首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Notch function in the vasculature: insights from zebrafish, mouse and man   总被引:17,自引:0,他引:17  
Vascular development entails multiple cell-fate decisions to specify a diverse array of vascular structures. Notch proteins are signaling receptors that regulate cell-fate determination in a variety of cell types. The finding that Notch genes are robustly expressed in the vasculature suggests roles for Notch in guiding endothelial and associated mural cells through the myriad of cell-fate decisions needed to form the vasculature. In fact, mice with defects in genes encoding Notch, Notch ligands, and components of the Notch signaling cascade invariably display vascular defects. Human Notch genes are linked to Alagille's Syndrome, a developmental disorder with vascular defects, and CADASIL, a cerebral arteriopathy. Studies in zebrafish, mice and humans indicate that Notch works in conjunction with other angiogenic pathways to pattern and stabilize the vasculature. Here, we will focus on established functions for Notch in vascular remodeling and arterial/venous specification and more speculative roles in vascular homeostasis and organ-specific angiogenesis.  相似文献   

2.
The formation of blood vessels within the vascular system entails a variety of cellular processes, including proliferation, migration and differentiation. In many cases, these diverse processes need to be finely coordinated among neighbouring endothelial cells in order to establish a functional vascular network. For instance, during angiogenic sprouting specialized endothelial tip cells follow guidance cues and migrate extensively into avascular tissues while trailing stalk cells must stay connected to the patent blood vessel. The vascular endothelial growth factor (VEGF) and Notch signalling pathways have emerged as the major players in governing these different cellular behaviours. In particular, recent work indicates an important role for Notch signalling in determining how an endothelial cell responds to VEGF. In this review, we provide an overview of these biochemically distinct pathways and discuss how they may interact during endothelial cell differentiation and angiogenesis.  相似文献   

3.
A plethora of biochemical signals provides spatial and temporal cues that carefully orchestrate the complex process of vertebrate embryonic development. The embryonic vasculature develops not only in the context of these biochemical cues, but also in the context of the biomechanical forces imparted by blood flow. In the mature vasculature, different blood flow regimes induce distinct genetic programs, and significant progress has been made toward understanding how these forces are perceived by endothelial cells and transduced into biochemical signals. However, it cannot be assumed that paradigms that govern the mature vasculature are pertinent to the developing embryonic vasculature. The embryonic vasculature can respond to the mechanical forces of blood flow, and these responses are critical in vascular remodeling, certain aspects of sprouting angiogenesis, and maintenance of arterial–venous identity. Here, we review data regarding mechanistic aspects of endothelial cell mechanotransduction, with a focus on the response to shear stress, and elaborate upon the multifarious effects of shear stress on the embryonic vasculature. In addition, we discuss emerging predictive vascular growth models and highlight the prospect of combining signaling pathway information with computational modeling. We assert that correlation of precise measurements of hemodynamic parameters with effects on endothelial cell gene expression and cell behavior is required for fully understanding how blood flow-induced loading governs normal vascular development and shapes congenital cardiovascular abnormalities.  相似文献   

4.
Periodic Delta-like 4 expression in developing retinal arteries   总被引:6,自引:0,他引:6  
During vascular development, Notch signalling plays important roles in cell-cell communication and cell fate decisions. We studied expression of Notch 1-4 and its ligand Delta-like 4 (Dll4) in the developing retinal vasculature. Dll4 mRNA is strongly expressed in endothelial cells at the very tips of growing vessels ('tip cells') and also in arteries, where it is expressed in a segmented 'tiger's tail' pattern. This implies that developing retinal arteries contain different types of endothelial cells, Dll4-positive and Dll4-negative. The Dll4-positive stripes do not correspond to any obvious morphological property of the vascular network but correlate to some extent with the distribution of platelet derived growth factor B (PDGF-B) mRNA. However, PDGF-B expression is neither as artery-specific nor as clearly segmented as Dll4. Possible target cells for Dll4 signalling are retinal astrocytes (Notch1 positive), arterial pericytes (Notch3 positive) or arterial endothelial cells themselves (Notch4 positive). However, there is no clear reciprocity of Notch and Dll4 expression that allows identification of the interacting cells. Nevertheless, Dll4 stripes are a novel property of immature arteries, the origin and function of which remain to be explained.  相似文献   

