首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fluorescence detected magnetic resonance (FDMR) was used to study the lowest triplet state of bacteriochlorophylls (BChls) c and d in Chlorobium (Chl.) tepidum and Chl. vibrioforme, respectively. These pigments were studied both in the oligomeric form (in whole cells) and in the monomeric form (after conversion using a 1% 1-hexanol treatment). Fluorescence spectra show the presence of lower-state aggregates, apart from monomers, in samples treated with 1-hexanol. Values of the zero field splitting (ZFS) parameter D, obtained from FDMR spectra, were found to decrease with an increasing aggregate size. The observed ZFS trends are explained by a delocalization of the triplet spins, including a charge resonance (CR) contribution, over the aggregate. A simple model is presented relating the changes of D and E as a result of monomer aggregation to the aggregate geometry. Application of this model to BChls c and d indicates approximately diagonal stacking of the monomers in the dimer. Results for oligomeric BChl c and d were compared with those previously obtained for oligomeric BChl e. FDMR transitions of BChls c, d and e differ both in frequencies and in signs. The D and E values of Car's and BChl a (in whole cells) agree well with those reported for Chl. phaeobacteroides and Chl. limicola.  相似文献   

2.
The Photosystem I reaction centre protein CP1, isolated from barley using polyacrylamide gel electrophoresis showed an EPR (Electron Paramgnetic Resonance) spectrum with the polarisation pattern AEEAAE, typical of the primary donor triplet state 3P700, created via radical pair formation and recombination. 3P700 could also be detected by Fluorescence Detected Magnetic Resonance (FDMR) at f > 700 nm even in the presence of a large number of chlorophyll antennae. Its zero field splitting parameters, D=282.5×10-4 cm-1 and E=38.5×10-4 cm-1, were independent of the detection wavelength, and agreed with ADMR (Absorption Detected Magnetic Resonance) and EPR values. The signs of the 3P700 D+E and D-E transitions were positive (increase in fluorescence intensity on applying a resonance microwave field). In contrast, in the emission band 685 < f < 700 nm FDMR spectra with negative D+E and D-E transitions were detected, and the D value was wavelength-dependent. These FDMR results support an excitation energy transfer model for CP1, derived from time-resolved fluorescence studies, in which two chlorophyll antenna forms are distinguished, with fluorescence at 685 < f < 700 nm (inner core antennae, F690), and f > 700 nm (low energy antenna sites, F720), in addition to the P700. The FDMR spectrum in F690 emission can be interpreted as that of 3P700, observed via reverse singlet excitation energy transfer and added to the FDMR spectrum of the antenna triplet states generated via intramolecular intersystem crossing. This would indicate that reversible energy transfer between F690 and P700 occurs even at 4.2 K.Abbreviations Chl chlorophyll - CP1 core chlorophyll protein of Photosystem I - EPR electron paramagnetic resonance - F690, F720 chlorophyll forms having fluorescence maximum at 690–695 and 720 nm, respectively - F(A)(O)DMR fluorescence (absorption) (optical) detected magnetic resonance - FF fluorescence fading - ISC intramolecular intersystem crossing - f fluorescence emission wave-length - LHC I light harvesting chlorophyll a/b protein of Photosystem I - P700 primary donor of Photosystem I - PS I Photosystem I - RC reaction centre - RP radical pair - SDS sodium dodecyl sulphate - ZFS zero field splitting  相似文献   

3.
Energy transfer and pigment arrangement in intact cells of the green sulfur bacteria Prosthecochloris aestuarii, Chlorobium vibrioforme and chlorobium phaeovibrioides, containing bacteriochlorophyll (BChl) c, d or e as main light harvesting pigment, respectively, were studied by means of absorption, fluorescence, circular dichroism and linear dichroism spectroscopy at low temperature. The results indicate a very similar composition of the antenna in the three species and a very similar structure of main light harvesting components, the chlorosome and the membrane-bound BChl a protein. In all three species the Qy transition dipoles of BChl c, d or e are oriented approximately parallel to the long axis of the chlorosome. Absorption and fluorescence excitation spectra demonstrate the presence of at least two BChl c-e pools in the chlorosomes of all three species, long-wavelength absorbing BChls being closest to the membrane. In C. phaeovibrioides, energy from BChl e is transferred with an efficiency of 25% to the chlorosomal BChl a at 6 K, whereas the efficiency of transfer from BChl e to the BChl a protein is 10%. These numbers are compatible with the hypothesis that the chlorosomal BChl a is an intermediary in the energy transfer from the chlorosome to the membrane.Abbreviations BChl bacteriochlorophyll - Chl chlorophyll - CD circular dichroism - LD linear dichroism  相似文献   

