首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
alpha-Actinin is an abundant actin-bundling and adhesion protein that directly links actin filaments to integrin receptors. Previously, in platelet-derived growth factor-treated fibroblasts, we demonstrated that phosphoinositides bind to alpha-actinin, regulating its localization (Greenwood, J. A., Theibert, A. B., Prestwich, G. D., and Murphy-Ullrich, J. E. (2000) J. Cell Biol. 150, 627- 642). In this study, phosphoinositide binding and regulation of alpha-actinin function is further characterized. Phosphoinositide binding specificity, determined using a protein-lipid overlay procedure, suggests that alpha-actinin interacts with phosphates on the 4th and 5th position of the inositol head group. Binding assays and mutational analyses demonstrate that phosphoinositides bind to the calponin homology domain 2 of alpha-actinin. Phosphoinositide binding inhibited the bundling activity of alpha-actinin by blocking the interaction of the actin-binding domain with actin filaments. Consistent with these results, excessive bundling of actin filaments was observed in fibroblasts expressing an alpha-actinin mutant with decreased phosphoinositide affinity. We conclude that the interaction of alpha-actinin with phosphoinositides regulates actin stress fibers in the cell by controlling the extent to which microfilaments are bundled.  相似文献   

2.
Dexamethasone inhibits the cytotoxic activity of tumor necrosis factor   总被引:2,自引:0,他引:2  
Effect of dexamethasone (DEX) on the cytotoxic activity of tumor necrosis factor (TNF) was examined using murine fibroblast cell line (L929 cells). DEX protected cells from the cytotoxic action of TNF. Protection of cytotoxic action was apparent when cells were pre-treated with DEX for 12h and no protection was observed in the presence of cycloheximide. These results suggested that de novo synthesis of new proteins was required for DEX-mediated protection. Moreover, prolonged simultaneous treatment with TNF and DEX resulted in the enhancement of cell growth, suggesting that TNF acted as a growth factor when cells were protected from the cytotoxic action of TNF. These results suggested that the signal transduction system for fibroblast growth enhancing and cytotoxic action of TNF were different from each other and that the interaction between TNF and glucocorticoids may play a modulating role in some inflammatory processes in vivo.  相似文献   

3.
The filamentous fungus, Mortierella alpina, accumulates complex lipids relatively rich in arachidonic acid (C(20:4) Delta(5,8,11,14)). The lignan, sesamin, has been used to reduce arachidonic acid production by specifically inhibiting Delta(5)-desaturation [Shimizu, Akimoto, Shinmen, Kawashima, Sugano and Yamada (1991) Lipids 26, 512-516]. Microsomal membrane preparations from M. alpina exhibit acyl-CoA:1-acyl lysophosphatidylcholine acyltransferase (LPCAT) activity. LPCAT is an enzyme involved in channelling fatty acid substrates to phosphatidylcholine for subsequent desaturation. Sesamin was found to inhibit this enzyme as measured in both spectrophotometric and radioactive assays. The inhibitory effect of sesamin on LPCAT was only evident in species of Mortierella and could not be demonstrated in other organisms.  相似文献   

4.
The effect of albumin on the release of [3H]lysophosphatidylcholine from cultured rat hepatocytes prelabelled with [Me-3H]choline was studied. In the absence of serum and albumin from the medium, the cells released essentially no [3H]lysophosphatidylcholine. Albumin stimulated this process dramatically, and it reached a plateau at 2 mg/ml. After an initial lag of 30 min, the release of [3H]lysophosphatidylcholine was linear for at least 4 h. At low concentrations, albumin slightly stimulated [3H]phosphatidylcholine release. The albumin had no measurable effect on the metabolism of cellular [3H]phosphatidylcholine, [3H]lysophosphatidylcholine or [3H]glycerophosphocholine. In addition, albumin did not alter the release of 3H-labelled water-soluble compounds, including [3H]glycerophosphocholine, into the medium. The possibility that the [3H]lysophosphatidylcholine was arising from catabolism of [3H]phosphatidylcholine in the medium by secreted enzymes was excluded. The effect on [3H]lysophosphatidylcholine secretion was also observed when the cells were incubated with alpha-cyclodextrin, a cyclic polysaccharide that has the ability to bind lysophosphatidylcholine. The albumin-released lysophosphatidylcholine was enriched in unsaturated fatty acids. Alteration of the fatty acid composition of cellular phosphatidylcholine gave rise to parallel changes in phosphatidylcholine and lysophosphatidylcholine in the medium. It is concluded that phosphatidylcholine is constantly being degraded in the rat hepatocyte to lysophosphatidylcholine which is released into the medium only when a suitable acceptor is present.  相似文献   

