首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The mechanism of gastroprotective action of an antiulcer drug, sucralfate, was investigated. Studies in vivo were conducted with groups of rats with and without indomethacin pretreatment, and the animals received sucralfate followed by ethanol. In the in vitro system, gastric mucosa was cultured in the presence of sucralfate with and without indomethacin. 2. The in vivo experiments revealed that ethanol caused extensive gastric lesions which were significantly reduced following sucralfate pretreatment. Furthermore, sucralfate was also capable of preventing the detrimental effect of indomethacin on gastric mucus gel dimension and its mucin content. 3. The data with gastric mucosal culture showed that the sucralfate elicited increase in mucin was accompanied by the enhanced turnover of mucosal phosphoinositides. 4. Regardless of the inclusion of indomethacin, sucralfate evoked 23% reduction in phosphatidylinositol, 24% increase in inositol-1-phosphate and 3.4-fold increase in inositol-1,4,5-trisphosphate, thus indicating the activation of phosphoinositide-specific phospholipase C. 5. The results demonstrate that the gastric mucosal protective action of sucralfate is not mediated by endogenous prostaglandins, but appears to involve the metabolism of phosphoinositide-derived messenger molecules.  相似文献   

2.
This study evaluated the effects of 25% ethanol, a mild irritant, on endogenous prostanoid synthesis in the rat stomach before and after exposure to oral 100% ethanol. Rats received water or 25% ethanol orally. After 15 min, a portion of each group was sacrificed and the remaining animals treated with 100% ethanol prior to sacrifice one minute later. Microsomal membrane fractions were prepared from the glandular gastric mucosa in all groups and incubated with 14C arachidonic acid in the presence of cofactors. Endogenous mucosal prostanoid synthesis was analyzed by radiochromatography and results correlated with the presence or absence of gastric injury macroscopically. Prostanoids measured included PGI2, PGF2 alpha, PGE2, PGD2, PGA2, and thromboxane A2. Additional experiments were performed in like manner to those just described with the exception that indomethacin (5 mg/kg intraperitoneally) pretreatment was rendered. Stomachs exposed to water or 25% ethanol alone demonstrated a modest and equivalent level of synthesis of all prostanoids measured. Exposure to 100% ethanol (with and without mild irritant pretreatment) significantly increased prostanoid synthesis (especially PGI2, PGF2 alpha, and PGE2) compared with stomachs exposed to water or 25% ethanol alone; only mild irritant treated mucosa was protected from injury by 100% ethanol. Indomethacin pretreatment reversed the increased prostanoid synthesis in mucosa exposed to 100% ethanol, with or without mild irritant pretreatment, and partially reversed the protective effect of 25% ethanol. Other experiments using tissue slices in which perturbations in mucosal levels of prostanoids were measured by radioimmunoassay under identical experimental conditions exhibited similar results. These data dispute the notion that adaptive cytoprotection is mediated by increased endogenous prostanoid synthesis. The partial reversal of this process by indomethacin was most likely secondary to some other action of this agent, such as a reduction in gastric blood flow, rather than direct effects on prostanoid synthesis.  相似文献   

3.
The mechanism of the protective actions of sucralfate against ethanol-induced gastric mucosal damage in the rat has been investigated. In particular, the role of prostaglandins as mediators of such protection was assessed. Oral administration of sucralfate at a dose causing a significant reduction of ethanol-induced gastric damage (500 mg/kg) did not significantly alter gastric 6-ketoprostaglandin F1 alpha synthesis. Pretreatment with indomethacin at a dose that inhibited gastric cyclooxygenase activity by an average of 88% did not affect the protective actions of sucralfate. To further investigate the mechanism of action of sucralfate, an ex vivo gastric chamber model was used in which sucralfate could be applied to only one side of the mucosa. Sucralfate did not affect gastric prostaglandin synthesis, but did cause a significant increase in leukotriene C4 synthesis, a fall in transmucosal potential difference, and a significant decrease in gastric myeloperoxidase activity on the side exposed to sucralfate. These observations suggest that sucralfate has an irritant action on the mucosa. The release of mediators in response to such irritation may play an important role in the protective action of sucralfate. The present study supports the hypothesis that prostaglandins do not mediate the protection afforded by exposure to sucralfate.  相似文献   