4.
The chlorosomal bacteriochlorophyll (BChl) composition of the green sulfur bacteria Chlorobium vibrioforme and Chlorobium phaeovibrioides was investigated by means of normal-phase high-performance liquid chromatography. From both species a number of homologues was isolated, which were identified by absorption and 252Cf-plasma desorption mass spectroscopy. Besides BChl d, C. vibrioforme contained a significant amount of BChl c, which may provide an explanation for the previous observation of at least two spectrally different pools of BChl in the chlorosomes of green sulfur bacteria (Otte et al. 1991). C. phaeovibrioides contained various homologues of BChl e only. Absorption spectra in acetone of BChl c, d and e, as well as bacteriopheophytin e are presented. No systematic differences were found for the various homologues of each pigment. In addition to farnesol, the mass spectra revealed the presence of various minor esterifying alcohols in both species, including phytol, oleol, cetol and 4-undecyl-2-furanmethanol, as well as an alcohol of low molecular mass, which is tentatively assumed to be decenol.Abbreviations BChl bacteriochlorophyll - BPh bacteriopheophytin (used as a general name for the Mg-free compound, irrespective of the esterifying alcohol) - HPLC high-performance liquid chromatography  相似文献   

5.
A reversed-phase High Performance Liquid Cromatography (HPLC) method has been developed to accurately separate bacteriochlorophyllsc, d ande homologues in a reasonably short run time of 60 minutes. By using this method, two well-defined groups of bacteriochlorophyll homologue peaks can be discriminated. The first one consists of 4 peaks (min 24 to 30), which corresponds to the four main farnesyl homologues. The second peak subset is formed by a cluster of up to 10 minor peaks (min 33 to 40). These peaks can be related with series of several alcohol esters of the different chlorosome chlorophylls. The number of homologues was, however, quite variable depending on both, the bacteriochlorophyll and the bacterial species. The method hereby described, also provides a good separation of other photosynthetic pigments, either bacterial (Bacteriochlorophylla, chlorobactene, isorenieratene and okenone) or algal ones (Chlorophylla, Pheophytina and -carotene). A preliminary screening of the homologue composition of several green photosynthetic bacterial species and isolates, has revealed different relative quantitative patterns. These differences seem to be related to physiological aspects rather than to taxonomic ones. The application of the method to the study of natural populations avoids the typical drawbacks on the pigment identification of overlapping eukaryotic and prokaryotic phototrophic microorganisms, giving further information about their physiological status.  相似文献   

6.
Green sulfur bacteria are obligate, anaerobic photolithoautotrophs that synthesize unique bacteriochlorophylls (BChls) and a unique light-harvesting antenna structure, the chlorosome. One organism, Chlorobium tepidum, has emerged as a model for this group of bacteria primarily due to its relative ease of cultivation and natural transformability. This review focuses on insights into the physiology and biochemistry of the green sulfur bacteria that have been derived from the recently completed analysis of the 2.15-Mb genome of Chl. tepidum. About 40 mutants of Chl. tepidum have been generated within the last 3 years, most of which have been made based on analyses of the genome. This has allowed a nearly complete elucidation of the biosynthetic pathways for the carotenoids and BChls in Chl. tepidum, which include several novel enzymes specific for BChl c biosynthesis. Facilitating these analyses, both BChl c and carotenoid biosynthesis can be completely eliminated in Chl. tepidum. Based particularly on analyses of mutants lacking chlorosome proteins and BChl c, progress has also been made in understanding the structure and biogenesis of chlorosomes. In silico analyses of the presence and absence of genes encoding components involved in electron transfer reactions and carbon assimilation have additionally revealed some of the potential physiological capabilities, limitations, and peculiarities of Chl. tepidum. Surprisingly, some structural components and biosynthetic pathways associated with photosynthesis and energy metabolism in Chl. tepidum are more similar to those in cyanobacteria and plants than to those in other groups of photosynthetic bacteria.  相似文献   