5.
Blood vessels are crucial for tissue development, functionality, and homeostasis and are typically a determinant in the progression of healing and regeneration. The tissue microenvironment provides physicochemical cues that affect cellular function, and the study of the microenvironment can be accelerated by the engineering of approaches capable of mimicking various aspects of the microenvironment. In this review, we introduce the major components of the vascular niche and focus on the roles of oxygen and the extracellular matrix (ECM). We demonstrate how vascular engineering approaches enhance our understanding of the microenvironment’s impact on the vasculature towards vascular regeneration and describe the current limitations and future directions towards clinical utilization.  相似文献   

6.
The critical contribution of the Notch signaling pathway to vascular morphogenesis has been underscored by loss-of-function studies in mouse and zebrafish. Nonetheless, a comprehensive understanding as to how this signaling system influences the formation of blood vessels at the cellular and molecular level is far from reached. Here, we provide a detailed analysis of the distribution of active Notch1 in relation to its DSL (Delta, Serrate, Lag2) ligands, Jagged1, Delta-like1, and Delta-like4, during progressive stages of vascular morphogenesis and maturation. Important differences in the cellular distribution of Notch ligands were found. Jagged1 (Jag1) was detected in "stalk cells" of the leading vasculature and at arterial branch points, a site where Delta-like4 (Dll4) was clearly absent. Dll4 was the only ligand expressed in "tip cells" at the end of the growing vascular sprouts. It was also present in stalk cells, capillaries, arterial endothelium, and in mural cells of mature arteries in a homogenous manner. Delta-like1 (Dll1) was observed in both arteries and veins of the developing network, but was also excluded from mature arterial branch points. These findings support alternative and distinct roles for Notch ligands during the angiogenic process.  相似文献   

7.
Zheng M  Zhang Z  Zhao X  Ding Y  Han H 《遗传学报》2010,37(9):573-582
The retina is one of the most essential elements of vision pathway in vertebrate. The dysplasia of retina cause congenital blindness or vision disability in individuals, and the misbalance in adult retinal vascular homeostasis leads to neovaseularization-associated diseases in adults, such as diabetic retinopathy or age-related macular degeneration. Many developmental signaling pathways are involved in the process of retinal development and vascular homeostasis. Among them, Notch signaling pathway has long been studied, and Notch signaling-interfered mouse models show both neural retina dysplasia and vascular abnormality. In this review, we discuss the roles of Notch signaling in the maintenance of retinal progenitor cells, specification of retinal neurons and glial cells, and the sustaining of retina vascular homeostasis, especially from the aspects of conditional knockout mouse models. The potential of Notch signal mampulation may provide a powerful cell fate- and neovascularization-controlling tool that could have important applications in la'eatment of retinal diseases.  相似文献   

8.
Whereas targeting the cyst epithelium and its molecular machinery has been the prevailing clinical strategy for polycystic kidney disease, the endothelium, including blood vasculature and lymphatics, is emerging as an important player in this disorder. In this Review, we provide an overview of the structural and functional alterations to blood vasculature and lymphatic vessels in the polycystic kidney. We also discuss evidence for vascular endothelial growth factor signalling, otherwise critical for endothelial cell development and maintenance, as being a fundamental molecular pathway in polycystic kidney disease and a potential therapeutic target for modulating cyst expansion.  相似文献   

9.
Notch signaling is an evolutionarily conserved intercellular signaling pathway that plays numerous crucial roles in vascular development and physiology. Compelling evidence indicates that Notch signaling is vital for vascular morphogenesis including arterial and venous differentiation and endothelial tip and stalk cell specification during sprouting angiogenesis and also vessel maturation featured by mural cell differentiation and recruitment. Notch signaling is also required for vascular homeostasis in adults by keeping quiescent phalanx cells from re-entering cell cycle and by modulating the behavior of endothelial progenitor cells. We will summarize recent advances of Notch pathway in vascular biology with special emphasis on the underlying molecular mechanisms.  相似文献   

