首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Genome-wide association studies (GWAS) have identified dozens of single nucleotide polymorphisms (SNPs) associated with type 2 diabetes risk. We have previously confirmed the associations of genetic variants in HHEX, CDKAL1, VEGFA and FTO with type 2 diabetes in Han Chinese. However, the cumulative effect and predictive value of these GWAS identified SNPs on the risk of type 2 diabetes in Han Chinese are largely unknown.

Methodology/Principal Findings

We conducted a two-stage case-control study consisting of 2,925 cases and 3,281controls to examine the association of 30 SNPs identified by GWAS with type 2 diabetes in Han Chinese. Significant associations were found for proxy SNPs at KCNQ1 [odds ratio (OR) = 1.41, P = 9.91 × 10–16 for rs2237897], CDKN2A/CDKN2B (OR = 1.30, P = 1.34 × 10–10 for rs10811661), CENTD2 (OR = 1.28, P = 9.88 × 10-4 for rs1552224) and SLC30A8 (OR = 1.19, P = 1.43 × 10-5 for rs13266634). We further evaluated the cumulative effect on type 2 diabetes of these 4 SNPs, in combination with 5 SNPs at HHEX, CDKAL1, VEGFA and FTO reported previously. Individuals carrying 12 or more risk alleles had a nearly 4-fold increased risk for developing type 2 diabetes compared with those carrying less than 6 risk alleles [adjusted OR = 3.68, 95% confidence interval (CI): 2.76–4.91]. Adding the genetic factors to clinical factors slightly improved the prediction of type 2 diabetes, with the area under the receiver operating characteristic curve increasing from 0.76 to 0.78. However, the difference was statistically significant (P < 0.0001).

Conclusions/Significance

We confirmed associations of SNPs in KCNQ1, CDKN2A/CDKN2B, CENTD2 and SLC30A8 with type 2 diabetes in Han Chinese. The utilization of genetic information may improve the accuracy of risk prediction in combination with clinical characteristics for type 2 diabetes.  相似文献   

2.

Background

Recent advance in genetic studies added the confirmed susceptible loci for type 2 diabetes to eighteen. In this study, we attempt to analyze the independent and joint effect of variants from these loci on type 2 diabetes and clinical phenotypes related to glucose metabolism.

Methods/Principal Findings

Twenty-one single nucleotide polymorphisms (SNPs) from fourteen loci were successfully genotyped in 1,849 subjects with type 2 diabetes and 1,785 subjects with normal glucose regulation. We analyzed the allele and genotype distribution between the cases and controls of these SNPs as well as the joint effects of the susceptible loci on type 2 diabetes risk. The associations between SNPs and type 2 diabetes were examined by logistic regression. The associations between SNPs and quantitative traits were examined by linear regression. The discriminative accuracy of the prediction models was assessed by area under the receiver operating characteristic curves. We confirmed the effects of SNPs from PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 on risk for type 2 diabetes, with odds ratios ranging from 1.114 to 1.406 (P value range from 0.0335 to 1.37E-12). But no significant association was detected between SNPs from WFS1, FTO, JAZF1, TSPAN8-LGR5, THADA, ADAMTS9, NOTCH2-ADAM30 and type 2 diabetes. Analyses on the quantitative traits in the control subjects showed that THADA SNP rs7578597 was association with 2-h insulin during oral glucose tolerance tests (P = 0.0005, empirical P = 0.0090). The joint effect analysis of SNPs from eleven loci showed the individual carrying more risk alleles had a significantly higher risk for type 2 diabetes. And the type 2 diabetes patients with more risk allele tended to have earlier diagnostic ages (P = 0.0006).

Conclusions/Significance

The current study confirmed the association between PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 and type 2 diabetes. These type 2 diabetes risk loci contributed to the disease additively.  相似文献   

3.

