首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Phylogenetic relationships among 40 of the 43 recognized species of Fraxinus L. (Oleaceae) were estimated on the basis of 106 nuclear ribosomal ITS sequences. ITS trees resulting from maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) are congruent and identify six distinct lineages. These clades allow establishing sections with high molecular and morphological support. The basal resolution generally has low ML bootstrap and MP jackknife support, but the Bayesian posterior probabilities are high for certain relationships. An independent data set of combined sequences from the chloroplast rps16 and trnL-F regions contains few informative sites but corroborate most of the relationships in the ITS tree. The molecular phylogeny is discussed in the light of morphological and other data and a revised infrageneric classification with six sections are presented. The subgenera and subsections are abandoned and the section Pauciflorae is a new combination. Fraxinus quadrangulata and Fraxinus anomala are united with Fraxinus dipetala in the section Dipetalae and Fraxinus platypoda is transferred to the section Fraxinus. Fraxinus chiisanensis, Fraxinus spaethiana and Fraxinus cuspidata are treated as incertae sedis. A sectional key is given, together with a systematic list of the 43 recognized species, with common synonyms and distribution. Breeding system and other traits mapped on the phylogeny show that dioecy has three separate origins, and in each case followed after the transition from insect to wind pollination. In one instance dioecy evolved from hermaphroditism via androdioecy and twice via polygamy.  相似文献   

2.
The genus Lespedeza (Fabaceae) consists of 40 species disjunctively distributed in East Asia and eastern North America. Phylogenetic relationships of all Lespedeza species and closely related genera were reconstructed using maximum parsimony, maximum likelihood, and Bayesian analyses of sequence data from five chloroplast (rpl16, rpl32-trnL, rps16-trnQ, trnL-F, and trnK/matK) and one nuclear (ITS) DNA regions. All analyses yielded consistent relationships among major lineages. Our results suggested that Campylotropis, Kummerowia, and Lespedeza are monophyletic, respectively. Lespedeza is resolved as sister to Kummerowia and these two together are further sister to Campylotropis. Neither of the two subgenera, subgen. Lespedeza and subgen. Macrolespedeza, in Lespedeza based on morphological characters, is recovered as monophyletic. Within Lespedeza, the North American clade is retrieved as sister to the Asian clade. The nuclear and chloroplast markers showed incongruent phylogenetic signals at shallow-level phylogeny, which may point to either introgression or incomplete lineage sorting in Lespedeza. The divergence times within Lespedeza and among related genera were estimated using Bayesian approach with BEAST. It is assumed that following the divergence between Kummerowia and Lespedeza in Asia in the late Miocene, the ancestor of Lespedeza diverged into the North American and the Asian lineages. The North American ancestor quickly migrated to North America through the Bering land bridge in the late Miocene. The North American and Asian lineages started to diversify almost simultaneously in the late Miocene but resulted in biased numbers of species in two continents.  相似文献   

3.
Despite considerable progress, many details regarding the evolution of the Arcto-Tertiary flora, including the timing, direction, and relative importance of migration routes in the evolution of woody and herbaceous taxa of the Northern Hemisphere, remain poorly understood. Meehania (Lamiaceae) comprises seven species and five subspecies of annual or perennial herbs, and is one of the few Lamiaceae genera known to have an exclusively disjunct distribution between eastern Asia and eastern North America. We analyzed the phylogeny and biogeographical history of Meehania to explore how the Arcto-Tertiary biogeographic hypothesis and two possible migration routes explain the disjunct distribution of Northern Hemisphere herbaceous plants. Parsimony and Bayesian inference were used for phylogenetic analyses based on five plastid sequences (rbcL, rps16, rpl32-trnH, psbA-trnH, and trnL-F) and two nuclear (ITS and ETS) gene regions. Divergence times and biogeographic inferences were performed using Bayesian methods as implemented in BEAST and S-DIVA, respectively. Analyses including 11 of the 12 known Meehania taxa revealed incongruence between the chloroplast and nuclear trees, particularly in the positions of Glechoma and Meehania cordata, possibly indicating allopolyploidy with chloroplast capture in the late Miocene. Based on nrDNA, Meehania is monophyletic, and the North American species M. cordata is sister to a clade containing the eastern Asian species. The divergence time between the North American M. cordata and the eastern Asian species occurred about 9.81 Mya according to the Bayesian relaxed clock methods applied to the combined nuclear data. Biogeographic analyses suggest a primary role of the Arcto-Tertiary flora in the study taxa distribution, with a northeast Asian origin of Meehania. Our results suggest an Arcto-Tertiary origin of Meehania, with its present distribution most probably being a result of vicariance and southward migrations of populations during climatic oscillations in the middle Miocene with subsequent migration into eastern North America via the Bering land bridge in the late Miocene.  相似文献   