7.
We have shown that the green sulfur bacterium Chlorobium tepidum can be grown in batch culture supplemented with potentially toxic fatty alcohols without a major effect on the growth rate if the concentration of the alcohols is kept low either by programmed addition or by adding the alcohol as an inclusion complex with -cyclodextrin. HPLC and GC analysis of pigment extracts from the supplemented cells showed that the fatty alcohols were incorporated into bacteriochlorophyll c as the esterifying alcohol. It was possible to change up to 43% of the naturally occurring farnesyl ester of bacteriochlorophyll c with the added alcohol. This change in the homolog composition had no effect on the spectral properties of the cells when farnesol was partially replaced by stearol, phytol or geranylgeraniol. However, with dodecanol we obtained a blue-shift of 6 nm of the Qy band of the bacteriochlorophyll c and a concomitant change in the fluorescence emission was observed. The possible significance of these findings is discussed in the light of current ideas about bacteriochlorophyll organization in the chlorosomes.Abbreviations -CD -cyclodextrin - BChl bacteriochlorophyll - BChl c H bacteriochlorophyllide c - [E,M] BChl c F 8-ethyl, 12-methyl, farnesyl BChl c - [E,E] BChl c F 8-ethyl, 12-ethyl, farnesyl BChl c - [P,E] BChl c F 8-propyl, 12-ethyl, farnesyl BChl c - [I,E] BChl c F 8-isobutyl, 12-ethyl, farnesyl BChl c - Car carotenoids  相似文献   

8.
The carotenoid triplet populations associated with the fluorescence emission chlorophyll forms of Photosystem II have been investigated in isolated spinach thylakoid membranes by means of fluorescence detected magnetic resonance in zero field (FDMR). The spectra collected in the 680–690 nm emission range, have been fitted by a global analysis procedure. At least five different carotenoid triplet states coupled to the terminal emitting chlorophyll forms of PS II, peaking at 682 nm, 687 nm and 692 nm, have been characterised. The triplets associated with the outer antenna emission forms, at 682 nm, have zero field splitting parameters |D| = 0.0385 cm−1, |E| = 0.00367 cm−1; |D| = 0.0404 cm−1, |E| = 0.00379 cm−1 and |D| = 0.0386 cm−1, |E| = 0.00406 cm−1 which are very similar to those previously reported for the xanthophylls of the isolated LHC II complex. Therefore the FDMR spectra recorded in this work provide insights into the organisation of the LHC II complex in the unperturbed environment represented by thylakoid membranes. The additional carotenoid triplet populations, detected by monitoring the chlorophyll emission at 687 and 692 nm, are assigned to carotenoids bound to inner antenna complexes and hence attributed to β-carotene molecules.  相似文献   