4.
Endothelin-1 (ET-1), nitric oxide, and cytokines are recognized mediators of the inflammatory processes associated with gastric mucosal injury. In this study, we investigated mucosal expression of ET-1, interleukin-4 (IL-4), and the activity of constitutive nitric oxide synthase (cNOS) during indomethacin-induced gastric mucosal injury, and evaluated the effect of antiulcer agents on this process. The experiments were conducted with groups of rats pretreated intragastrically with ranitidine (100 mg/kg), ebrotidine (100 mg/kg), sulglycotide (200 mg/kg) or vehicle, followed 30 min later by an intragastric dose of indomethacin (60 mg/kg). The animals were killed 2 h later and their mucosal tissue subjected to macroscopic damage assessment and the measurements of epithelial cell apoptosis, ET-1, IL-4, and cNOS. In the absence of antiulcer agents, indomethacin caused multiple hemorrhagic lesions and extensive epithelial cell apoptosis, accompanied by a 20.7% reduction in IL-4, a 3.1-fold increase in mucosal expression of ET-1 and a 4.2-fold decline in cNOS. Pretreatment with H2-receptor antagonist, ranitidine produced a 15.7% reduction in the mucosal damage caused by indomethacin, 29.5% decrease in epithelial cell apoptosis and a 19.6% reduction in ET-1, while the expression of IL-4 increased by 10.8% and that of cNOS showed a 2-fold increase. The H2-blocker, ebrotidine, also known for its gastroprotective effects, reduced the indomethacin-induced lesions by 90.2%, epithelial cell apoptosis decreased by 61% and ET-1 showed a 58.2% decline, while IL-4 increased by 30.6% and that of cNOS showed a 3.1-fold increase. Pretreatment with gastroprotective agent, sulglycotide, led to a 51.2% reduction in the extent of mucosal damage caused by indomethacin, a 43.9% decrease in apoptosis, and a 63.5% decrease in ET-1, while the expression of cNOS increased by 3.4-fold and the level of IL-4 showed a 32.2% increase. The results suggest that an increase in vasoconstrictive ET-1 level combined with a decrease in regulatory cytokine, IL-4, and a loss of compensatory action by cNOS may be responsible for gastric mucosal injury caused by indomethacin. Our findings also point to a value of ebrotidine and sulglycotide in countering the untoward gastrointestinal side effects of NSAID therapy.  相似文献   

5.
6.
The effect of the traditional herbal medicine, Rikkunshi-to and its component crude drugs, Zingiberis Rhizoma and Glycyrrhizae Radix, on the gastric mucin was studied using a method developed to separate and quantify the mucin localized in the different layers of rat gastric mucosa. The oral administration of spray-dried extract to Rikkunshi-to (1000 mg/kg), Zingiberis Rhizoma (500 mg/kg) and Glycyrrhizae Radix (500 mg/kg) significantly prevented gastric mucosal damage induced by 70% ethanol in rats. In ethanol-treated rats the mucin content of the deep mucosa was reduced, and the reduction of the deep corpus mucin content was significantly inhibited by pretreatment of Rikkunshi-to and Zingiberis Rhizoma. Rikkunshi-to and Glycyrrhizae Radix pretreatment increased the surface mucin content by 140 and 146%, respectively. The effect on the gastric mucin by each drug differed in the different layers of the gastric mucosa.  相似文献   