5.
Clostridium difficile toxin A glucosylates Rho family proteins, resulting in actin filament disaggregation and cell rounding in cultured colonocytes. Given that the cellular toxicity of toxin A is dependent on its receptor binding and subsequent entry into the cell, we herein sought to identify additional colonocyte proteins that might bind to toxin A following its internalization. Our results revealed that toxin A interacted with ERK1 and ERK2 in two human colonocyte cell lines (NCM460 and HT29). A GST-pulldown assay also showed that toxin A can directly bind to ERK1 and ERK2. In NCM460 cells exposed to PMA (an ERK1/2 activator), the phosphorylation of ERK1/2 did not affect the interaction between toxin A and ERK1/2. However, an in vitro kinase assay showed that the direct binding of toxin A to ERK1 or ERK2 inhibited their kinase activities. These results suggest a new molecular mechanism for the cellular toxicity seen in cells exposed to toxin A.  相似文献   

6.
Brain spectrin, through its beta subunit, binds with high affinity to protein-binding sites on brain membranes quantitatively depleted of ankyrin (Steiner, J., and Bennett, V. (1988) J. Biol. Chem. 263, 14417-14425). In this study, calmodulin is demonstrated to inhibit binding of brain spectrin to synaptosomal membranes. Submicromolar concentrations of calcium are required for inhibition of binding, with half-maximal effects at pCa = 6.5. Calmodulin competitively inhibits binding of spectrin to protein(s) in stripped synaptosomal membranes, with Ki = 1.3 microM in the presence of 10 microM calcium. A reversible receptor-mediated process, and not proteolysis, is responsible for inhibition since the effect of calcium/calmodulin is reversed by the calmodulin antagonist trifluoperazine and by chelation of calcium with sodium [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The target of calmodulin is most likely the spectrin attachment protein(s) rather than spectrin itself since: (a) membrane binding of the brain spectrin beta subunit, which does not associate with calmodulin, is inhibited by calcium/calmodulin, and (b) red cell spectrin which binds calmodulin very weakly, is inhibited from interacting with membrane receptors in the presence of calcium/calmodulin. Ca2+/calmodulin inhibited association of erythrocyte spectrin with synaptosomal membranes but had no effect on binding of erythrocyte or brain spectrin to ankyrin in erythrocyte membranes. These experiments demonstrate the potential for differential regulation of spectrin-membrane protein interactions, with the consequence that Ca2+/calmodulin can dissociate direct spectrin-membrane interactions locally or regionally without disassembly of the areas of the membrane skeleton stabilized by linkage of spectrin to ankyrin. A membrane protein of Mr = 88,000 has been identified that is dissociated from spectrin affinity columns by calcium/calmodulin and is a candidate for the calmodulin-sensitive spectrin-binding site in brain.  相似文献   