9.
The vibrational properties of the primary donor P840 in the reaction center (RC) of the green sulfur bacterium Chlorobium tepidum and its interactions with the surrounding protein environment have been investigated by Fourier transform infrared (FTIR) difference spectroscopy at cryogenic temperatures. By using the step-scan technique with a time resolution of 5 μs on RCs that had been depleted of the iron–sulfur electron acceptors, the formation and decay of the triplet state 3P840 have been followed in infrared for the first time. The 3P840/P840 FTIR difference spectrum is compared to the P840 +/P840 FTIR difference spectrum measured under identical conditions on untreated RCs and recorded with the same step-scan set-up. The latter P840 +/P840 difference spectrum is essentially the same as those measured under steady-state conditions using the more conventional continuous illumination method. Comparison of the 3P840/P840 and P840 +/P840 spectra provides unambiguous assignment of the vibration of the 9-keto C=O group(s) of P840 at 1684 cm−1 as the only common negative band in the two spectra. This frequency corresponds to carbonyl group(s) free from hydrogen bonding interactions. The obtained results are discussed in the framework of the structure and photochemistry of the primary donor P840. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
New and rapid procedures were developed for the isolation of chlorosomes and FMO-protein from the green sulfur bacteria Prosthecochloris (P.) aestuarii, Chlorobium (Cb.) phaeovibrioides, Cb. tepidum and Cb. vibrioforme. The resulting preparations were free from contaminating pigments and proteins as was shown by absorption spectroscopy, pigment analysis and SDS-PAGE. Two spectrally different types of FMO-protein were found. The first type, present in P. aestuarii and Cb. vibrioforme, has a main absorption band at 6 K at 815 nm, whereas the second type, isolated from Cb. tepidum and Cb. phaeovibrioides, has a strong band at 806 nm. In contrast to what was recently suggested (Tronrud DE and Matthews BW (1993) In: Deisenhofer J and Norris J (eds) The Photosynthetic Reaction Center, Vol 1, pp 13–21. Academic Press, San Diego, CA) the FMO-proteins contained no polar BChl a homologue. The isolated chlorosomes showed a small blue-shift of the QY absorption maximum with respect to intact cells. For the different species, grown under the same light conditions, the homologue composition of BChls c and d was approximately identical whereas for the BChl e in Cb. phaeovibrioides the relative amounts of homologues with larger alkyl substituents at position 8 were considerably larger. Baseplate BChl a was present in all chlorosomes and comprised 1–2% of the chlorosomal BChl. Its QY absorption band was located at about 802 nm and was clearly separated from the major QY absorption band at 6 K. The predominant esterifying alcohol of BChl a in the chlorosomes as well as in the FMO-proteins was phytol, but both antenna complexes also contained small amounts of BChl a esterified with the metabolic intermediates geranylgeraniol, dihydrogeranylgeraniol and tetrahydrogeranylgeraniol, like most purple bacteria. Since the esterifying alcohols of the chlorosomal BChl a and of the main chlorosomal pigments (BChls c, d and e) are different, esterification, and perhaps also the synthesis, of the BChls in the interior of the chlorosome and of the BChls in the baseplate must be spatially and genetically separated processes.  相似文献   

11.
A new and rapid procedure has been developed for the isolation of the bacteriochlorophyll a-containing Fenna—Matthews—Olson (FMO)-protein from green sulfur bacteria. Polyclonal antibodies raised against the FMO-protein of Chlorobium (Chl.) tepidum were employed in the preparation of an antibody column utilizing immobilized protein A as the matrix. The antibody column afforded essentially a one-step purification process, resulting in preparations that were free from contaminating pigments and proteins. This was evidenced by absorption spectroscopy, SDS—PAGE, and fluorescence emission.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

12.
Photosynthetically active reaction centre core (RCC) complexes were isolated from two species of green sulfur bacteria, Prosthecochloris (Ptc.) aestuarii strain 2K and Chlorobium (Chl.) tepidum, using the same isolation procedure. Both complexes contained the main reaction centre protein PscA and the iron–sulfur protein PscB, but were devoid of Fenna–Matthews–Olson (FMO) protein. The Chl. tepidum RCC preparation contained in addition PscC (cytochrome c). In order to allow accurate determination of the pigment content of the RCC complexes, the extinction coefficients of bacteriochlorophyll (BChl) a in several solvents were redetermined with high precision. They varied between 54.8 mM−1 cm−1 for methanol and 97.0 mM−1 cm−1 for diethylether in the QY maximum. Both preparations appeared to contain 16 BChls a of which two are probably the 132-epimers, 4 chlorophylls (Chls) a 670 and 2 carotenoids per RCC. The latter were of at least two different types. Quinones were virtually absent. The absorption spectra were similar for the two species, but not identical. Eight bands were present at 6 K in the BChl a QY region, with positions varying from 777 to 837 nm. The linear dichroism spectra showed that the orientation of the BChl a QY transitions is roughly parallel to the membrane plane; most nearly parallel were transitions at 800 and 806 nm. For both species, the circular dichroism spectra were dominated by a strong band at 807–809 nm, indicating strong interactions between at least some of the BChls. The absorption, CD and LD spectra of the four Chls a 670 were virtually identical for both RCC complexes, indicating that their binding sites are highly conserved and that they are an essential part of the RCC complexes, possibly as components of the electron transfer chain. Low temperature absorption spectroscopy indicated that typical FMO–RCC complexes of Ptc. aestuarii and Chl. tepidum contain two FMO trimers per reaction centre. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The transfer of excitation energy in intact cells of the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus was studied both at low temperature and under more physiological conditions. Analysis of excitation spectra measured at 4K indicates that the minor fraction of bacteriochlorophyll a present in the chlorosome functions as an intermediate in energy transfer between the main light-harvesting pigment BChl c and the membrane-bound B808-866 antenna complex. This supports the hypothesis that BChl a is associated with the base plate which connects the chlorosome with the membrane. The overall efficiency for energy transfer from the chlorosome to the membrane is only 15% at 4K. High efficiencies of close to 100% are observed above 40°C near the temperature where the cultures are grown. Cooling to 20°C resulted in a sudden drop of the transfer efficiency which appeared to originate in the chlorosome. This decrease may be related to a lipid phase transition. Further cooling mainly affected the efficiency of transfer between the chlorosome and the membrane. This effect can only partially be explained by a decreased Förster overlap between the chlorosomal BChl a and BChl a 808 associated with the membrane-bound antenna system. The temperature dependence of the fluorescence yield of BChl a 866 also appeared to be affected by lipid phase transitions, suggesting that this fluorescence can be used as a native probe of the physical state of the membrane.  相似文献   