Background

Recent genome-wide association studies (GWASs) have reported several genetic variants to be reproducibly associated with type 2 diabetes. Additional variants have also been detected from a metaanalysis of three GWASs, performed in populations of European ancestry. In the present study, we evaluated the influence of 17 genetic variants from 15 candidate loci, identified in type 2 diabetes GWASs and the metaanalysis, in a Han Chinese cohort.

Methodology/Principal Findings

Selected type 2 diabetes–associated genetic variants were genotyped in 1,165 type 2 diabetic patients and 1,136 normoglycemic control individuals of Southern Han Chinese ancestry. The OR for risk of developing type 2 diabetes was calculated using a logistic regression model adjusted for age, sex, and BMI. Genotype-phenotype associations were tested using a multivariate linear regression model. Genetic variants in CDKN2A/B, CDKAL1, TCF7L2, TCF2, MC4R, and PPARG showed a nominal association with type 2 diabetes (P≤0.05), of whom the three first would stand correction for multiple testing: CDKN2A/B rs10811661, OR: 1.26 (1.12–1.43) P = 1.8*10−4; CDKAL1 rs10946398, OR: 1.23 (1.09–1.39); P = 7.1*10−4, and TCF7L2 rs7903146, OR: 1.61 (1.19–2.18) P = 2.3 * 10−3. Only nominal phenotype associations were observed, notably for rs8050136 in FTO and fasting plasma glucose (P = 0.002), postprandial plasma glucose (P = 0.002), and fasting C-peptide levels (P = 0.006) in the diabetic patients, and with BMI in controls (P = 0.033).

Conclusions/Significance

We have identified significant association between variants in CDKN2A/B, CDKAL1 and TCF7L2, and type 2 diabetes in a Han Chinese cohort, indicating these genes as strong candidates conferring susceptibility to type 2 diabetes across different ethnicities.  相似文献   

4.
ObjectiveEvidence is sparse and contradictory regarding the association between low-carbohydrate diet score and type 2 diabetes risk, and no prospective study examined the association among Asians, who consume greater amount of carbohydrate. We prospectively investigated the association of low-carbohydrate diet score with type 2 diabetes risk.MethodsParticipants were 27,799 men and 36,875 women aged 45–75 years who participated in the second survey of the Japan Public Health Center-Based Prospective Study and who had no history of diabetes. Dietary intake was ascertained by using a validated food-frequency questionnaire, and low-carbohydrate diet score was calculated from total carbohydrate, fat, and protein intake. The scores for high animal protein and fat or for high plant protein and fat were also calculated. Odds ratios of self-reported, physician-diagnosed type 2 diabetes over 5-year were estimated by using logistic regression.ResultsDuring the 5-year period, 1191 new cases of type 2 diabetes were self-reported. Low-carbohydrate diet score for high total protein and fat was significantly associated with a decreased risk of type 2 diabetes in women (P for trend <0.001); the multivariable-adjusted odds ratio of type 2 diabetes for the highest quintile of the score were 0.63 (95% confidence interval 0.46–0.84), compared with those for the lowest quintile. Additional adjustment for dietary glycemic load attenuated the association (odds ratio 0.75, 95% confidence interval 0.45–1.25). When the score separated for animal and for plant protein and fat, the score for high animal protein and fat was inversely associated with type 2 diabetes in women, whereas the score for high plant protein and fat was not associated in both men and women.DiscussionLow-carbohydrate diet was associated with decreased risk of type 2 diabetes in Japanese women and this association may be partly attributable to high intake of white rice. The association for animal-based and plant-based low-carbohydrate diet warrants further investigation.  相似文献   