7.
Helicobacter pylori is a primary factor in the etiology of gastric disease, and its early pathogenic effects are manifested by up-regulation of inflammatory processes and the loss of mucus coat continuity. We investigated the role of extracellular signal-regulated kinase (ERK) and p38 mitogen activated protein kinase (MAPK) in the disturbances in gastric mucin synthesis and apoptotic processes evoked by H. pylori lipopolysaccharide (LPS). Exposure of gastric mucosal cells to the LPS led to a dose-dependent decrease (up to 59.5%) in mucin synthesis, accompanied by a marked increase in caspase-3 activity and apoptosis. Inhibition of ERK with PD98059 accelerated (up to 36.1%) the LPS-induced decrease in mucin synthesis, and caused further enhancement in caspase-3 activity and apoptosis. Blockade of p38 kinase with SB203580 produced reversal in the LPS-induced reduction in mucin synthesis, and substantially countered the LPS-induced increases in caspas-3 activity and apoptosis. Moreover, inhibition of caspase-3 blocked the LPS-induced increase in caspse-3 activity and produced an increase in mucin synthesis. Thus the detrimental influence of H. pylori LPS on gastric mucin synthesis is closely linked to caspase-3 activation and apoptosis, and involves ERK and p38 kinase participation.  相似文献   

8.
Earlier investigations on the effect of ethanol on synthesis and posttranlational glycosylation of gastric mucus glycoprotein (mucin) revealed quantitative changes in the apoprotein assembly, glycosylation, and mucin retention on the mucosal surface (Slomiany et al.., Alcoholism: Clin. Exp. Res. 21, 417-423, 1998). To assess whether metabolic consequences of ethanol ingestion, documented in the in vitro system are also occurring in vivo the rats were subjected to 8 weeks of ethanol containing liquid diet. The retention of mucin on the surface of gastric mucosa was quantitated by measuring the binding of gastric mucin to Mucin Binding Protein (MBP) of gastric mucosa. The results were compared with those obtained with the rats subjected to pair-feeding the isocaloric-control diet. Before alcohol administration, and in two weeks' intervals thereafter, the gastric contents from the animals was collected and mucin purified. After 8 weeks of the respective diet, the animals were sacrificed and their gastric mucosa used for MBP preparation. The binding of mucin to MBP before ethanol, and after 2, 4, 6, and 8 weeks of ethanol diet was quantitated with Enzyme Linked Lectin Assay (ELLA). The study with standard mucin revealed that binding of mucin to MBP differs substantially between individual animals. The same variability in binding was observed with the individual mucin preparations collected at the onset of the experiment. However, with the progression of ethanol feeding, the mucin samples besides displaying the variable and animal-specific binding to MBP at the initiation of the experiment, also showed a dramatic decrease in binding. In five animals, after two weeks of ethanol diet, mucin binding to MBP decreased by 50%; in two animals, the drastic decrease in binding was observed in mucin collected after four weeks of alcohol feeding; and in one animal a 20% decrease in binding persisted for six weeks, and then decreased to 50% in the last collection. Also, in two animals, the mucin collected after 8 weeks of ethanol feeding retained only 6-9% of the initial binding capacity. In contrast, in pair-fed controls, the mucin binding to MBP remained the same or increased up to 20%. Results of the studies, performed on mucin of the individual animals and matching preparations of MBP, showed that each animal expresses different degree of mucin binding. Moreover, in chronic ethanol ingestion, the individual variations are accompanied by a decrease in mucin binding to MBP. Since the observed decrease in binding occurred in samples containing the same preparation of MBP, the component affected by alcohol resides on mucin. Thus, considering the in vitro impact of ethanol on generation of carbohydrate chains in Golgi, and the finding on mucin oligosaccharides-dependent mucin-MBP complex formation, we conclude that ethanol impairs the synthesis of mucin oligosaccharide structures required for binding with MBP, and the retention on gastric mucosal surfaces.  相似文献   

9.
The aim of this study was to investigate the effects of peripherally injected glucagon like peptide-1 (GLP-1) on ethanol-induced gastric mucosal damage and the mechanisms included in the effect. Absolute ethanol was administered through an orogastric cannula right after the injection of GLP-1 (1, 10, 100, 1000 or 10,000 ng/kg; i.p.). The rats were decapitated an hour later, the stomachs removed and the gastric mucosal damage scored. 1000 ng GLP-1 inhibited gastric mucosal damage by 45% and 10,000 ng GLP-1 by 60%. The specific receptor antagonist exendin-(9-39) (2500 ng/kg; i.p.), calcitonin gene related peptide (CGRP) receptor antagonist CGRP-(8-37) (10 microg/kg; i.p.), nitric oxide (NO) synthase inhibitor l-NAME (30 mg/kg; s.c.) and cyclooxygenase inhibitor indomethacin (5 mg/kg; i.p.) inhibited the preventive effect of GLP-1 on ethanol-induced gastric mucosal damage. GLP-1 also prevented the decrease in gastric mucosal blood flow caused by ethanol when administered at gastroprotective doses (1000 and 10,000 ng/kg; i.p.). In conclusion, GLP-1 administered peripherally prevents the gastric mucosal damage caused by ethanol in rats. CGRP, NO, prostaglandin and gastric mucosal blood flow are thought to play a role in this effect, mediated through receptors specific to GLP-1.  相似文献   