4.
Chloroplast genome sequences have been used to understand evolutionary events and to infer efficiently phylogenetic relationships. Callitropsis funebris (Cupressaceae) is an endemic species in China. Its phylogenetic position is controversial due to morphological characters similar to those of Cupressus, Callitropsis, and Chamaecyparis. This study used next‐generation sequencing technology to sequence the complete chloroplast genome of Ca. funebris and then constructed the phylogenetic relationship between Ca. funebris and its related species based on a variety of data sets and methods. Simple sequence repeats (SSRs) and adaptive evolution analysis were also conducted. Our results showed that the monophyletic branch consisting of Ca. funebris and Cupressus tonkinensis is a sister to Cupressus, while Callitropsis is not monophyletic; Ca. nootkatensis and Ca. vietnamensis are nested in turn at the base of the monophyletic group Hesperocyparis. The statistical results of SSRs supported the closest relationship between Ca. funebris and Cupressus. By performing adaptive evolution analysis under the phylogenetic background of Cupressales, the Branch model detected three genes and the Site model detected 10 genes under positive selection; and the Branch‐Site model uncovered that rpoA has experienced positive selection in the Ca. funebries branch. Molecular analysis from the chloroplast genome highly supported that Ca. funebris is at the base of Cupressus. Of note, SSR features were found to be able to shed some light on phylogenetic relationships. In short, this chloroplast genomic study has provided new insights into the phylogeny of Ca. funebris and revealed multiple chloroplast genes possibly undergoing adaptive evolution.  相似文献   

5.
Subgenus Nothofagus, although geographically restricted at present to temperate areas of South America, has captured much attention in discussions of plant biogeography due to its widespread distribution through Gondwanan continents during the Tertiary. However, phylogenetic relationships within the subgenus Nothofagus have not yet been resolved. We examined geographic patterns of intraspecific and interspecific genetic variation to detect whether incongruences in nuclear or plastid DNA phylogenies occur, in order to better understand the evolutionary history of the subgenus Nothofagus. We conducted spatially-explicit sampling at 10 distinct locations throughout the range of austral South American forests and sampled all present Nothofagus species. We used ITS and chloroplast DNA sequences to estimate phylogenetic relationships. A phylogeny constructed from nuclear genes resolved the subgenus Nothofagus as monophyletic. We found that N. antarctica was a sister to a clade of evergreen species (N. betuloides, N. dombeyi, and N. nitida), while N. pumilio likely diverged earlier. Nine cpDNA haplotypes were distinguished in the subgenus Nothofagus which were associated to geographic locations rather than to taxonomic relationships. This species-independent cpDNA phylogeographic structures within the subgenus Nothofagus may be related to repeated chloroplast capture events over geological time in Patagonia.  相似文献   