5.
BackgroundMetabolic abnormalities that lead to type 2 diabetes mellitus begin in early childhood.ObjectivesWe investigate whether common genetic variants identified in adults have an effect on glucose in early life.Methods610 newborns, 463 mothers, and 366 fathers were included in the present study. Plasma glucose and anthropometric characteristics were collected at birth, 3, and 5 years. After quality assessment, 37 SNPs, which have demonstrated an association with fasting plasma glucose at the genome-wide threshold in adults, were studied. Quantitative trait disequilibrium tests and mixed-effects regressions were conducted to estimate an effect of the SNPs on glucose.ResultsRisk alleles for 6 loci increased glucose levels from birth to 5 years of age (ADCY5, ADRA2A, CDKAL1, CDKN2A/B, GRB10, and TCF7L2, 4.85x10-3P ≤ 4.60x10-2). Together, these 6 SNPs increase glucose by 0.05 mmol/L for each risk allele in a genotype score (P = 6.33x10-5). None of the associations described in the present study have been reported previously in early childhood.ConclusionOur data support the notion that a subset of loci contributing to plasma glucose variation in adults has an effect at birth and in early life.  相似文献   

6.
7.
Diet guidelines recommend increasing dietary diversity. Yet, metrics for dietary diversity have neither been well-defined nor evaluated for impact on metabolic health. Also, whether diversity has effects independent of diet quality is unknown. We characterized and evaluated associations of diet diversity and quality with abdominal obesity and type II diabetes (T2D) in the Multi-Ethnic Study of Atherosclerosis. At baseline (2000–02), diet was assessed among 5,160 Whites, Hispanic, Blacks, and Chinese age 45–84 y and free of T2D, using a validated questionnaire. Three different aspects of diet diversity were characterized including count (number of different food items eaten more than once/week, a broad measure of diversity), evenness (Berry index, a measure of the spread of the diversity), and dissimilarity (Jaccard distance, a measure of the diversity of the attributes of the foods consumed). Diet quality was characterized using aHEI, DASH, and a priori pattern. Count and evenness were weakly positively correlated with diet quality (r with AHEI: 0.20, 0.04), while dissimilarity was moderately inversely correlated (r = -0.34). In multivariate models, neither count nor evenness was associated with change in waist circumference (WC) or incident T2D. Greater food dissimilarity was associated with higher gain in WC (p-trend<0.01), with 120% higher gain in participants in the highest quintile of dissimilarity scores. Diet diversity was not associated with incident T2D. Also, none of the diversity metrics were associated with change in WC or incident T2D when restricted to only healthier or less healthy foods. Higher diet quality was associated with lower risk of T2D. Our findings provide little evidence for benefits of diet diversity for either abdominal obesity or diabetes. Greater dissimilarity among foods was actually associated with gain in WC. These results do not support the notion that “eating everything in moderation” leads to greater diet quality or better metabolic health.  相似文献   

8.
BackgroundType 2 diabetes (T2D) is highly prevalent in British South Asians, yet they are underrepresented in research. Genes & Health (G&H) is a large, population study of British Pakistanis and Bangladeshis (BPB) comprising genomic and routine health data. We assessed the extent to which genetic risk for T2D is shared between BPB and European populations (EUR). We then investigated whether the integration of a polygenic risk score (PRS) for T2D with an existing risk tool (QDiabetes) could improve prediction of incident disease and the characterisation of disease subtypes.Methods and findingsIn this observational cohort study, we assessed whether common genetic loci associated with T2D in EUR individuals were replicated in 22,490 BPB individuals in G&H. We replicated fewer loci in G&H (n = 76/338, 22%) than would be expected given power if all EUR-ascertained loci were transferable (n = 101, 30%; p = 0.001). Of the 27 transferable loci that were powered to interrogate this, only 9 showed evidence of shared causal variants. We constructed a T2D PRS and combined it with a clinical risk instrument (QDiabetes) in a novel, integrated risk tool (IRT) to assess risk of incident diabetes. To assess model performance, we compared categorical net reclassification index (NRI) versus QDiabetes alone. In 13,648 patients free from T2D followed up for 10 years, NRI was 3.2% for IRT versus QDiabetes (95% confidence interval (CI): 2.0% to 4.4%). IRT performed best in reclassification of individuals aged less than 40 years deemed low risk by QDiabetes alone (NRI 5.6%, 95% CI 3.6% to 7.6%), who tended to be free from comorbidities and slim. After adjustment for QDiabetes score, PRS was independently associated with progression to T2D after gestational diabetes (hazard ratio (HR) per SD of PRS 1.23, 95% CI 1.05 to 1.42, p = 0.028). Using cluster analysis of clinical features at diabetes diagnosis, we replicated previously reported disease subgroups, including Mild Age-Related, Mild Obesity-related, and Insulin-Resistant Diabetes, and showed that PRS distribution differs between subgroups (p = 0.002). Integrating PRS in this cluster analysis revealed a Probable Severe Insulin Deficient Diabetes (pSIDD) subgroup, despite the absence of clinical measures of insulin secretion or resistance. We also observed differences in rates of progression to micro- and macrovascular complications between subgroups after adjustment for confounders. Study limitations include the absence of an external replication cohort and the potential biases arising from missing or incorrect routine health data.ConclusionsOur analysis of the transferability of T2D loci between EUR and BPB indicates the need for larger, multiancestry studies to better characterise the genetic contribution to disease and its varied aetiology. We show that a T2D PRS optimised for this high-risk BPB population has potential clinical application in BPB, improving the identification of T2D risk (especially in the young) on top of an established clinical risk algorithm and aiding identification of subgroups at diagnosis, which may help future efforts to stratify care and treatment of the disease.