7.
Fibronectin (FN) is known to have four DNA-binding domains although their physiological significance is unknown. Primary murine peritoneal macrophages have been shown to exhibit markedly lower responsiveness to CpG motif-replete plasmid DNA (pDNA), Toll-like receptor-9 (TLR9) ligand, compared with murine macrophage-like cell lines. The present study was conducted to examine whether FN having DNA-binding domains is involved in this phenomenon. The expression of FN was significantly higher in primary macrophages than in a macrophage-like cell line, RAW264.7, suggesting that abundant FN might suppress the responsiveness in the primary macrophages. However, electrophoretic analysis revealed that FN did not bind to pDNA in the presence of a physiological concentration of divalent cations. Surprisingly, marked tumor necrosis factor - (TNF-)α production from murine macrophages upon CpG DNA stimulation was significantly reduced by exogenously added FN in a concentration-dependent manner but not by BSA, laminin or collagen. FN did not affect apparent pDNA uptake by the cells. Moreover, FN reduced TNF-α production induced by polyI:C (TLR3 ligand), and imiquimod (TLR7 ligand), but not by LPS (TLR4 ligand), or a non-CpG pDNA/cationic liposome complex. The confocal microscopic study showed that pDNA was co-localized with FN in the same intracellular compartment in RAW264.7, suggesting that FN inhibits cytokine signal transduction in the endosomal/lysosomal compartment. Taken together, the results of the present study has revealed, for the first time, a novel effect of FN whereby the glycoprotein modulates cytokine signal transduction via CpG-DNA/TLR9 interaction in macrophages without direct binding to DNA through its putative DNA-binding domains.  相似文献   

8.
Gelsolin and calponin are well-characterized cytoskeletal proteins that are abundant and widely expressed in vertebrate tissues. It is also becoming apparent, however, that they are involved in cell signalling. In the present study, we show that gelsolin and calponin interact directly to form a high-affinity (K(d)=16 nM) 1:1 complex, by the use of fluorescent probes attached to both proteins, by affinity chromatography and by immunoprecipitation. These methods show that gelsolin can form high-affinity complexes with two calponin isoforms (basic h1 and acidic h3). They also show that gelsolin binds calponin through regions that have been identified previously as being calponin's actin-binding sites. Moreover, gelsolin does not interact with calponin while calponin is bound to F-actin. Reciprocal experiments to find calponin-binding sites on gelsolin show that these are in both the N- and C-terminal halves of gelsolin. Calponin has minimal effects on actin severing by gelsolin. In contrast, calponin markedly affects the nucleation activity of gelsolin. The maximum inhibition of nucleation by gelsolin was 50%, which was achieved with a ratio of two calponins for every gelsolin. Thus the interaction of calponin with gelsolin may play a regulatory role in the formation of actin filaments through modulation of gelsolin's actin-binding function and through the prevention of calponin's actin-binding activities.  相似文献   

9.
ADAMTS1 is a metalloprotease previously shown to inhibit angiogenesis in a variety of in vitro and in vivo assays. In the present study, we demonstrate that ADAMTS1 significantly blocks VEGFR2 phosphorylation with consequent suppression of endothelial cell proliferation. The effect on VEGFR2 function was due to direct binding and sequestration of VEGF165 by ADAMTS1. Binding was confirmed by co-immunoprecipitation and cross-linking analysis. Inhibition of VEGF function was reversible, as active VEGF could be recovered from the complex. The interaction required the heparin-binding domain of the growth factor, because VEGF121 failed to bind to ADAMTS1. Structure/function analysis with independent ADAMTS1 domains indicated that binding to VEGF165 was mediated by the carboxyl-terminal (CT) region. ADAMTS1 and VEGF165 were also found in association in tumor extracts. These findings provide a mechanism for the anti-angiogenic activity of ADAMTS1 and describe a novel modulator of VEGF bioavailability.  相似文献   

10.
Objective: To date, plants belonging to the genus Cachrys have not been amply studied. In the present study, aerial components of Cachrys pungens Jan from Italy, were examined to assess their free radical‐scavenging and antioxidant activity, and their phototoxicity on A375 melanoma cells. In view of potential pharmaceutical applications, a relationship between antioxidant, phototoxic activities and polyphenolic composition has also been investigated. Materials and methods: Content of sterols, terpenes, fatty acids and coumarins was assessed by gas chromatography–mass spectrometry and GC. Total phenolic content was also determined. Antioxidant activity of the methanol extract and fractions of C. pungens Jan was assessed using DPPH scavenging assay and β‐carotene bleaching test. Plant phototoxicity was also investigated in this human tumour cell line (amelanotic melanoma). Results: Analysis of the chloroform extract was particularly interesting, as it led to identification of many coumarins, of which five were linear and one angular furanocoumarins. Methanol and ethyl acetate fractions exhibited substantial antioxidant activity. Moreover, chloroform extract and isolated coumarin fraction had strong phototoxic activity on UVA‐induced A375 cells after irradiation at UVA dose of 1.08 J/cm. Conclusions: Plant‐derived natural compounds are an important source for development of cancer‐fighting drugs. This study has demonstrated strong phototoxic activity of the coumarin fraction of C. pungens, a plant which, to our knowledge, has never been studied before. This investigation offers a new perspective for developing other formulations potentially useful in photodynamic therapy for treatment of non‐melanoma skin cancers as well as melanomas.  相似文献   