10.
Notch signaling in vascular development and physiology   总被引:10,自引:0,他引:10  
Notch signaling is an ancient intercellular signaling mechanism that plays myriad roles during vascular development and physiology in vertebrates. These roles include regulation of artery/vein differentiation in endothelial and vascular smooth muscle cells, regulation of blood vessel sprouting and branching during both normal development and tumor angiogenesis, and the differentiation and physiological responses of vascular smooth muscle cells. Defects in Notch signaling also cause inherited vascular and cardiovascular diseases. In this review, I summarize recent findings and discuss the growing relevance of Notch pathway modulation for therapeutic applications in disease.  相似文献   

11.
Cellular signalling by sphingosine kinase and sphingosine 1-phosphate   总被引:2,自引:0,他引:2  
Leclercq TM  Pitson SM 《IUBMB life》2006,58(8):467-472
Sphingosine kinases, through the formation of the bioactive phospholipid sphingosine 1-phosphate, have been implicated in a diverse range of cellular processes, including cell proliferation, apoptosis, calcium homeostasis, angiogenesis and vascular maturation. The last few years have seen a number of significant advances in understanding of the mechanisms of action, activation, cellular localisation and biological roles of these enzymes. Here we review the current understanding of the regulation of and cellular signalling by sphingosine kinase and sphingosine 1-phosphate and discuss recent findings implicating sphingosine kinase as a potential therapeutic target for the control of cancer, inflammation and a number of other diseases. We suggest that, since the activation and subcellular localization of these enzymes appear to play critical roles in their biological functions, targeting these processes may provide more specific therapeutic options than direct catalytic inhibitors.  相似文献   

12.
As our understanding of cellular behaviour grows, and we identify more and more genes involved in the control of such basic processes as cell division and programmed cell death, it becomes increasingly difficult to integrate such detailed knowledge into a meaningful whole. This is an area where mathematical modelling can complement experimental approaches, and even simple mathematical models can yield useful biological insights. This review presents examples of this in the context of understanding the combined effects of different levels of cell death and cell division in a number of biological systems including tumour growth, the homeostasis of immune memory and pre-implantation embryo development. The models we describe, although simplistic, yield insight into several phenomena that are difficult to understand using a purely experimental approach. This includes the different roles played by the apoptosis of stem cells and differentiated cells in determining whether or not a tumour can grow; the way in which a density dependent rate of apoptosis (for instance mediated by cell-cell contact or cytokine signalling) can lead to homeostasis; and the effect of stochastic fluctuations when the number of cells involved is small. We also highlight how models can maximize the amount of information that can be extracted from limited experimental data. The review concludes by summarizing the various mathematical frameworks that can be used to develop new models and the type of biological information that is required to do this.  相似文献   

13.
14.
Notch和Wnt信号通路能够调控细胞的分化、增殖、迁移和粘附等多种行为,在胚胎发育、干细胞分化及肿瘤生长等方面发挥多样性的调控作用.血管形成过程中的典型事件包括尖端细胞(tipcell)和柄细胞(stalkcell)分化、柄细胞增殖、内皮细胞迁移和粘附、血管重塑以及动静脉分化等.本文对Notch和Wnt信号通路在血管形成不同阶段的功能作一综述,以期描述Notch和Wnt是怎样在分子水平上协同作用进而调控血管的形成.从两条信号通路的分子水平及复杂信号网络中众多成员协调作用的角度了解血管形成的机制,对于调整肿瘤等涉及血管形成的相关疾病的治疗策略具有一定意义.  相似文献   

15.
Therapeutic angiogenesis is an attractive strategy to treat patients suffering from peripheral or coronary artery disease. VEGF (vascular endothelial growth factor-A) is the fundamental factor controlling vascular growth in both development and postnatal life. The interplay between the VEGF and Notch signalling pathway has been recently found to regulate the morphogenic events leading to the growth of new vessels by sprouting. Angiogenesis can also take place by an alternative process, i.e. intussusception or vascular splitting. However, little is known about its role in therapeutic angiogenesis and its molecular regulation. In the present article, we briefly review how VEGF dose determines the induction of normal or aberrant angiogenesis and the molecular regulation of sprouting angiogenesis by Notch signalling, and compare this process with intussusception.  相似文献   