Sam Hodgson and colleagues investigate whether the common genetic differences associated with type 2 diabetes in people of European ancestry can be transferred to people of British Pakistani and Bangladeshi ancestry, integrating a novel polygenic risk score with an established clinical risk score.  相似文献   

9.
Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age2, sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS × physical activity interaction effect estimate (Pinteraction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, Pinteraction = 0.014 vs. n = 71,611, Pinteraction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (Pinteraction = 0.003) and the SEC16B rs10913469 (Pinteraction = 0.025) variants showed evidence of SNP × physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal.  相似文献   

10.
ObjectiveTo investigate social, familial, and psychological factors in influencing the occurrence of type 2 diabetes in adulthood.MethodSome 17,415 babies born in Great Britain in 1958 and followed up at 7, 11, 33, and 50 years of age. The prevalence of type 2 diabetes at age 50 years was the outcome measure.ResultsSome 5,032 participants with data on parental social class, childhood cognitive ability tests scores at age 11 years, educational qualifications at age 33 years, personality traits, occupational levels, and type 2 diabetes (all measured at age 50 years) were included in the study. Available information also included whether cohort members’ parents or siblings had diabetes. Using logistic regression analyses, results showed that sex (OR=0.63: 0.42-0.92, p<.05), family history (OR=3.40: 1.76-6.55, p<.01), and trait conscientiousness (OR=0.76: 0.64-0.90, p<.001) were all significantly and independently associated with the occurrence of type 2 diabetes in adulthood. It appears that the occurrence of type 2 diabetes is greater among men than women (4.3% vs 2.5%).ConclusionFamilial (genetic and non-genetic) and psychological factors are significantly associated with the prevalence of type 2 diabetes in adulthood.  相似文献   

11.

Background and Aims

Obesity is a well-known risk factor for type 2 diabetes. Genome-wide association studies have identified a number of genetic loci associated with obesity. The aim of this study is to examine the contribution of obesity-related genomic loci to type 2 diabetes in a Chinese population.

Methods

We successfully genotyped 18 obesity-related single nucleotide polymorphisms among 5338 type 2 diabetic patients and 4663 controls. Both individual and joint effects of these single nucleotide polymorphisms on type 2 diabetes and quantitative glycemic traits (assessing β-cell function and insulin resistance) were analyzed using logistic and linear regression models, respectively.