11.
The phospholipase A2 (PLA2) activity of peroxiredoxin (Prdx)6 has important physiological roles in the synthesis of lung surfactant and in the repair of peroxidized cell membranes. These functions require the activity of a lysophospholipid acyl transferase as a critical component of the phospholipid remodeling pathway. We now describe a lysophosphatidylcholine acyl transferase (LPCAT) activity for Prdx6 that showed a strong preference for lysophosphatidylcholine (LPC) as the head group and for palmitoyl CoA in the acylation reaction. The calculated kinetic constants for acylation were Km 18 μM and Vmax 30 nmol/min/mg protein; the Vmax was increased 25-fold by phosphorylation of the protein while Km was unchanged. Study of recombinant protein in vitro and in mouse pulmonary microvascular endothelial cells infected with a lentiviral vector construct indicated that amino acid D31 is crucial for LPCAT activity. A linear incorporation of labeled fatty acyl CoA into dipalmitoyl phosphatidylcholine (PC) indicated that LPC generated by Prdx6 PLA2 activity remained bound to the enzyme for the reacylation reaction. Prdx6 is the first LPCAT enzyme with demonstrated cytoplasmic localization. Thus, Prdx6 is a complete enzyme comprising both PLA2 and LPCAT activities for the remodeling pathway of PC synthesis or for repair of membrane lipid peroxidation.  相似文献   

12.
Photobilirubin II, a stereoisomer of bilirubin, binds to human serum albumin at a single binding site (K = 2.2 x 10(6)M-1), presumably the high-affinity bilirubin-binding site. Binding in the secondary (class II) binding sites is of minor importance. The results are discussed with respect to photometabolism of bilirubin and as a possible source of error in the determination of bilirubin unbound to albumin.  相似文献   

13.
The p53 family member p73 displays significant structural and functional homology to p53. However, instead of mutational inactivation, overexpression of wild-type p73 has been reported in various tumor types compared with normal tissues, arguing against a classical tumor suppressor function. Recently, N-terminally truncated, transactivation-deficient p73 isoforms (DeltaTA-p73) have been identified as a second class of p73 proteins. Because overexpression of p73 in tumors includes DeltaTA-p73, we further characterized these novel p73 isoforms. We show that DeltaTA-p73 retains DNA-binding competence but lacks transactivation functions, resulting in an inability to induce growth arrest and apoptosis. Importantly, DeltaTA-p73 acts as a dominant-negative inhibitor of p53 and full-length p73 (TA-p73). We demonstrate that inhibition of p53 involves competition for DNA binding, whereas TA-p73 can be inhibited by direct protein-protein interaction. Further, we show that up-regulation of endogenous p73 just like ectopic overexpression of DeltaTA-p73 confers resistance to p53-mediated apoptosis induced by the chemotherapeutic agent H-7. Because inhibition of p53 is a common theme in human cancer, our data strongly support a role of DeltaTA-p73 expression for tumor formation.  相似文献   

14.
15.
The only gangliosides in Burkitt's lymphoma EB-3 cells is GM3. Treatment of Burkitt's lymphoma EB-3 cells with gangliosides GM1 or GM3 results in their binding to and partial incorporation into the cell membrane. About 25% of cell-associated ganglioside GM1 can interact with the ricin. However, such an increase in the number of binding sites does not enhance but rather decreases the cytotoxic effect of ricin. A similar protective effect was observed when the cells were pretreated with ganglioside GM3. In contrast, the increase in ricin biding sites caused by pretreatment of the cells with neuraminidase was accompanied by increase in ricin cytotoxicity. These differences may be related to observed differences in the rate of ricin-endocytosis by native and ganglioside-treated cells.  相似文献   