6.
Aim To reconstruct the temporal and biogeographical history of Old World disjunctions in Scabiosa (Dipsacaceae) and the timing of diversification in the Mediterranean Basin, in order to evaluate the importance of biogeographical and climatological history (particularly the onset of a mediterranean climate) in shaping Scabiosa distributions. Location Europe and the Mediterranean Basin, southern Africa and eastern Asia. Methods This study uses maximum‐likelihood and Bayesian phylogenetic analyses of chloroplast DNA (atpB–rbcL, trnL–trnF, trnS–trnG, psbA–trnH) and nuclear ribosomal DNA [internal transcribed spacer (ITS) and external transcribed spacer (ETS)] from 24 out of c. 37 ingroup taxa, beast molecular dating, and the dispersal–extinction–cladogenesis method (Lagrange ) to reconstruct ancestral geographical ranges and the timing of diversification of the major clades of Scabiosa. Results Biogeographical and divergence time reconstructions showed that Scabiosa originated during the Miocene and diversified in Europe, followed by independent movements into Asia and Africa. Several of the major clades were inferred to have radiated sometime between the late Miocene and early Pleistocene, a timeframe that encompasses the onset of the mediterranean climate in Europe. More recent middle–late Pleistocene radiations in the Mediterranean Basin and southern Africa have played a large role in Scabiosa diversification. Main conclusions Members of Scabiosa appear to have capitalized on adaptations to montane and/or dry conditions in order to colonize similar habitats in different biogeographical regions. The formation of the East African Rift mountains is potentially of great importance in explaining the southward migration of Scabiosa. The initial diversification of Scabiosa in Europe during the Miocene is not consistent with the initiation of the mediterranean climate, but may instead be associated with increased aridity and the retreat of subtropical lineages during this time. However, the radiation of some of the major subclades within Scabiosa may have been associated with an emerging mediterranean climate. More recent and rapid radiations in both the Mediterranean Basin and southern Africa highlight the probable importance of Pleistocene climate fluctuations in Scabiosa diversification.  相似文献   

7.

Background and Aims

The oriental forest ecosystem in Madagascar has been seriously impacted by fragmentation. The pattern of genetic diversity was analysed on a tree species, Dalbergia monticola, which plays an important economic role in Madagascar and is one of the many endangered tree species in the eastern forest.

Methods

Leaves from 546 individuals belonging to 18 small populations affected by different levels of fragmentation were genotyped using eight nuclear (nuc) and three chloroplast (cp) microsatellite markers.

Key Results

For nuclear microsatellites, allelic richness (R) and heterozygosity (He,nuc) differed between types of forest: R = 7·36 and R = 9·55, He,nuc = 0·64 and He,nuc = 0·80 in fragmented and non-fragmented forest, respectively, but the differences were not significant. Only the mean number of alleles (Na,nuc) and the fixation index FIS differed significantly: Na,nuc = 9·41 and Na,nuc = 13·18, FIS = 0·06 and FIS = 0·15 in fragmented and non-fragmented forests, respectively. For chloroplast microsatellites, estimated genetic diversity was higher in non-fragmented forest, but the difference was not significant. No recent bottleneck effect was detected for either population. Overall differentiation was low for nuclear microsatellites (FST,nuc = 0·08) and moderate for chloroplast microsatellites (FST,cp = 0·49). A clear relationship was observed between genetic and geographic distance (r = 0·42 P < 0·01 and r = 0·42 P = 0·03 for nuclear and chloroplast microsatellites, respectively), suggesting a pattern of isolation by distance. Analysis of population structure using the neighbor-joining method or Bayesian models separated southern populations from central and northern populations with nuclear microsatellites, and grouped the population according to regions with chloroplast microsatellites, but did not separate the fragmented populations.