Results

Two single nucleotide polymorphisms near MC4R and GNPDA2 genes were significantly associated with type 2 diabetes before adjusting for body mass index and waist circumference (OR (95% CI) = 1.14 (1.06, 1.22) for the A allele of rs12970134, P = 4.75×10−4; OR (95% CI) = 1.10 (1.03, 1.17) for the G allele of rs10938397, P = 4.54×10−3). When body mass index and waist circumference were further adjusted, the association of MC4R with type 2 diabetes remained significant (P = 1.81×10−2) and that of GNPDA2 was attenuated (P = 1.26×10−1), suggesting the effect of the locus including GNPDA2 on type 2 diabetes may be mediated through obesity. Single nucleotide polymorphism rs2260000 within BAT2 was significantly associated with type 2 diabetes after adjusting for body mass index and waist circumference (P = 1.04×10−2). In addition, four single nucleotide polymorphisms (near or within SEC16B, BDNF, MAF and PRL genes) showed significant associations with quantitative glycemic traits in controls even after adjusting for body mass index and waist circumference (all P values<0.05).

Conclusions

This study indicates that obesity-related genomic loci were associated with type 2 diabetes and glycemic traits in the Han Chinese population.  相似文献   

12.
BackgroundPrevious studies have revealed the involvement of coffee and tea in the development of stroke and dementia. However, little is known about the association between the combination of coffee and tea and the risk of stroke, dementia, and poststroke dementia. Therefore, we aimed to investigate the associations of coffee and tea separately and in combination with the risk of developing stroke and dementia.Methods and findingsThis prospective cohort study included 365,682 participants (50 to 74 years old) from the UK Biobank. Participants joined the study from 2006 to 2010 and were followed up until 2020. We used Cox proportional hazards models to estimate the associations between coffee/tea consumption and incident stroke and dementia, adjusting for sex, age, ethnicity, qualification, income, body mass index (BMI), physical activity, alcohol status, smoking status, diet pattern, consumption of sugar-sweetened beverages, high-density lipoprotein (HDL), low-density lipoprotein (LDL), history of cancer, history of diabetes, history of cardiovascular arterial disease (CAD), and hypertension. Coffee and tea consumption was assessed at baseline. During a median follow-up of 11.4 years for new onset disease, 5,079 participants developed dementia, and 10,053 participants developed stroke. The associations of coffee and tea with stroke and dementia were nonlinear (P for nonlinear <0.01), and coffee intake of 2 to 3 cups/d or tea intake of 3 to 5 cups/d or their combination intake of 4 to 6 cups/d were linked with the lowest hazard ratio (HR) of incident stroke and dementia. Compared with those who did not drink tea and coffee, drinking 2 to 3 cups of coffee and 2 to 3 cups of tea per day was associated with a 32% (HR 0.68, 95% CI, 0.59 to 0.79; P < 0.001) lower risk of stroke and a 28% (HR, 0.72, 95% CI, 0.59 to 0.89; P = 0.002) lower risk of dementia. Moreover, the combination of coffee and tea consumption was associated with lower risk of ischemic stroke and vascular dementia. Additionally, the combination of tea and coffee was associated with a lower risk of poststroke dementia, with the lowest risk of incident poststroke dementia at a daily consumption level of 3 to 6 cups of coffee and tea (HR, 0.52, 95% CI, 0.32 to 0.83; P = 0.007). The main limitations were that coffee and tea intake was self-reported at baseline and may not reflect long-term consumption patterns, unmeasured confounders in observational studies may result in biased effect estimates, and UK Biobank participants are not representative of the whole United Kingdom population.ConclusionsWe found that drinking coffee and tea separately or in combination were associated with lower risk of stroke and dementia. Intake of coffee alone or in combination with tea was associated with lower risk of poststroke dementia.