16.
The Notch signalling pathway is repeatedly employed during embryonic development and adult homeostasis of a variety of tissues. In particular, its frequent involvement in the regulation of stem and progenitor cell maintenance and proliferation, as well as its role in binary fate decisions in cells that are destined to differentiate, is remarkable. Here, we review its role in the development of haematopoietic stem cells during vertebrate embryogenesis and put it into the context of Notch's functions in arterial specification, angiogenic vessel sprouting and vessel maintenance. We further discuss interactions with other signalling cascades, and pinpoint open questions and some of the challenges that lie ahead. J. Cell. Physiol. 222:11–16, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Tubular sprouting in angiogenesis relies on division of labour between the endothelial tip cell, leading and guiding the sprout and their neighbouring stalk cells, which divide and form the vascular lumen. We previously learned how the graded extracellular distribution of heparin-binding Vascular Endothelial Growth Factor (VEGF)-A orchestrates and balances tip and stalk cell behaviour. Recent data now provided insight into the regulation of tip cell numbers, illustrating how Delta-like (Dll)4 – Notch signalling functions to limit the explorative tip cell behaviour induced by VEGF-A. These data also provided a first answer to the question why not all endothelial cells stimulated by VEGF-A turn into tip cells. Here we review this new model and discuss how VEGF-A and Dll4/Notch signalling may interact dynamically at cellular level to control vascular patterning.  相似文献   

18.
19.
Cao R  Jensen LD  Söll I  Hauptmann G  Cao Y 《PloS one》2008,3(7):e2748
Mechanistic understanding and defining novel therapeutic targets of diabetic retinopathy and age-related macular degeneration (AMD) have been hampered by a lack of appropriate adult animal models. Here we describe a simple and highly reproducible adult fli-EGFP transgenic zebrafish model to study retinal angiogenesis. The retinal vasculature in the adult zebrafish is highly organized and hypoxia-induced neovascularization occurs in a predictable area of capillary plexuses. New retinal vessels and vascular sprouts can be accurately measured and quantified. Orally active anti-VEGF agents including sunitinib and ZM323881 effectively block hypoxia-induced retinal neovascularization. Intriguingly, blockage of the Notch signaling pathway by the inhibitor DAPT under hypoxia, results in a high density of arterial sprouting in all optical arteries. The Notch suppression-induced arterial sprouting is dependent on tissue hypoxia. However, in the presence of DAPT substantial endothelial tip cell formation was detected only in optic capillary plexuses under normoxia. These findings suggest that hypoxia shifts the vascular targets of Notch inhibitors. Our findings for the first time show a clinically relevant retinal angiogenesis model in adult zebrafish, which might serve as a platform for studying mechanisms of retinal angiogenesis, for defining novel therapeutic targets, and for screening of novel antiangiogenic drugs.  相似文献   

20.
Delta/Notch signalling is of major importance for embryonic development and adult life. While endocytosis is often viewed as a way to down-regulate biological signals, ligand and receptor internalization are essential for Notch activation. The development of Drosophila mecanosensory bristles is a powerful model to study Delta/Notch signalling. Following the asymmetric division of bristle precursor cells, Delta ligands and Notch receptors traffic differently in the two daughter cells, leading to directional signal activation. Recent evidence suggests that in addition to differential ligand endocytosis after division, a subpopulation of multivesicular endosomes ensures the directional transport of Delta/Notch already during asymmetric cell division. Biochemical analysis suggests that different phases of endocytic Delta trafficking exert complementary but distinct actions required for ligand recycling, ligand/receptor interaction and ligand-mediated receptor activation, respectively. Finally, novel data suggest that different endosomal compartments may act as Delta/Notch signalling platforms. In this review, we discuss the implications of these novel findings for our cell biological understanding of Delta/Notch signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号