首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
人参茎叶提取物经β-糖苷酶催化水解后,经硅胶柱和RP-18柱反复层析纯化得8个化合物。通过波谱图分析及结合文献数据,分别鉴定为20(S)-达玛烷-3β,6α,12β,20,25-五醇(1)、人参皂苷compound K(2)、人参皂苷F1(3)、人参皂苷Rh13(4)、人参皂苷Rg2(5)、3β,20(S)-二羟基达玛烷-24-烯-12β,23β-环氧-20-O-β-D-吡喃葡萄糖苷(6)、人参皂苷Rg1(7)和人参皂苷Re(8)。其中化合物1为新的达玛烷皂苷元。化合物2为分离到仅有的原人参二醇型皂苷,表明该β-糖苷酶高效转化人参茎叶的原人参二醇型皂苷为人参皂苷compound K。  相似文献   

2.
人参皂苷是人参中的主要活性成分。人参皂苷中含量较高的主要成分如Rb1、Rb2、Rc、Rd、Rg1和Re均是在人参皂苷的苷元原人参二醇(APPD)或苷元原人参三醇(APPT)上加上不同数量的葡萄糖基、阿拉伯糖基、木糖基或鼠李糖基等糖基形成的。这些主要人参皂苷脱去部分或全部的糖基的产物具有更强的生物活性及更好的人体吸收率。去除糖基的产物如Rg3、Rh2、化合物K(C-K)、F2、Rh1、Rg1、APPD、APPT在天然人参中不存在或含量极低,因此也被称为稀有人参皂苷。稀有人参皂苷可以通过糖苷酶水解主要人参皂苷获得。已报道的具备人参皂苷水解活力的糖苷酶有β-葡萄糖苷酶、α-L-阿拉伯吡喃糖苷酶、α-L-阿拉伯呋喃糖苷酶、β-半乳糖苷酶及β-木糖苷酶。我们简要综述近5年来糖苷酶用于制备稀有人参皂苷的研究进展。  相似文献   

3.
为了研究葡萄糖苷酶催化三七提取物的水解产物中主要皂苷成分。采用色谱法从三七提取物水解产物中分离纯化得到11个皂苷成分。利用波谱解析确定了它们的结构,分别鉴定为20(S)-原人参二醇-20-O-β-D-吡喃木糖基-(1→6)-β-D-吡喃葡萄糖基-(1→6)-β-D-吡喃葡萄糖苷(1),以及10个已知的皂苷成分分别为:人参皂苷compound K(2)、3β,12β,20(S),25-四羟基达玛-23-烯-20-O-β-D-吡喃葡萄糖苷(3)、3β,20(S)-二羟基达玛-24-烯-12β,23β-环氧-20-O-β-D-吡喃葡萄糖苷(4)、3β,12β,20(S)-三羟基-25-过氧羟基达玛-23-烯-20-O-β-D-吡喃葡萄糖苷(5)、人参皂苷F1(6)、人参皂苷Rg1(7)、人参皂苷Rg2(8)、人参皂苷Mc(9)、20(S)-原人参二醇-3-O-β-D-吡喃木糖基-(1→2)-β-D-吡喃葡萄糖基-20-O-β-D-吡喃葡萄糖苷(10)和人参皂苷Re(11)。其中化合物1为新化合物,化合物3~5和10为首次从三七中被分离得到。  相似文献   

4.
通过DEAE-纤维素阴离子交换层析、30%~80%(NH3)2SO3盐析、Sepharose CL-6B凝胶过滤层析和Mono Q HR5/5阴离子交换层析,从毁灭枉孢菌培养液中部分纯化出一种能够水解人参皂苷Rb,的β-葡萄糖苷酶F-I。F—I具有较好的pH稳定性和热稳定性,在pH4.0~11.0范围内和55℃以下表现出良好的β-葡萄糖苷酶活性,其最适pH为5.0,最适温度为55℃。EDTA、Cu^2+和Zn^2+对该酶活性有较强的抑制作用。底物专一性分析表明,F—I能高特异性水解人工合成的底物pNPG,还能水解β-葡萄糖苷键连接的二糖如纤维二糖和龙胆二糖,说明此酶为一种β-葡萄糖苷酶。F—I对人参皂苷Rb1表现了较强的水解活性,而对人参皂苷Rb2和Rc的水解活性较低。该酶水解人参皂苷Rb1的路径为Rb1→Rd→F2→C—K。F—I对人参皂苷Rb1的这种高效水解为稀有人参皂苷的工业制备奠定了基础。  相似文献   