In a cohort study, Yuan Zhang and colleagues investigate the associations between coffee and tea consumption and risk of stroke and dementia among participants older than 50 years of age in the UK Biobank.  相似文献   

13.
AimWe performed a replication study in a Japanese population to evaluate the association between type 2 diabetes and 7 susceptibility loci originally identified by European genome-wide association study (GWAS) in 2012: ZMIZ1, KLHDC5, TLE1, ANKRD55, CILP2, MC4R, and BCAR1. We also examined the association of 3 additional loci: CCND2 and GIPR, identified in sex-differentiated analyses, and LAMA1, which was shown to be associated with non-obese European type 2 diabetes.MethodsWe genotyped 6,972 Japanese participants (4,280 type 2 diabetes patients and 2,692 controls) for each of the 10 single nucleotide polymorphisms (SNPs): rs12571751 in ZMIZ1, rs10842994 near KLHDC5, rs2796441 near TLE1, rs459193 near ANKRD55, rs10401969 in CILP2, rs12970134 near MC4R, rs7202877 near BCAR1, rs11063069 near CCND2, rs8108269 near GIPR, and rs8090011 in LAMA1 using a multiplex polymerase chain reaction invader assay. The association of each SNP locus with the disease was evaluated using a logistic regression analysis.ResultsAll SNPs examined in this study had the same direction of effect (odds ratio > 1.0, p = 9.77 × 10-4, binomial test), as in the original reports. Among them, rs12571751 in ZMIZ1 was significantly associated with type 2 diabetes [p = 0.0041, odds ratio = 1.123, 95% confidence interval 1.037–1.215, adjusted for sex, age and body mass index (BMI)], but we did not observe significant association of the remaining 9 SNP loci with type 2 diabetes in the present Japanese population (p ≥ 0.005). A genetic risk score, constructed from the sum of risk alleles for the 7 SNP loci identified by un-stratified analyses in the European GWAS meta-analysis were associated with type 2 diabetes in the present Japanese population (p = 2.3 × 10-4, adjusted for sex, age and BMI).ConclusionsZMIZ1 locus has a significant effect on conferring susceptibility to type 2 diabetes also in the Japanese population.  相似文献   

14.
BackgroundAir pollution has been related to incidence of type 2 diabetes (T2D). We assessed the joint association of various air pollutants with the risk of T2D and examined potential modification by obesity status and genetic susceptibility on the relationship.Methods and findingsA total of 449,006 participants from UK Biobank free of T2D at baseline were included. Of all the study population, 90.9% were white and 45.7% were male. The participants had a mean age of 56.6 (SD 8.1) years old and a mean body mass index (BMI) of 27.4 (SD 4.8) kg/m2. Ambient air pollutants, including particulate matter (PM) with diameters ≤2.5 μm (PM2.5), between 2.5 μm and 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were measured. An air pollution score was created to assess the joint exposure to the 4 air pollutants. During a median of 11 years follow-up, we documented 18,239 incident T2D cases. The air pollution score was significantly associated with a higher risk of T2D. Compared to the lowest quintile of air pollution score, the hazard ratio (HR) (95% confidence interval [CI]) for T2D was 1.05 (0.99 to 1.10, p = 0.11), 1.06 (1.00 to 1.11, p = 0.051), 1.09 (1.03 to 1.15, p = 0.002), and 1.12 (1.06 to 1.19, p < 0.001) for the second to fifth quintile, respectively, after adjustment for sociodemographic characteristics, lifestyle factors, genetic factors, and other covariates. In addition, we found a significant interaction between the air pollution score and obesity status on the risk of T2D (p-interaction < 0.001). The observed association was more pronounced among overweight and obese participants than in the normal-weight people. Genetic risk score (GRS) for T2D or obesity did not modify the relationship between air pollution and risk of T2D. Key study limitations include unavailable data on other potential T2D-related air pollutants and single-time measurement on air pollutants.ConclusionsWe found that various air pollutants PM2.5, PM2.5–10, NO2, and NO, individually or jointly, were associated with an increased risk of T2D in the population. The stratified analyses indicate that such associations were more strongly associated with T2D risk among those with higher adiposity.