Conclusions

Residual diversity and genetic structure of populations of D. monticola in Madagascar suggest a limited impact of fragmentation on molecular genetic parameters.  相似文献   

8.
To study the phylogenetic relationships, evolutionary history, and molecular systematics of firs (genus Abies), the phylogenetic reconstruction, based on nuclear multilocus markers—amplified fragment length polymorphism (AFLP)—was conducted. Using seven combinations of selective primers, 84 samples of 39 taxa were genotyped for 553 polymorphic AFLP loci. A comparison with our earlier chloroplast and mitochondrial phylogenies of the genus (in 2014) shows that the nuclear phylogeny generally is more congruent to the chloroplast tree. Most of the clades resolved by the chloroplast phylogeny were supported also in the AFLP tree. Employing the nuclear DNA-based tree, we revealed the presence of new groups and the differences in the topology of several clades. AFLP confirmed the monophyly of Asian species of section Balsamea and their sister position in relation to the American group of species of this section. As shown by the tree of chloroplast DNA, Asian species of section Balsamea do not form a monophyletic group, but belong to the clade comprising the majority of Asian species. Phylogenetically mitochondrial DNA data to a large extent are not congruent to the nuclear and chloroplast DNA trees, and are more in line with geographical distribution of species. Conflicts between nuclear and cytoplasmic phylogeny were analyzed. Taking them into account, we consider the hypothesis of a hybrid origin of particular groups of firs, including ancient hybridization in section Balsamea. A comparison of molecular data with traditional taxonomy of the genus is discussed.  相似文献   

9.
The cosmopolitan genus Fraxinus, which comprises about 40 species of temperate trees and shrubs occupying various habitats in the Northern Hemisphere, represents a useful model to study speciation in long-lived angiosperms. We used nuclear external transcribed spacers (nETS), phantastica gene sequences, and two chloroplast loci (trnH-psbA and rpl32-trnL) in combination with previously published and newly obtained nITS sequences to produce a time-calibrated multi-locus phylogeny of the genus. We then inferred the biogeographic history and evolution of floral morphology. An early dispersal event could be inferred from North America to Asia during the Oligocene, leading to the diversification of the section Melioides sensus lato. Another intercontinental dispersal originating from the Eurasian section of Fraxinus could be dated from the Miocene and resulted in the speciation of F. nigra in North America. In addition, vicariance was inferred to account for the distribution of the other Old World species (sections Sciadanthus, Fraxinus and Ornus). Geographic speciation likely involving dispersal and vicariance could also be inferred from the phylogenetic grouping of geographically close taxa. Molecular dating suggested that the initial divergence of the taxonomical sections occurred during the middle and late Eocene and Oligocene periods, whereas diversification within sections occurred mostly during the late Oligocene and Miocene, which is consistent with the climate warming and accompanying large distributional changes observed during these periods. These various results underline the importance of dispersal and vicariance in promoting geographic speciation and diversification in Fraxinus. Similarities in life history, reproductive and demographic attributes as well as geographical distribution patterns suggest that many other temperate trees should exhibit similar speciation patterns. On the other hand, the observed parallel evolution and reversions in floral morphology would imply a major influence of environmental pressure. The phylogeny obtained and its biogeographical implications should facilitate future studies on the evolution of complex adaptive characters, such as habitat preference, and their possible roles in promoting divergent evolution in trees.  相似文献   

10.
《Plant Ecology & Diversity》2013,6(5-6):379-387
Background: The disjunct distribution patterns of a taxon may arise when previously continuous distribution ranges are fragmented. The phenomena of vicariance and dispersal, together with hybridisation as an important source of genetic variation in natural populations, can play an important role for structuring the distribution of taxa.

Aims: We investigated the biogeographical relationships of the Iberian endemic plant Ranunculus angustifolius s.l. by reconstructing ancestral geographical distributions, using a combination of phylogenetic and distributional information.

Methods: Phylogenetic and network analyses of nuclear internal transcribed spacers and plastid sequence data (rpl32-trnL, rps16-trnQ, trnK-matK and ycf6-psbM) were used to infer vicariance and dispersal events.

Results: Phylogenetic and biogeographical analyses suggested that both dispersal and vicariance were important in creating the current disjunct distribution pattern. Some other factors, such as hybridisation, introgression and vicariance (or pseudovicariance), were important in the evolutionary history of the taxa R. angustifolius s.l.

