首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
To evaluate the possibility that the protooncogene c-myc plays a role in ventral prostate, the effects of castration have been investigated at a beginning of a period by Northern blot hybridization and the levels of c-myc mRNA were also compared with mRNA of androgen-regulated genes, C1 and TRPM-2. Levels of c-myc mRNA in ventral prostate increased with maximal stimulation reached at 6 hours (early induction) and 48 hours (late induction) after castration, respectively. The level of C1 mRNA did not change and TRPM-2 was not detected at early induction of c-myc mRNA after castration. The level of early induction of c-myc mRNA after castration was increased in ventral prostate treated with cycloheximide, but it was almost reduced by actinomycin-D pretreatment. Administration of androgen at the time of castration prevented early induction of c-myc mRNA. These results suggest that protooncogene c-myc is differentially regulated in ventral prostate after castration.  相似文献   

4.
Nuclear and cytosolic forms of a 20-kdalton rat ventral prostate protein were purified and partially sequenced from their N-termini. Isolated nuclei were treated with micrococcal nuclease and extracted in 0.6 M NaCl, and proteins were separated by affinity chromatography on Matrex gel green A, ammonium sulfate fractionation, and fast protein liquid chromatography on Superose 12. The 43 amino acid N-terminal sequence of the nuclear 20-kdalton protein was identical with the cytosolic protein except it lacked 7 N-terminal amino acids present in the cytosolic form. The DNA sequence of a full-length complementary DNA clone isolated from a ventral prostate gt11 library extended the N-terminal sequence of the cytosolic form by an additional nine amino acids from the predicted initiation methionine. The cDNA included the nucleotide sequence for the 43 amino acid N-terminal sequence of the purified 20-kdalton protein and predicted molecular weights of 16,686, 17,521, and 18,650, respectively, for the nuclear, cytoplasmic, and nonprocessed proteins. Northern blot analyses of reproductive tract tissue RNAs using the 20-kdalton protein cDNA as probe revealed a single mRNA species of 0.92 kb detectable only in extracts of rat ventral prostate. Expression of the 0.92-kb mRNA was androgen dependent since the mRNA was undetectable in extracts obtained 4 days after castration and was restored 16 h after restimulation with androgen.  相似文献   

5.
Autologous down-regulation of androgen receptor messenger ribonucleic acid   总被引:6,自引:0,他引:6  
Autoregulation of androgen receptor (AR) mRNA was investigated using Northern blot analysis with AR cDNA fragments as probes. The amount of AR mRNA increased 2- to 10-fold with androgen withdrawal and decreased below control levels after androgen stimulation in rat ventral prostate, coagulating gland, epididymis, seminal vesicle, kidney, and brain, and in a human prostate cancer cell line, LNCaP. In rat ventral prostate, AR mRNA increased 2- to 3-fold within 24 h after castration and remained elevated for 4 days. Treatment with testosterone propionate beginning 24 h after castration reduced ventral prostate AR mRNA 4-fold within 8 h of androgen replacement. Administration of estradiol 24 h after castration had no significant effect on prostatic AR mRNA. Androgens, including testosterone and the synthetic androgen methyltrienolone (R1881), or the antiandrogen cyproterone acetate down-regulated AR mRNA in vitro in LNCaP cells, whereas estradiol was without effect. Administration of testosterone propionate to rats with androgen insensitivity did not decrease AR mRNA. Down-regulation of AR mRNA by androgen is therefore a receptor-mediated process which occurs in vivo in rat tissues that differ in androgen responsiveness and in cultured human prostate cells.  相似文献   

6.
7.
The apoptotic cell death process in the prostate is known to be under the control of androgens. Tumor necrosis factor-alpha (TNF-alpha)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF-alpha family of cytokines, known to induce apoptosis upon binding to its death domain-containing receptors, DR4/TRAIL-R1 and DR5/TRAIL-R2. Two additional TRAIL receptors, DcR1/TRAIL-R3 and DcR2/TRAIL-R4, lack functional death domains and act as decoy receptors for TRAIL. In this study, we examined whether TRAIL and cellular receptors expression was targeted by androgens during the apoptotic cell death process in the hormone sensitive ventral prostate. The role of androgens was investigated using two sets of experiment. (1) Androgen deprivation associated with an apoptotic process resulted in a decrease in DcR2 mRNA and protein expression in the ventral prostate 3 days after castration. Testosterone administration to castrated adult rats prevented the decrease in DcR2 mRNA and protein levels in the ventral prostate. In contrast, DcR2 expression was modified, neither in the dorsolateral nor in the anterior prostate following castration. No changes were observed in DR4, DR5, DcR1, and TRAIL mRNA and protein levels in prostate after castration. (2) A specific decrease in DcR2 expression was observed in the ventral prostate after treatment of rats with the anti-androgen flutamide. Together, the present results suggest that testosterone specifically controls DcR2 expression in the adult rat ventral prostate. Androgen withdrawal, by reducing DcR2 expression, might leave the cells vulnerable to cell death signals generated by TRAIL via its functional receptors.  相似文献   

8.
9.
cDNA for mRNA of an androgen-dependent spermine-binding protein (SBP) of rat ventral prostate was cloned by inserting cDNA into a dG-tailed expression vector, pUC8, and screening the expression library with anti-SBP antibodies. Hybrid-selected translation using plasmid DNA from positive clones yielded a 34-kDa protein which was immunoprecipitated by affinity-purified anti-SBP antibodies. SBP mRNA is about 1260 bases long as measured by Northern blot hybridization. An amino acid sequence deduced from the nucleotide sequence of the cDNA was identical to an amino acid sequence found in SBP. SBP is extremely rich in acidic residues. Aspartic and glutamic acids, which make up about 33% of the total sequence, comprise 89 of a stretch of 126 amino acids at the carboxyl-terminal end. By dot hybridization analysis, SBP mRNA was not detected in rat liver, kidney, brain, submaxillary gland, or uterus. The prostate levels of SBP mRNA were measured by mRNA translation and dot hybridization. SBP mRNA level decreased to less than 20% of normal 2 days after castration of rats, and this decrease was reversed by 5 alpha-dihydrotestosterone injection into castrated rats.  相似文献   