5.
一种真菌对人参皂苷Rg3的转化   总被引:8,自引:0,他引:8  
[目的]筛选长白山人参土壤中的活性微生物,转化人参总皂苷及单体人参皂苷产生稀有抗肿瘤成份.[方法]从长白山人参根际土壤中分离各类菌株,对人参总皂苷及单体人参皂苷进行微生物转化,并通过硅胶柱层析等方法对转化产物进行分离纯化,采用波谱解析及理化常数对其进行结构鉴定;结合菌落形态、产孢结构、孢子形态特征以及菌株ITS rDNA核酸序列分析,对活性菌株进行鉴定.[结果]从长白山人参根际土壤中分离各类真菌菌株68株,有12株菌株对人参总皂苷有转化活性,其中菌株SYP2353对二醇组人参皂苷Rg3具有较强的转化活性.[结论]阳性菌株SYP2353被鉴定为疣孢漆斑菌(Myrothecium verrucaria),能将人参皂苷Rg3转化为稀有人参皂苷Rh2及二醇组人参皂苷苷元PPD,为稀有人参皂苷Rh2的制备提供了新的方法.  相似文献   

6.
三七叶、人参叶和西洋参叶其皂苷类成分相近,但专属性成分各异,皂苷类成分的分布比例也各不相同。本文建立了HPLC-UV法测定上述皂苷成分的方法,经过方法学考察,各种皂苷成分精密度好、加样回收率高,方法可靠。11种皂苷成分总含量顺序为:西洋参叶>人参叶>三七叶;二醇组皂苷成分含量:西洋参叶>三七叶>人参叶;三醇组皂苷成分含量:人参叶>西洋参叶>三七叶。西洋参叶中二醇组皂苷和人参叶中三醇组皂苷含量明显高于其他。西洋参叶中人参皂苷Rb3和Rd的含量之和占11种皂苷成分的60%以上。鉴于其中人参皂苷的高含量,三七叶、人参叶和西洋参叶应该作为皂苷来源得到充分利用;不同的皂苷成分有不同的药理活性,应基于它们的皂苷组成和比例选择性进行研究和开发。  相似文献   

7.
采用硅胶柱层析、JTY树脂分离制备人参皂苷Rb3,薄层板(TLC)跟踪,高效液相色谱法(HPLC)检测。目的是研究西洋参叶中不同浓度的人参皂苷Rb3对胰脂肪酶的抑制作用影响,从而表明人参皂苷Rb3在抗肥胖中的作用。用制得的人参皂苷Rb3,在卵磷脂所乳化的甘油三酯的检测系统中进行体外胰脂肪酶抑制实验。结果表明:制得的人参皂苷Rb3经过三种不同展开剂,薄层板展开,均为一个点,进一步经HPLC检测其纯度为93.2%。胰脂肪酶抑制试验结果表明人参皂苷Rb3在浓度为0~1 mg/mL时,其抑制率达到85.11±0.409%,而且远远高于西洋参叶提取物。本文通过胰脂肪酶抑制试验表明Rb3具有抗肥胖作用,其抑制机制有待进一步研究。  相似文献   

8.
为探究人与大鼠肠道菌群对三七水煎液中三醇型人参皂苷Rg1、Re及二醇型人参皂苷Rb1、Rd体外代谢的差异性及发现其代谢产物原人参二醇PPD与原人参三醇PPT,实验利用UPLC方法测定三七水煎液分别与人、大鼠肠道菌群在厌氧条件下共培养24h后的孵育液中4种皂苷的含量及代谢产物PPD与PPT的含量。结果表明三七中含有三醇型人参皂苷Rg19.4500mg/g、Re1.8872mg/g,二醇型人参皂苷Rb18.5816mg/g、Rd1.9456mg/g。与人源肠道菌共培养后,三七中含有的二醇型、三醇型人参皂苷含量显著降低,重要的是,在培养液中检测到代谢产物PPD和PPT的存在,含量分别为0.2136mg/g及0.0344mg/g,与大鼠肠道菌共培养后,三七中含有的二醇型皂苷含量有轻微降低,而三醇型皂苷含量未见明显变化,但有少量PPT(0.0184mg/g)的生成。由此可见:在体外条件下,三七水煎液中人参皂苷会被人肠道菌群降解生成代谢产物PPD和PPT,而大鼠肠道菌群的降解产物却仅有PPT生成,二者存在种属差异。  相似文献   