14.
The role of carotenoids in chlorosomes of the green sulfur bacterium Chlorobium phaeobacteroides, containing bacteriochlorophyll (BChl) e and the carotenoid (Car) isorenieratene as main pigments, was studied by steady-state fluorescence excitation, picosecond single-photon timing and femtosecond transient absorption (TA) spectroscopy. In order to obtain information about energy transfer from Cars in this photosynthetic light-harvesting antenna with high spectral overlap between Cars and BChls, Car-depleted chlorosomes, obtained by inhibition of Car biosynthesis by 2-hydroxybiphenyl, were employed in a comparative study with control chlorosomes. Excitation spectra measured at room temperature give an efficiency of 60–70% for the excitation energy transfer from Cars to BChls in control chlorosomes. Femtosecond TA measurements enabled an identification of the excited state absorption band of Cars and the lifetime of their S1 state was determined to be 10 ps. Based on this lifetime, we concluded that the involvement of this state in energy transfer is unlikely. Furthermore, evidence was obtained for the presence of an ultrafast (>100 fs) energy transfer process from the S2 state of Cars to BChls in control chlorosomes. Using two time-resolved techniques, we further found that the absence of Cars leads to overall slower decay kinetics probed within the Qy band of BChl e aggregates, and that two time constants are generally required to describe energy transfer from aggregated BChl e to baseplate BChl a.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

15.
The three-dimensional structure of a water-soluble bacteriochlorophyll a-containing protein from the green photosynthetic bacterium Prosthecochloris aestuarii has been determined by X-ray crystallography from a 2.8 Å resolution electron density map based on four isomorphous derivatives. Details of the crystallographic procedures used to obtain the map are presented.The bacteriochlorophyll a-protein is shown to consist of three identical subunits, tightly packed around a 3-fold symmetry axis. Each subunit consists of a core of seven bacteriochlorophyll a molecules enclosed within a “bag” of protein. The polypeptide chain forms an extensive 15-strand β-sheet, which is almost planar in its central region, and twisted at its extremities, and wraps around the chlorophyll core to form an efficient amphipathic layer between the chlorophylls and the aqueous environment. There are extensive contacts between the phytyl chains of the seven bacteriochlorophylls within each subunit. These hydrocarbon chains constitute an inner hydrophobic core of the molecule which may be important in forming the complex. There are also extensive contacts between the protein and both the bacteriochlorophyll head groups and tails, but relatively few contacts between the respective head groups. The seven magnesiums all appear to be five co-ordinated. In five cases the presumed ligand is a histidine side-chain, in one case a polypeptide carbonyl oxygen, and in the other case a water molecule.At low temperature, both the absorption and circular dichroism spectra of the bacteriochlorophyll a-protein show splitting which can be interpreted in general terms as due to exciton interactions between the seven chromophores, but calculations of the expected splitting based on the bacteriochlorophyll co-ordinates determined crystallographically are in poor agreement with the observed spectra. Furthermore, the observed red shift of the Qy absorption band of bacteriochlorophyll a, from about 770 nm in organic solvents to 809 nm in the bacteriochlorophyll a-protein, is not explained by the exciton calculations. It seems likely that the red shift is due to perturbations of the spectra of the individual bacteriochlorophylls by the protein environment, but, pending the determination of the amino acid sequence, it is not possible at this time to define in detail all the proteinchlorophyll interactions. It is suggested that the bacteriochlorophyll a-protein serves as a good model for the organization of chlorophyll in vivo, and that the types of interaction seen here between chlorophyll and protein are likely to be found in other chlorophyll proteins.  相似文献   