10.
《Journal of Physiology》1997,91(3-5):189-197
There exists a considerable controversy in the literature with regard to the effect of either opiate receptor blockade or that of morphine in different gastric and intestinal ulcer models in the rat. We performed experiments to evaluate the effects of naloxone and morphine on gastric acid secretion and gastric mucosal damage in different experimental models of gastric mucosal injury, namely in indomethacin-, HCl (0.6N)- and ethanol (96%)-models. We found that: 1) 10 mg/kg naloxone ip given twice, effectively protected gastric mucosa against indomethacin (30 mg/kg ip) and against the acid-dependent injury caused by 0.6 N HCl (1 mL ig), but not against the non acid-dependent injury caused by 96% ethanol (1 mL ig); 2) morphine (10 + 10 mg/kg ip) increased ulcers in the HCl-model, but had no effect in the two other models; 3) this ulcer-aggravating effect of morphine in the HCl-model was blocked by pretreatment of 2 mg/kg ip naloxone; and 4) both naloxone (5 + 5 and 10 + 10 mg/kg ip) significantly decreased gastric acid secretion in 1-h pylorus ligated rats. We conclude that: 1) naloxone dose-dependently protects against the indomethacin- and HCl-, but not against the ethanol-induced gastric mucosal damage; 2) morphine aggravates the HCl-induced ulcerogenesis; and 3) both opiod receptor agonist and antagonist decrease gastric acid secretion.  相似文献   

11.
The effect of ethanol on the synthesis and secretion of mucus glycoprotein in gastric mucosal cells was investigated. The mucosal cell suspensions were subjected to a short-term (4 h) culture in the presence of 0-1.5 M ethanol, with [3H]proline and [3H]palmitic acid as markers for glycoprotein synthesis and acylation. The synthesized labeled mucus glycoprotein was isolated from the incubation medium (extracellular glycoprotein) and from the mucosal cells (intracellular glycoprotein), and analyzed. Depending upon the ethanol concentration in the cell culture medium, two distinct effects on the synthesis and secretion of mucus glycoprotein were observed. The cells cultured in the presence of 0.02-0.1 M ethanol showed increased ability for the incorporation of [3H]proline and [3H]palmitic acid, and for the secretion of the newly assembled mucus glycoprotein. The synthesis of the glycoprotein increased 18-fold, acylation 5-fold, and secretion 10-fold. The synthesized glycoprotein, however, contained four to five times less of acyl-bound fatty acids. Ethanol at 0.1-1.5 M caused a marked reduction (62-64%) in the mucus glycoprotein synthesis, but the amount of glycoprotein released to the medium remained constant. This indicated that higher concentrations of ethanol caused the release of the preformed intracellular mucus glycoprotein reserves. The results demonstrate that gastric mucosal cells incubated in the presence of ethanol exhibit impaired synthesis and secretion of mucus glycoprotein, and that the severity of impairment depends upon the ethanol concentration.  相似文献   