9.
应用多种色谱技术进行分离纯化,从西洋参茎叶中分离得到10个化合物,经理化性质和光谱数据分析鉴定分别为:拟人参皂苷RT4(1)、拟人参皂苷RT5(2)、24(R)-Ocotillol苷元(3)、20(S)-人参皂苷Rh1(4)、20(S)-人参皂苷Rg1(5)、20(S)-人参皂苷Rg2(6)、20(S)-人参皂苷Rh2(7)、20(R)-人参皂苷Rh2(8)、20(S)-人参皂苷Rg3(9)、拟人参皂苷F11(10)。化合物1和3为首次从西洋参茎叶中分离得到。首次建立和认证了20(S)-人参皂苷Rg3肌内注射的生物利用度的测定方法,采用本文方法测定犬肌注20(S)-人参皂苷Rg3的生物利用度为96.7%,为20(S)-人参皂苷Rg3的新药开发提供了临床前药代动力学依据。  相似文献   

10.
目的:建立高效液相色谱法同时测定人参皂苷Rb1、Rc、Rd、Rg3、CK和Rh2的方法.方法:采用ODSC18(4.6 mm×150 mm)色谱柱,流动相乙腈-0.05%磷酸水,梯度洗脱,流速1 Ml/min,检测波长203 nm,柱温35 ℃.结果:人参皂苷Rb1、Rc、Rd、Rg3、CK和Rh2分离效果良好,线性关...  相似文献   

11.
人参皂苷为人参主要的药理活性组成部分,通过水解二醇系人参皂苷的糖苷配基是制备稀有人参皂的常用方法。酶法转化因其底物高度专一、条件温和、副产物少等潜在优势而被作为结构修饰和生理研究的主要技术手段。本文主要对糖苷酶转化人参皂苷研究进展进行了综述,为其工业化生产高活性皂苷提供理论依据。  相似文献   

12.
人参皂苷降脂作用的研究   总被引:11,自引:2,他引:9  
为了测定西洋参总皂苷及单体皂苷是否有降脂活性,通过体外实验分别测定脂肪分解活性、小肠刷状缘膜小囊吸收脂肪酸、三油酸甘油酯油酸的释放率。结果表明,西洋参茎叶总皂苷在0.5g/L浓度时,对胰脂肪酶活性的抑制率为90%;人参皂苷Rc,Rb1,Rb2对胰脂肪酶活性均显示很强的抑制作用,在0.5g/L浓度时抑制率分别为100%,96%,97%。西洋参总皂苷和人参皂苷Rc,Rh,Rb2可以通过抑制胰脂肪酶活性起到降脂作用。  相似文献   

13.
为了明确从现蕾、开花到结实过程中的人参生殖器官中各单体皂苷含量的动态变化,应用HPLC法测定了人工栽培的五年生人参不同时期生殖器官中的人参单体皂苷Rb1、Rb2、Rb3、Rc、Rd、Re、Rg1和Rg3的含量。结果显示:从现蕾到果实成熟的过程中,人参单体皂苷Rb1、Rb2、Rb3、Rc、Rd、Re、Rg1和Rg3的含量的平均值分别为0.643%,0.189%,1.026%,1.014%,1.941%,8.381%,0.724%和0.041mg.g-1。从现蕾到果实成熟的过程中,人参单体皂苷Rb1含量的最高值在7月16日,单体皂苷Rb3、Rc、Rd和Rg1含量的最高值在7月11日,单体皂苷Rb2和Rg2含量的最高值在8月7日。  相似文献   