Xiang Li and co-workers study the potential influence of obesity on associations between air pollutants and incidence of type 2 diabetes.  相似文献   

15.
BackgroundIn vitro studies have demonstrated the role of the BCL-2 family of genes in endometrial carcinogenesis. The role of genetic variants in BCL-2 genes and their interactions with non-genetic factors in the development of endometrial cancer has not been investigated in epidemiological studies.ResultsSignificant associations with endometrial cancer risk were found for 9 SNPs in the BCL2 gene (P trend<0.05 for all). For SNPs rs17759659 and rs7243091 (minor allele for both: G), the associations were independent. The odds ratio was 1.27 (95% CI: 1.04–1.53) for women with AG genotype for the SNP rs17759659 and 1.82 (95% CI: 1.21–2.73) for women with the GG genotype for the SNP rs7243091. No interaction between these two SNPs and established non-genetic risk factors of endometrial cancer was noticed.ConclusionGenetic polymorphisms in the BCL2 gene may be associated with the risk of endometrial cancer in Chinese women.  相似文献   

16.
Lu L  Wu Y  Qi Q  Liu C  Gan W  Zhu J  Li H  Lin X 《PloS one》2012,7(4):e34895

Background

Previous studies have identified that variants in peroxisome proliferator-activated receptor PPAR-δ (PPARD), a target gene of vitamin D, were significantly associated with fasting glucose and insulin sensitivity in European populations. This current study sought to determine (1) whether the genetic associations of PPARD variants with type 2 diabetes and its related traits could be replicated in Chinese Han population, and (2) whether the associations would be modified by the effect of vitamin D status.

Methods and Findings

We genotyped 9 tag single nucleotide polymorphisms (SNPs) that cover the gene of PPARD (rs2267664, rs6902123, rs3798343, rs2267665, rs2267668, rs2016520, rs2299869, rs1053049, and rs9658056) and tested their associations with type 2 diabetes risk and its related traits, including fasting glucose, insulin and HbA1c in 3,210 Chinese Hans. Among the 9 PPARD tag SNPs, rs6902123 was significantly associated with risk of type 2 diabetes (odds ratio 1.75 [95%CI 1.22–2.53]; P = 0.0025) and combined type 2 diabetes and impaired fasting glucose (IFG) (odds ratio 1.47 [95%CI 1.12–1.92]; P = 0.0054). The minor C allele of rs6902123 was associated with increased levels of fasting glucose (P = 0.0316) and HbA1c (P = 0.0180). In addition, we observed that vitamin D modified the effect of rs6902123 on HbA1c (P for interaction = 0.0347).

Conclusions/Significance

Our findings demonstrate that common variants in PPARD contribute to the risk of type 2 diabetes in Chinese Hans, and provided suggestive evidence of interaction between 25(OH)D levels and PPARD-rs6902123 on HbA1c.  相似文献   

17.
Qian Y  Lu F  Dong M  Lin Y  Li H  Chen J  Shen C  Jin G  Hu Z  Shen H 《PloS one》2012,7(4):e35060

Background

Genome-wide association studies (GWAS) in populations of European ancestry have mapped a type 2 diabetes susceptibility region to chromosome 10q23.33 containing IDE, KIF11 and HHEX genes (IDE-KIF11-HHEX), which has also been replicated in Chinese populations. However, the functional relevance for genetic variants at this locus is still unclear. It is critical to systematically assess the relationship of genetic variants in this region with the risk of type 2 diabetes.

Methodology/Principal Findings

A fine-mapping study was conducted by genotyping fourteen tagging single-nucleotide polymorphisms (SNPs) in a 290-kb linkage disequilibrium (LD) region using a two-stage case-control study of type 2 diabetes in a Chinese Han population. Suggestive associations (P<0.05) observed from 1,200 cases and 1,200 controls in the first stage were further replicated in 1,725 cases and 2,081 controls in the second stage. Seven tagging SNPs were consistently associated with type 2 diabetes in both stages (P<0.05), with combined odds ratios (ORs) ranging from 1.14 to 1.33 in the combined analysis. The most significant locus was rs7923837 [OR = 1.33, 95% confidence interval (CI): 1.21–1.47] at the 3′-flanking region of HHEX gene. SNP rs1111875 was found to be another partially independent locus (OR = 1.23, 95% CI: 1.13–1.35) in this region that was associated with type 2 diabetes risk. A cumulative effect of rs7923837 and rs1111875 was observed with individuals carrying 1, 2, and 3 or 4 risk alleles having a 1.27, 1.44, and 1.73-fold increased risk, respectively, for type 2 diabetes (P for trend = 4.1E-10).