12.
BACKGROUND: The course of events associaed with healing gastric mucosal injury involves an orderly interplay between the array of signaling molecules that exert their influence on the processes leading to the restoration of the mucosal integrity. In this study, we investigated the effect of antiulcer agent, sucralfate, on the mucosal apoptotic processes during gastric ulcer healing by analyzing the expression of interleukin-4 (IL:4), endothelin-1 (ET-1), tumor necrosis factor-alpha (TNF-alpha), and the mucosal activity of capase-3, and constitutive (cNOS) and inducible nitric oxide synthase (NOS-2). METHODS: Rats with experimentally induced chronic gastric ulcers were administered twice daily for 14 days either sucralfate at 100 mg/kg or vehicle, and at different stages of treatment their stomachs were used for macroscopic and biochemical assessments. RESULTS: The ulcer onset was characterized by a massive epithelial apoptosis associated with a 33-fold increase in caspase-3 activity, 5.7-fold increase in TNF-alpha, 17.5-fold increase in NOS-2 and a 3.9-fold increase in ET-1, while the mucosal expression of cNOS activity showed a 7.6-fold drop and IL-4 expression fell by 37.2%. The healing was reflected in a rapid recovery in IL-4, and a decrease in apoptosis, caspase-3, TNF-alpha, ET-1 and NOS-2, and a slow recovery in cNOS activity, and the process was accelerated in the sucralfate-treated group. While in the absence of sucralfate the expression of IL-4 returned to that of the normal mucosa by the 7th day of healing and that of ET-1 and TNF-alpha by the 14th day, an accelerated ulcer healing with sucralfate treatment was associated with IL-4 recovery by the 4th day and that of ET-1 and TNF-alpha by the 10th day when the ulcer heated, while recovery in cNOS activity required 14 days. Yet, in both groups of animals the apoptotic DNA fragmentation rate, caspase-3 and the expression of NOS-2 activity remained significantly elevated even after the ulcer healed. CONCLUSIONS: The results suggest that a decrease in the mucosal expression of the regulatory cytokine IL-4 at the ulcer onset may well be a key factor causing dysregulation of ET-1 production, induction of TNF-alpha, and triggering the apoptotic events that affect the efficiency of mucosal repair process. We also show that accelerated ulcer healing by sucralfate may be the result of a rapid mucosal IL-4 generation that leads to the suppression of the mucosal apoptotic events.  相似文献   

13.
Endothelin-1 (ET-1) is a 21-amino acid vasoactive peptide produced from a 39-amino acid biologically inactive peptide, big ET-1, by the action of endothelin-converting enzyme-1 (ECE-1). We investigated gastric mucosal expression of ECE-1 during a 16 h course of inflammatory responses associated with gastric mucosal injury caused by indomethacin. The extent of gastric mucosal damage reached a maximum 4 h following the drug, and was accompanied by a 3.9-fold enhancement in the expression of ECE-1 activity and a significant elevation in ET-1 (4.5-fold), TNF-alpha (11.3-fold), and apoptosis (29.9-fold). A 37.2% decrease in the severity of lesion 16 h following the drug was associated with a 44.5% reduction in the mucosal expression of ECE-1 activity and a decline in TNF-alpha (64%), ET-1 (65.2%), and apoptosis (72.3%). The results demonstrate that gastric mucosal injury by indomethacin is associated with up-regulation of ECE-1 expression, which leads to the enhancement of ET-1 production, induction of TNF-alpha, and triggering apoptotic events that disrupt gastric mucosal homeostasis.  相似文献   

14.
The effects of PGE2 and its stable analogue, 16,16 dimethyl PGE2 (dmPGE2) were investigated on ethanol-induced gastric mucosal haemorrhagic lesions and leukotriene formation in the rat. Exposure of the rat gastric mucosa to ethanol in-vivo, produced a concentration-related increase in the mucosal formation of leukotriene B4 (LTB4) which was correlated with macroscopically-apparent haemorrhagic damage to the mucosa. Challenge with absolute ethanol likewise enhanced the mucosal formation of LTC4 whereas the mucosal formation of 6-keto-PGF1 alpha was unaffected. Challenge of the rat gastric mucosa in vitro with ethanol induced a concentration-dependent increase in the formation of LTB4 and LTC4, but not 6-keto PGF1 alpha. Pretreatment with PGE2 (200-500 micrograms/kg p.o.) prevented the haemorrhagic mucosal damage induced by oral administration of absolute ethanol but not the increased formation of leukotrienes by the mucosa. In contrast, pretreatment with a high dose of dmPGE2 (20 micrograms/kg p.o.) prevented both the gastric mucosal lesions and the increase mucosal leukotriene formation. The differences in the effects of these prostaglandins may be related to the nature or degree of protection of the gastric mucosa. Thus, high doses of dmPGE2 but not PGE2 may protect the cells close to the luminal surface of the mucosa and hence reduce the stimulation of leukotriene synthesis by these cells.  相似文献   