14.
小型生物反应器内人参不定根的人参皂苷累积   总被引:2,自引:0,他引:2  
对小型生物反应器(3~10 L)培养人参不定根的生长和人参皂苷(Rg1、Re、Rb1)的累积规律,以及蔗糖浓度、初始接种量对其生长和人参皂苷累积的影响进行研究。结果表明:小型生物反应器内人参不定根的最佳收获周期为7周。初始接种量和蔗糖浓度影响生物反应器内人参不定根的生长和人参皂苷的累积,20或40 g/L蔗糖对人参不定根的生长和人参皂苷的累积优于60 g/L蔗糖;5和10 L生物反应器内最佳初始接种量分别为15和30g,其不定根的生长量分别为9.29和19.17 g,人参皂苷含量分别为5.16和4.58 mg/g。生物反应器内培养7周的人参与栽培4年的人参相比,人参皂苷Rg1和Re含量相差不大,但栽培人参中Rb1的含量远高于生物反应器中所培养的人参不定根。  相似文献   

15.
外源人参皂苷对人参种子萌发和幼根抗氧化酶活性的影响   总被引:5,自引:0,他引:5  
研究不同浓度外源人参皂苷(人参总皂苷,人参二醇组皂苷,人参三醇组皂苷, Rb族,Rb3,Re共4种皂苷混合物和两种单体皂苷)对人参种子萌发,幼苗根长、鲜重,幼根中抗氧化酶活性和MDA含量的影响.结果表明:所测试人参皂苷对人参种子萌发、人参幼苗根长生长和幼根鲜重增加均具有抑制化感效应,且抑制程度均随处理浓度的升高而增强;对人参幼根中抗氧化酶活性方面,不同浓度人参总皂苷,人参二醇组皂苷,人参三醇组皂苷处理后,人参根系中SOD,POD和CAT活性均有明显提高,呈现出各酶活性随浓度升高而逐渐增强的效应;人参皂苷Rb族处理后,SOD活性在低中浓度处理时,与对照差别不大,中高浓度处理后低于对照,POD活性在中高浓度处理后显著提高,高浓度处理后活性降幅较大难以恢复到对照水平,CAT活性均低于对照;人参皂苷Rb3处理后,SOD活性均低于对照水平,POD活性在低浓度处理时与对照相当,中高浓度处理后显著低于对照水平,CAT活性逐渐降低,在低中浓度处理时略高于对照,高浓度处理后低于对照水平;人参皂苷Re处理后,SOD和POD活性均显著低于对照.人参幼根中MDA含量均随着处理浓度的增加而升高.  相似文献   

16.
用大孔吸附树脂从西洋参提取物中富集西洋参总皂苷,再利用丙酮沉淀及重结晶方法获得高纯度的人参皂苷Rb1和Re.可以得到含量大于95%的人参皂苷Rb1(收率2.6%)和92%的人参皂苷Re(收率0.5%),以及纯度为98.5%的人参皂苷Rb1(收率2.0%)和97.8%的人参皂苷Re(收率0.25%).该方法简便、实用,适用于工业大生产,为进一步开发成新药奠定了基础.  相似文献   

17.
西洋参冠瘿组织培养及其人参皂苷Re和人参皂苷Rg1的产生   总被引:12,自引:0,他引:12  
考察了培养基组成、培养时间、接种量、pH值、肌醇浓度等对冠瘿组织生长及其人参皂苷含量的影响 ;用HPLC检测了冠瘿组织中人参皂苷Re和人参皂苷Rg1 的含量。高压纸层析电泳证实 ,根癌农杆菌Ti质粒上的T DNA片段已整合进入植物细胞核基因组中。在考察的 6种培养基中 ,White培养基最适合人参皂苷Rg1 的累积(0 0 95 % ) ,MS培养基最适合人参皂苷Re的累积 (0 194 % )。以MS为基本培养基培养 36d、32d时人参皂苷Re和人参皂苷Rg1 累积含量最高 (分别为 0 14 7%和 0 0 6 1% ) ;接种量为 4g、2g (FW flask) ,有利于人参皂苷Re和人参皂苷Rg1的累积 ;培养基pH 5 8时人参皂苷Re含量最高 (0 184 % ) ,培养基pH 5 6时人参皂苷Rg1 累积量最高 (0 0 5 4 % ) ;肌醇浓度为 0 0 5g L时 ,能促进人参皂苷Re合成 (0 182 % ) ,浓度为 0 30g L时 ,有利于人参皂苷Rg1 累积 (0 0 5 5 % )。  相似文献   