Conclusions/Significance

Our results confirm that genetic variants of the IDE-KIF11-HHEX region at 10q23.33 contribute to type 2 diabetes susceptibility and suggest that rs7923837 may represent the strongest signal related to type 2 diabetes risk in the Chinese Han population.  相似文献   

18.
19.

Aim

To appraise the Diabetes Self-Management Questionnaire (DSMQ)’s measurement of diabetes self-management as a statistical predictor of glycaemic control relative to the widely used SDSCA.

Methods

248 patients with type 1 diabetes and 182 patients with type 2 diabetes were cross-sectionally assessed using the two self-report measures of diabetes self-management DSMQ and SDSCA; the scales were used as competing predictors of HbA1c. We developed a structural equation model of self-management as measured by the DSMQ and analysed the amount of variation explained in HbA1c; an analogue model was developed for the SDSCA.

Results

The structural equation models of self-management and glycaemic control showed very good fit to the data. The DSMQ’s measurement of self-management showed associations with HbA1c of –0.53 for type 1 and –0.46 for type 2 diabetes (both P < 0.001), explaining 21% and 28% of variation in glycaemic control, respectively. The SDSCA’s measurement showed associations with HbA1c of –0.14 (P = 0.030) for type 1 and –0.31 (P = 0.003) for type 2 diabetes, explaining 2% and 10% of glycaemic variation. Predictive power for glycaemic control was significantly higher for the DSMQ (P < 0.001).

Conclusions

This study supports the DSMQ as the preferred tool when analysing self-reported behavioural problems related to reduced glycaemic control. The scale may be useful for clinical assessments of patients with suboptimal diabetes outcomes or research on factors affecting associations between self-management behaviours and glycaemic control.  相似文献   

20.

Objective

to determine the association of fasting whole blood fatty acid concentrations with incidence of type 2 diabetes in adults.

Methods

A nested case-control study of 187 subjects from a cohort of men and women aged 55–85 years from the Hunter Region, New South Wales, Australia. Fasting whole blood fatty acids were measured using gas chromatography and incidence of type 2 diabetes was ascertained by self-reported questionnaire at the study follow-up.

Results

After adjustment for potential confounding variables, positive associations with type 2 diabetes were seen for dihomo-gamma-linolenic acid (DGLA) (OR = 1.04, 95% CI:1.01–1.07, P = 0.01); arachidonic acid (ARA) (OR = 1.01, 95% CI:1.00–1.01, P = 0.002); alpha-linolenic acid (ALA) (OR = 1.10, 95% CI: 1.03–1.18, P = 0.01); eicosapentaenoic acid (EPA) (OR = 1.05, 95% CI:1.02–1.08, P = 0.001); and docosahexaenoic acid (DHA) (OR = 1.03, 95% CI:1.02–1.05, P<0.0001). Lignoceric acid is significantly associated with lower type 2 diabetes risk (OR = 0.95, 95% CI: 0.92–0.99, P = 0.01).

Conclusion

These data suggest that higher fasting whole blood concentrations of omega-6 polyunsaturated fatty acids (n-6PUFA) (ARA and DGLA) as well as omega-3 polyunsaturated fatty acid (n-3PUFA) (ALA, EPA, and DHA) are associated with an increased risk of diabetes, whereas increased fasting whole blood concentrations of lignoceric acid is inversely associated with diabetes risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号