Conclusions: Our results demonstrate the importance for analysing biogeographical patterns with the use of both nuclear and chloroplast DNA to infer the evolutionary history of plant species with a disjunct distribution. Our results show that phenomena such as dispersal, vicariance and pseudovicariance are not mutually exclusive.  相似文献   

11.
We analyzed nuclear and chloroplast microsatellite makers to assess genetic diversity and examine genetic structure of two mangrove tree species, Bruguiera gymnorrhiza and Kandelia obovata recovered from nine major river basins of Iriomote Island of the Ryukyu Archipelago, Japan. The average number of alleles per nuclear locus per population was 2.6 in B. gymnorrhiza and 1.7 in K. obovata. Bayesian clustering analysis using InStruct identified two genetic clusters in B. gymnorrhiza and three clusters in K. obovata. Chloroplast microsatellites revealed two dominant haplotypes from B. gymnorrhiza and three haplotypes from K. obovata. The overall result suggests low genetic diversity for both species. AMOVA for nuclear microsatellites showed 9.3?% of population variation in B. gymnorrhiza. Although genetic differentiation between several populations was significant in this species, F ST suggested low to moderate level of differentiations between most of the populations. Distribution of genetic clusters and chloroplast haplotypes also suggested weak differentiations among B. gymnorrhiza populations. In K. obovata, population variation was, however, relatively high (27.8?%). The high differentiation between K. obovata populations was also suggested from the F ST and genetic clusters from nuclear microsatellites, and chloroplast haplotypes. A significant correlation between chloroplast genetic distances and coastline distances as well as haplotype distributions for both species suggest that propagules from each species mostly disperse to the neighboring river basins. While significant F IS and higher percentage of admixed clusters from nuclear microsatellites suggested inbreeding, continual gene exchange by propagule dispersal among populations especially among neighboring populations was suggested for both species from maternally inherited chloroplast microsatellites analyses.  相似文献   

12.
13.
The synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein (HSP) in the chloroplast membranes was studied in pea plants and Chlamydomonas reinhardi. HSPs were detected in both systems by in vivo labeling and in vitro translation of poly(A)+RNA, using the wheat-germ and reticulocyte lysate systems. Heat-shock treatment of pea plants for 2 h at 42-45°C induces the expression of ˜10 nuclear coded proteins, among which several (18 kd, 19 kd, 22 kd) are predominant. A 22-kd protein is synthesized as a 26-kd precursor protein and is localized in a chloroplast membrane fraction in vivo. Following post-translational transport into intact chloroplasts in vitro of the 26-kd precursor, the protein is processed but the resulting 22-kd mature protein is localized in the chloroplast stroma. If, however, the in vitro transport is carried out with chloroplasts from heat-shocked plants, the 22-kd protein is preferentially transported to the chloroplast membrane fraction. In C. reinhardi the synthesis of poly(A)+RNAs coding for several HSPs is progressively and sequentially induced when raising the temperature for 1.5 h from 36°C to 42°C, while that of several preexisting RNAs is reduced. Various pre-existing poly(A)+RNAs endure in the cells at 42°C up to 5 h but are no longer translated in vivo, whereas some poly(A)RNAs persist and are translated. As in pea, a poly(A)+RNA coded 22-kd HSP is localized in the chloroplast membranes in vivo, although it is translated as a 22-kd protein in vitro. The in vitro translated protein is not transported in isolated pea chloroplast which, however, processes and transports other nuclear coded chloroplast proteins of Chlamydomonas. The poly(A)+RNA coding for the 22-kd HSP appears after 1 h at 36°C. Its synthesis increases with the temperature of incubation up to 42°C, although it decreases after ˜2 h of heat treatment and the already synthesized RNA is rapidly degraded. The degradation is faster upon return of the cells to 26°C. None of the heat-induced proteins is identical to the light-inducible proteins of the chloroplast membranes.  相似文献   

