endothelial cells was studied. Purified radioiodinated bovine LPL bound to porcine aortic endothelial cells at 4 degrees C with an association constant of 0.18 x 10(7) m-1. Analysis of the time course of LPL dissociation from endothelial cells at 4 degrees C yielded a dissociation rate constant of 3.9 x 10(-6)s-1. After 1 h at 37 degrees C, 28% of the LPL initially bound to the cell surface was no longer releasable by heparin or trypsin treatments, suggesting that LPL was internalized by the cells. Addition of heparin to the medium or pretreatment of the cells with heparinase markedly reduced the amount of LPL internalized, establishing a requirement for cell surface heparan sulfate proteoglycans in the process. When cells containing internalized LPL were incubated at 37 degrees C, a time-dependent increase in the amount of LPL in the medium and a corresponding decrease in LPL associated with the cells was found. This suggested that internalized LPL was released back into the medium. The catalytic activity, molecular size, and heparin-binding characteristics of the released LPL was similar to native LPL. Addition of either heparin, heparinase, or excess unlabeled LPL to prevent the rebinding of released 125I-LPL to the cell surface increased the amount of 125I-LPL present in the medium, suggesting that there is a process of recycling of 125I-LPL bound to the cell surface. Studies examining the effect of pH on dissociation of LPL from its binding site showed less dissociation of cell surface bound LPL at pH 5.5 compared with pH 7.4 and 8.5. These results suggest that even at acidic pH as in endocytotic vesicles, LPL remains bound to proteoglycans and this may facilitate the recycling of internalized LPL molecules. 相似文献
18.
Cryptotanshinone inhibits endothelin-1 expression and stimulates nitric oxide production in human vascular endothelial cells 总被引:2,自引:0,他引:2
The Chinese herb Salvia miltiorrhiza (SM) has been found to have beneficial effects on the circulatory system. In the present study, we investigated the effects of cryptotanshinone (derived from SM) on endothelin-1 (ET-1) expression in human umbilical vein endothelial cells (HUVECs). The effect of cryptotanshinone on nitric oxide (NO) in HUVECs was also examined. We found that cryptotanshinone inhibited basal and tumor necrosis factor-alpha (TNF-alpha) stimulated ET-1 secretion in a concentration-dependent manner. Cryptotanshinone also induced a concentration-dependent decrease in ET-1 mRNA expression. Cryptotanshinone increased basal and TNF-alpha-attenuated NO production in a dose-dependent fashion. Cryptotanshinone induced a concentration-dependent increase in endothelial nitric oxide synthase (eNOS) expression without significantly changing neuronal nitric oxide synthase (nNOS) expression in HUVECs in the presence or absence of TNF-alpha. NOS activities in the HUVECs were also induced by cryptotanshinone. Furthermore, decreased ET-1 expression in response to cryptotanshinone was not antagonized by the NOS inhibitor l-NAME. A gel shift assay further showed that TNF-alpha-induced Nuclear Factor-kappaB (NF-kappaB) activity was significantly reduced by cryptotanshinone. These data suggest that cryptotanshinone inhibits ET-1 production, at least in part, through a mechanism that involves NF-kappaB but not NO production. 相似文献
19.
Qiao D Meyer K Mundhenke C Drew SA Friedl A 《The Journal of biological chemistry》2003,278(18):16045-16053
Fibroblast growth factor-2 (FGF2) is a potent angiogenic factor in gliomas. Heparan sulfate promotes ligand binding to receptor tyrosine kinase and regulates signaling. The goal of this study was to examine the contribution of heparan sulfate proteoglycans (HSPGs) to glioma angiogenesis. Here we show that all brain endothelial cell HSPGs carry heparan sulfate chains similarly capable of forming a ternary complex with FGF2 and fibroblast growth factor receptor-1c and of promoting a mitogenic signal. Immunohistochemical analysis revealed that glypican-1 was overexpressed in glioma vessel endothelial cells, whereas this cell-surface HSPG was consistently undetectable in normal brain vessels. To determine the effect of increased glypican-1 expression on FGF2 signaling, we transfected normal brain endothelial cells, which express low base-line levels of glypican-1, with this proteoglycan. Glypican-1 expression enhanced growth of brain endothelial cells and sensitized them to FGF2-induced mitogenesis despite the fact that glypican-1 remained a minor proteoglycan. In contrast, overexpression of syndecan-1 had no effect on growth or FGF2 sensitivity. We conclude that the glypican-1 core protein has a specific role in FGF2 signaling. Glypican-1 overexpression may contribute to angiogenesis and the radiation resistance characteristic of this malignancy. 相似文献
20.
Hypotensive episodes during hemodialysis in patients with end-stage renal disease in the absence of inadequate maintenance of the plasma volume, preexistence of cardiovascular disease, or autonomic nervous system dysfunction is accompanied by increase in the plasma concentrations of the end-products of nitric oxide metabolism, above the levels expected based on the reduction of urea. Factors that can influence the synthesis of nitric oxide or the regulation of the effects of this free radical in patients with chronic renal failure are reviewed. Convergence of these factors and their interactions during the hemodialysis procedure are discussed as the basis for the generation of excessive amounts of nitric oxide that serves as an important contributing factor in the development of symptomatic hypotension. 相似文献