10.
Farnesyl diphosphate synthase (FPPS) has been identified as an androgen-response gene in the rat ventral prostate using a highly sensitive PCR-based cDNA subtraction technique. FPPS is an essential enzyme that catalyzes the synthesis of farnesyl diphosphate (FPP), which is required for cholesterol biosynthesis as well as protein prenylation. We have characterized the expression of FPPS in the rat prostate in response to androgen manipulation. Northern blot analysis showed that castration induced a 10-fold down-regulation of FPPS mRNA within 24 h in the ventral prostate and androgen replacement up-regulated FPPS mRNA rapidly in the regressed ventral prostate of a castrated rat. The expression of FPPS was also regulated by androgen in the lateral and dorsal prostate, indicating that FPPS is important to androgen action in all three lobes of the prostate. Western blot analysis showed that FPPS protein level was also regulated by androgen in the prostate. Northern blot analysis of tissue specificity indicated that FPPS was most abundantly expressed in the ventral prostate of a mature rat and was responsive to androgen manipulation in the prostate and seminal vesicles, but not in other tissues. In situ hybridization study showed that FPPS mRNA was localized to the prostatic epithelium. Interestingly, the expression of FPPS was elevated in Dunning rat prostate tumor cell lines. The above findings suggest that FPPS has the potential to play an important role in androgen action and prostate cancer progression.  相似文献   

11.
Complementary DNA (cDNA) that codes for a major androgen-dependent secretory protein of rat coagulating gland and dorsal prostate, dorsal protein 1 (DP1), was isolated by molecular cloning. Recombinant DP1 cDNA clones were identified from a bacteriophage lambda gt11 rat coagulating gland expression library using an affinity purified polyclonal antibody. Amino acid sequence deduced from DNA contained sequences identical with several DP1 cyanogen bromide cleavage fragments. Northern blot hybridization of poly(A) RNA isolated from intact rat dorsal prostate and coagulating gland revealed a predominant messenger RNA (mRNA) species of approximately 3200 nucleotides. Tissue-specific expression of DP1 mRNA was indicated by the absence of DP1 mRNA in ventral prostate and other tissues of the rat. Expression of DP1 mRNA was androgen-dependent, decreasing approximately 80% 7 days after castration and increasing rapidly following androgen replacement. Southern blot analysis of restriction enzyme-digested rat DNA indicated that DP1 is encoded by a single gene and that no major genomic rearrangements accounted for its lack of expression in the dorsal prostate-derived rat Dunning tumor. Sequence comparisons revealed that rat prostate DP1 shares sequence identity with Factor XIIIa and tissue transglutaminase, including the active center, GQCWVF, indicating that DP1 is a member of the transglutaminase gene family.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Infection is associated with low serum thyroid hormones and thyrotropin levels. Here we demonstrate that infection also reduces thyroid hormone receptor (TR) expression. In gel shift experiments, retinoid X receptor (RXR)/TR DNA binding was reduced in mouse liver by 60 and 77%, respectively, 4 and 16 h after lipopolysaccharide (LPS) administration. Surprisingly, LPS did not decrease either TR-alpha or TR-beta protein levels at 4 h, but by 16 h TR-alpha(1), TR-alpha(2), and TR-beta levels were reduced by 55, 87, and 41%, respectively. We previously reported that LPS rapidly decreases RXR protein levels in liver. Therefore, we added RXR-beta to hepatic nuclear extracts prepared 4 h after LPS treatment, which restored RXR/TR DNA binding to a level comparable to that of controls. A similar experiment conducted on extracts prepared 16 h after LPS administration did not restore RXR/TR DNA binding. We propose that decreased RXR expression is limiting for RXR/TR DNA binding at 4 h, whereas the reduction in both TR and RXR levels results in further decreased binding at 16 h.  相似文献   

19.
The regression of the ventral prostate, after a rat is deprived of androgens by castration, is accompanied by a marked decrease in the prostate's ability to synthesize RNA and major proteins. Surprisingly, in vitro translation of prostate RNA, isolated from rats 2 days after castration, detects four proteins with Mr of approximately 29,000, 37,000, 46,000, and 49,000 whose message levels increased 4- to 12-fold compared to results from normal rats. According to cDNA dot hybridization analysis, the increase after castration in the level of the 29-kDa protein-mRNA (per unit amount of DNA) was reversed within 6 h by androgen treatment of castrated rats. In contrast, the level of a mRNA in male rat liver, which hybridized to a cloned probe for the prostate 29-kDa protein-mRNA was reduced by castration and increased by androgen treatment. During an in vitro incubation, the ventral prostates of normal rats were much less efficient than the prostates of rats castrated 2 days earlier in synthesizing a 29-kDa protein. Despite the fact that androgenic manipulation of rats induced very rapid and significant changes in the production of the 29-kDa protein and in the level of its mRNA, the cellular level of this protein in the prostate, as determined by radioimmunoassay, was maintained at near normal values throughout the 2-week experimental period. Thus, the prostate appears to have a mechanism, based on androgen repression of certain genes, to maintain the cellular levels of the 29-kDa protein and possibly other structurally or functionally important proteins during both the periods of androgen-dependent growth and the castration-induced regression. The loss of such a regulatory mechanism may result in androgen-independent abnormal prostate growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号