14.
Rhinanthoid Orobanchaceae form a monophyletic lineage that include the hemiparasitic genera Euphrasia, Melampyrum, Tozzia, Bartsia, Nothobartsia, Odontites (s.l.), Rhinanthus, Rhynchocorys, Parentucellia, Hedbergia and holoparasitic Lathraea. In this study, we aimed to reconstruct the phylogeny, evolution of life-history traits (life cycle and seed size) and explain the extant biogeographical patterns in this group. For phylogenetic reconstruction, we used molecular data obtained by sequencing the nuclear ITS region and the chloroplast trnT-trnL intergenic spacer and matK?+?trnK regions. The genus Melampyrum was found to occupy the sister position to the rest of the group. The other genera were assembled in the sister Rhinanthus-Rhynchocorys-Lathraea and Bartsia-Euphrasia-Odontites subclades. The reconstruction of life-cycle evolution yielded ambiguous results suggesting nonetheless a substantially higher likelihood of perenniality compared to annuality in most ancestor lineages. Seed size varied across two orders of magnitude (average weight per seed: 0.02–7.22 mg) and tended to decrease in the Bartsia-Euphrasia-Odontites subclade compared to the rest of the group. Seed-size evolution was correlated with life-history evolution in the group if the generally small-seeded Bartsia-Euphrasia-Odontites subclade is excluded. We formulated hypotheses relating the extant biogeographical affinities of individual genera to the geological history of the Euro-Caucasian diversity center of the group. Notable dispersal events in Euphrasia and Bartsia were hypothesized to be allowed or at least facilitated by a specific combination of the life-history traits.  相似文献   

15.
The genus Blumea (Asteroideae, Asteraceae) comprises about 100 species, including herbs, shrubs, and small trees. Previous studies have been unable to resolve taxonomic issues and the phylogeny of the genus Blumea due to the low polymorphism of molecular markers. Therefore, suitable polymorphic regions need to be identified. Here, we de novo assembled plastomes of the three Blumea species Boxyodonta, B. tenella, and B. balsamifera and compared them with 26 other species of Asteroideae after correction of annotations. These species have quadripartite plastomes with similar gene content, genome organization, and inverted repeat contraction and expansion comprising 113 genes, including 80 protein‐coding, 29 transfer RNA, and 4 ribosomal RNA genes. The comparative analysis of codon usage, amino acid frequency, microsatellite repeats, oligonucleotide repeats, and transition and transversion substitutions has revealed high resemblance among the newly assembled species of Blumea. We identified 10 highly polymorphic regions with nucleotide diversity above 0.02, including rps16‐trnQ, ycf1, ndhF‐rpl32, petN‐psbM, and rpl32‐trnL, and they may be suitable for the development of robust, authentic, and cost‐effective markers for barcoding and inference of the phylogeny of the genus Blumea. Among these highly polymorphic regions, five regions also co‐occurred with oligonucleotide repeats and support use of repeats as a proxy for the identification of polymorphic loci. The phylogenetic analysis revealed a close relationship between Blumea and Pluchea within the tribe Inuleae. At tribe level, our phylogeny supports a sister relationship between Astereae and Anthemideae rooted as Gnaphalieae, Calenduleae, and Senecioneae. These results are contradictory to recent studies which reported a sister relationship between “Senecioneae and Anthemideae” and “Astereae and Gnaphalieae” or a sister relationship between Astereae and Gnaphalieae rooted as Calenduleae, Anthemideae, and then Senecioneae using nuclear genome sequences. The conflicting phylogenetic signals observed at the tribal level between plastidt and nuclear genome data require further investigation.  相似文献   