16.
C C Lee  E L Beall    D C Rio 《The EMBO journal》1998,17(14):4166-4174
P elements are a family of mobile DNA elements found in Drosophila. P-element transposition is tightly regulated, and P-element-encoded repressor proteins are responsible for inhibiting transposition in vivo. To investigate the molecular mechanisms by which one of these repressors, the KP protein, inhibits transposition, a variety of mutant KP proteins were prepared and tested for their biochemical activities. The repressor activities of the wild-type and mutant KP proteins were tested in vitro using several different assays for P-element transposase activity. These studies indicate that the site-specific DNA-binding activity of the KP protein is essential for repressing transposase activity. The DNA-binding domain of the KP repressor protein is also shared with the transposase protein and resides in the N-terminal 88 amino acids. Within this region, there is a C2HC putative metal-binding motif that is required for site-specific DNA binding. In vitro the KP protein inhibits transposition by competing with the transposase enzyme for DNA-binding sites near the P-element termini.  相似文献   

17.
Glycation, a non-enzymatic reaction between glucose and protein is the primary cause of diabetic complications. Albumin, the most abundant plasma protein undergoes glycation both in vivo and in vitro. The influence of albumin on glycation of less abundant proteins has not been addressed. For the first time, we show that albumin competitively inhibits the glycation of less abundant proteins. This study suggests that at least in the initial stages of diabetes, albumin may protect other proteins from glycation.  相似文献   

18.
We have previously reported the characterization of mAb derived against NC-37 target cells. mAb 18C2 and 1E7 inhibit fish cytotoxicity by binding to target cells and thus preventing the formation of conjugates with fish nonspecific cytotoxic cells (NCC). It was therefore presumed that these inhibitory mAb were specific for the target cell Ag necessary for effector cell recognition. mAb 1D4 and 7C6 bind to NC-37 cells but do not inhibit fish cytotoxic activity. We now report the isolation and purification of the Ag recognized by mAb 18C2 (inhibitor) and 1D4 (noninhibitor) by affinity chromatography of solubilized NC-37 target cell extracts. The 18C2-purified soluble target Ag (STAg) caused inhibition of cytotoxicity when preincubated with fish NCC. This inhibitory activity was reversible and dose-dependent ranging from 20 to 70% inhibition with 25 to 100 micrograms 18C2 purified STAg/10(6) NCC. STAg purified by 1D4 affinity chromatography had no effect on fish cytotoxicity. mAb 18C2 and 1E7 preabsorbed with 18C2 STAg lost their inhibitory activity when tested in the fish NCC cytotoxicity assay. Preabsorption of the same mAb with 1D4 STAg had no effect on their activity.  相似文献   

19.
Non-steroidal anti-inflammatory drugs (NSAIDs) are strongly bound to human serum albumin (HSA), mainly to sites I and II. The aim of this study was to characterize the binding site(s) of etodolac enantiomers under physiological conditions (580 μM HSA) using equilibrium dialysis. The protein binding of etodolac enantiomers, alone or in various ratios, was studied in order to evaluate the potential competition between them. Our results showed that (S)-etodolac was more strongly bound to HSA than (R)-etodolac. The displacement of one enantiomer by its antipode was observed only at high concentrations of the competitor, and was more pronounced for the (S)-form. Displacement studies of the enantiomers by specific probes of sites I and II of albumin, dansylamide, and dansylsarcosine, respectively, showed that (R)-etodolac was slightly displaced by both these probes whereas the free concentration of (S)-etodolac increased markedly in the presence of dansylsarcosine. Moreover, the binding of ligands to sites I and II is usually affected by alkaline pH, by chloride ions, and by fatty acids. For etodolac, the presence of 0.1 and 1 M chloride ions and increasing pH (5.5-9) decreased the binding of both enantiomers. The same result was obtained with addition of octanoic acid. Conversely, the addition of oleic, palmitic, or stearic acid to the protein solution increased the binding of (R)-etodolac, but decreased that of its antipode. All these findings suggest that (R)- and (S)-etodolac interact mainly with site II of HSA, and that the (R)-isomer is also bound to site I under physiological conditions. © 1996 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号