16.
We have studied the organization of the bacteriochlorophylls (BChl) in isolated chlorosomes of the green sulfur bacterium Chlorobium limicola UdG6040 containing about 50% BChl d and BChl c each. When the chlorosomes are treated in acidic buffer (pH 3.0) two phases in the conversion from BChl to bacteriopheophytin (BPhe) are observed as evidenced by the changes in the absorption spectrum. In the early phase the pheophytinization of BChl d occurs much faster than that of BChl c. In the later phase BChl c and BChl d are converted at similar rates. The delayed BChl c conversion observed in intact chlorosomes is interpreted in terms of spatial separation within the same chlorosome that makes BChl d more accessible to reaction with acid than BChl c. This was supported by acid treatment of in vitro pigment-lipid aggregates which showed that the pheophytinization of aggregates consisting of only BChl c or BChl d takes place with the same rate. Moreover in mixed in vitro aggrega tes where BChl d and BChl c are supposed to be scrambled the two pigments are converted to BPhe simultaneously. Acid treatment of hexanol exposed chlorosomes indicates that the spatial separation of BChl d and BChl c within the chlorosomes is maintained even if the excitonic interaction between BChls has been disturbed by hexanol. Based on these findings it is suggested that BChl d and BChl c in the chlorosome are located distal and proximal, respectively, relative to the chlorosome baseplate.  相似文献   

17.
We report comparative absorbance and fourth derivative absorbance spectra of two different bacteriochlorophyll a-proteins at 5 K in each of two different cryogenic solvent mixtures. In previous studies at 5 K each protein was observed in only one of these mixtures (not the same one). For the protein from Prosthecochloris aestuarii strain 2K, whose structure is known, the solvent effect is relatively small; for the protein from Chlorobium limicola f. sp. thiosulfatophilum strain 6230 (Tassajara), the effect is much more pronounced. From these results together with earlier results at 300 K, we conclude there may be slight conformational differences of the Prosthecochloris protein between the crystalline form used for X-ray diffraction studies and that in a cryogenic solvent. By comparing spectral features of the two proteins in the same solvent, we are able for the first time to assign all seven of the expected exciton levels in each protein. These occur at 793, 801, 806, 810, 814, 819, and 825 nm in the Prosthecochloris protein, and at 793, 802, 806, 810, 816, 820, and 823 nm in the Chlorobium protein.  相似文献   

18.
Saga Y  Hirai Y  Tamiaki H 《FEBS letters》2007,581(9):1847-1850
Substituent-dependent demetalation kinetics of natural bacteriochlorophyll (BChl) c and e homologs purified from two green sulfur photosynthetic bacteria was first studied. Separated BChl e homologs, which possessed a formyl group at the 7-position of their chlorin macrocycles, exhibited a significantly slow removal of central magnesium to free-base bacteriopheophytins in acidic aqueous acetone compared with the corresponding BChl c homologs, which possessed a methyl group at the 7-position. Additional methyl groups at the 8(2)-position of both BChl c and e molecules had little effect on the demetalation kinetics.  相似文献   

19.
Bacteriochlorophyll a-protein from Prosthecochloris aestuarii strain 2K was oriented in a pulsed electric field. The room temperature linear dichroism spectrum of the oriented protein in the Qy region of the bacteriochlorophyll a absorption exhibits a single asymmetrical peak at 813 nm with a shoulder extending to the blue. The ≈12 nm fullwidth of the linear dichroism peak is only about half that of the 300 K absorption spectrum. The linear dichroism at 813 nm was not saturated at field strengths of up to 15 kV/cm. The time dependence of the linear dichroism suggests that the orienting particles are aggregates of at least some tens of bacteriochlorophyll a-protein trimers. The linear dichroism peak coincides in wavelength with the 813-nm peak of the 300 K, 4th derivative absorption spectrum of the protein and is therefore attributed to the bacteriochlorophyll a Qy exciton transition observed in absorption at the same wavelength.  相似文献   

20.
Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.This paper is dedicated to Professor Norbert Pfennig on the occasion of his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号