16.
The genus Scrophularia L. (Scrophulariaceae) comprises 200?C300 species, of which approximately 19 are distributed in North America and the Greater Antilles. To investigate phylogenetic and biogeographic relationships of the New World species, two intergenic spacers (trnQ-rps16 and psbA-trnH) of chloroplast DNA and nuclear ribosomal ITS were sequenced. Phylogenetic analyses revealed three distinct New World clades that correspond to their geographical distribution and are corroborated by morphological characters. Phylogenetic inference indicates the eastern American S. marilandica L. as sister to all Antillean species; for colonization of the Caribbean archipelago, a late Miocene dispersal event from the North American mainland is assumed. There is evidence for a hybrid origin of the most widespread North American species, S. lanceolata Pursh. The results further suggest that S. nodosa L. is sister to all New World and three Japanese species of Scrophularia. The latter form an Eastern Asian?CEastern North American (EA-ENA) disjunction with six New World species. We propose an eastern Asian origin for the New World taxa of Scrophularia. Divergence times estimated using a relaxed molecular clock model suggest one or more Miocene migration events from eastern Asia to the New World via the Bering Land Bridge followed by diversification in North America.  相似文献   

17.
Tribe Theeae, which includes some economically important and widely grown plants, such as beverage tea and a number of woody ornamentals, is the largest member of the Theaceae family. Using five genomic regions (chloroplast: atpI-H, matK, psbA5''R-ALS-11F, rbcL; nuclear: LEAFY) and 30 species representing four of the five genera in this tribe (Apterosperma, Camellia, Polyspora, and Pyrenaria s.l.), we investigated the phylogeny of Theeae and assessed the delimitation of genera in the tribe. Our results showed that Polyspora was monophyletic and the sister of the three other genera of Theeae investigated, Camellia was paraphyletic and Pyrenaria was polyphyletic. The inconsistent phylogenetic placement of some species of Theeae between the nuclear and chloroplast trees suggested widespread hybridization between Camellia and Pyrenaria, Polyspora and Parapyrenaria. These results indicate that hybridization, rather than morphological homoplasy, has confused the current classification of Theeae. In addition, the phylogenetic placement and possible allies of Laplacea are also discussed.  相似文献   

18.
Lathyrus L. is an important genus contributing in human food, animal feed and fodder. The genetic variation is studied among and within six species sampled over a large geographical area: Lathyrus cicera, Lathyrus sativus, Lathyrus sylvestris, Lathyrus tuberosus, Lathyrus ochrus and Lathyrus aphaca. The phylogenetic relationship among these species was assessed using sequences of chloroplast DNA trnH-psbA (intergenic spacer). The highly polymorphic spacer' length was 330 bp. The phylogenetic analyses using Maximum Parsimony and Genetic Distances, agreed with the universal taxonomy of Kupicha. L. sativus and L. cicera could be considered as sister species, sharing a common ancestor.  相似文献   

19.
A phylogenetic study of firs (Abies Mill.) was conducted using nucleotide sequences of several chloroplast DNA regions with a total length of 5580 bp. The analysis included 37 taxa, which represented the main evolutionary lineages of the genus, and Keteleeria davidiana. According to phylogenetic reconstruction, the Abies species were subdivided into six main groups, generally corresponding to their geographic distribution. The phylogenetic tree had three basal clades. All of these clades contained American species, and only one of them contained Eurasian species. The divergence time calibrations, based on paleobotanical data and the chloroplast DNA mutation rate estimates in Pinaceae, produced similar results. The age of diversification among the basal clades of the present-day Abies was estimated as the end of the Oligocene-beginning of Miocene. The age of the separation of Mediterranean firs from the Asian-North American branch corresponds to the Miocene. The age of diversification within the young groups of Mediterranean, Asian, and “boreal” American firs (A. lasiocarpa, A. balsamea, A. fraseri) was estimated as the Pliocene-Pleistocene. Based on the phylogenetic reconstruction obtained, the most plausible biogeographic scenarios were suggested. It is noted that the existing systematic classification of the genus Abies strongly contradicts with phylogenetic reconstruction and requires revision.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号