18.
人参皂苷与生态因子的相关性   总被引:5,自引:0,他引:5  
环境条件影响中药材活性成分的形成和积累.利用各种数学统计分析方法探讨影响人参皂苷积累的生态因子,提高人参品质.人参样品采自人参道地产区(主产区)吉林、辽宁、黑龙江三省5年生栽培人参,同时采集采样点处的土壤样品.超高效液相(UPLC)色谱法分析了不同产区9种人参皂苷(Rg1、Re、Rf、Rg2、Rb1、Rc、Rb2、Rb3、Rd)的含量;利用“中药材产地适宜性分析地理信息系统”的生态因子空间数据库,获得采样区包括温度、水分、光照等10个生态因子数据;按土壤理化性质常规方法测定土壤样品中的有效硼、有效铁等微量元素和速效氮、速效钾等有效养分.对人参有效成分含量与土壤养分进行典型相关性分析发现,土壤中的有效硼、有效铁、速效氮与人参皂苷含量呈显著正相关,即适当提高土壤中有效硼、有效铁和速效氮的含量可以促进人参皂苷成分的积累,土壤水分与所测人参皂苷含量(Rb3除外)呈显著正相关,速效磷(P)、pH、速效锌(Zn)与各人参皂苷含量呈弱相关;人参皂苷与气候因子相关分析表明,温度(年活动积温、年平均气温、7月最高气温、7月平均气温、1月最低气温、1月平均气温)与人参皂苷含量呈显著负相关,其中与药典中人参含量测定项下的人参皂苷Rg1、Re、Rb1负相关尤为显著(r>0.6),说明在一定温度范围内,人参皂苷是随着温度的降低而升高的,即适当低温有利于人参皂苷有效成分的积累;海拔与人参皂苷Rc、Rb2、Rb3含量呈显著正相关(r>0.6),即相对较高的海拔可以促进这3种成分的积累;而年均降水量、年相对湿度和年均日照时数与人参皂苷相关不显著.通过主成分分析(PCA)、典型相关分析、排序等统计方法,考察不同产地样品中人参皂苷含量与生态因子间的相关性,研究结果揭示了温度在人参的主要活性成分-皂苷类形成中起决定性作用,在一定的温度范围内,温度越低越有利于人参皂苷的积累;阐明了土壤中的有效硼、有效铁、速效氮与人参皂苷含量成正相关.研究结果提示在人参实践生产中可以通过适当低温处理,增施硼、铁、氮肥等农艺措施来调控人参皂苷含量.  相似文献   

19.
目前已发现30余种人参皂苷单体,不同的人参皂苷单体的药理作用及机制各异。本实验通过研究人参皂苷单体Rg1、Rb1和Re对K562细胞增殖的影响,探讨其抗肿瘤作用及机制。取对数生长期K562细胞,分为阴性对照组、不同浓度的Rg1组、Rb1组、Re组,培养24h、48h、72h,以噻唑蓝(MTT)比色法和台盼蓝活细胞计数法测定不同浓度的Rg1、Rb1、  相似文献   

20.
西洋参冠瘿组织悬浮培养及其人参皂苷类成分的分离   总被引:7,自引:0,他引:7  
对西洋参冠瘿组织悬浮培养生长特征进行了考察,并对其悬浮培养物中的人参皂苷类成分进行了提取、分离和鉴定。研究得到了培养物最大生物量收获时间[18.62 g/L(dry weight)]及其中最高人参皂苷累积时间(620.4 mg/L on the 27thday)。培养基中碳源、磷、氨基氮、硝基氮的利用率分别为91.8%, 100%, 81% 和97%。利用现代分离纯化方法从培养物中分离得到了4种人参皂苷类成分,利用理化及谱学技术分别鉴定为假人参皂苷F11(pseudoginsenoside F11,Ⅰ), 人参皂苷Rd(ginsenoside Rd,Ⅱ), 人参皂苷Rb1(ginsenoside Rb1 ,Ⅲ)和人参皂苷Rb3(ginsenoside Rb3,Ⅳ)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号