15.
BACKGROUND: Helicobacter pylori is recognized as a primary etiologic factor in the development of gastric disease and the product of particular significance to the virulent action of the bacterium is its cell wall lipopolysaccharide. We applied the animal model of H. pylori lipopolysaccharide-induced acute gastritis to study the effect of antiulcer agents, omeprazole and sucralfate, on the course of mucosal inflammatory responses by analyzing the interplay between the extent of epithelial cell apoptosis and the mucosal expression of endothelin-1 (ET-1), tumor necrosis factor-alpha (TNF-alpha), and the activity of constitutive (cNOS) and inducible (NOS-2) nitric oxide synthase. METHODS: Rats pretreated twice daily for 3 consecutive days with omeprazole at 40 mg/kg, sucralfate at 100 mg/kg or the vehicle, were subjected to intragastric application of H. pylori lipopolysaccharide at 50 microg/animal, and after 2, 4, and 10 additional days on the antiulcer drug or vehicle regimen their mucosal tissue used for histologic and biochemical assessment. RESULTS: In the absence of antiulcer agents, H. pylori lipopolysaccharide elicited within 2 days a pattern of acute mucosal inflammatory responses accompanied by a massive epithelial cell apoptosis, a 2.9-fold increase in the mucosal expression of ET-1, an 11.7-fold enhancement in TNF-alpha, and a 9.3-fold increase in NOS-2, while cNOS activity showed a 5.5-fold decrease. The extent of mucosal inflammatory involvement reached a maximum by the 4th day and showed a decline by the 10th day. This was reflected in a marked reduction in epithelial cell apoptosis, decrease in the mucosal expression of ET-1, TNF-alpha and NOS-2, and the recovery in cNOS activity. Comparing to the vehicle controls, treatment with proton pump inhibitor, omeprazole, led at the end of a 10 day period to a 48.3% reduction in the extent of mucosal inflammatory involvement elicited by H. pylori lipopolysaccharide, while a 74.2% reduction in the mucosal inflammatory involvement was achieved with gastroprotective agent, sucralfate. Moreover, this advantage of sucralfate over omeprazole in countering the lipopolysaccharide-induced changes was reflected at the end of 10 day treatment period in a 20.4% greater decrease in apoptosis, a 47.5% greater reduction in TNF-alpha and a 50.7% greater reduction in ET-1. However, both agents exerted similar influence on the restoration of gastric mucosal cNOS activity and showed a comparable effect at the end of a 10 day treatment in countering the lipopolysaccharide-induced increase in the expression of NOS-2. CONCLUSIONS: The findings suggest that an increase in the mucosal ET-1 level elicited by H. pylori lipopolysaccharide, combined with a decline in cNOS may be responsible for the induction of TNF-alpha and triggering the inflammatory process. We also show that sucralfate exhibits greater efficacy than omeprazole in suppressing the H. pylori-induced mucosal inflammatory responses. This property of sucralfate may well be due to its ability to suppress the mucosal rise in ET-1.  相似文献   

16.
This study was designed to determine the gastroprotective properties of quercetin in ischemia/reperfusion-induced gastric mucosal injury and the involvement of endogenous prostaglandins in this process. Oral pretreatment of rats with quercetin (100 mg x kg(-1)) 30 min before surgery significantly decreased the length of gastric mucosal lesions. However, lower doses of quercetin (25 and 50 mg x kg(-1)) only slightly decreased the gastric mucosal injury. Intraperitoneal application of indomethacin (5 mg x kg(-1)) had no effect in control (sham-operated) animals, but significantly worsened gastric injury in non-treated animals after ischemia/reperfusion. Furthermore, indomethacin only slightly reversed protective effect of quercetin. Non-treated animals showed a marked decrease in adherent mucus after ischemia/reperfusion. On the other hand, application of quercetin prevented this significant decrease even in animals pretreated with indomethacin. It can be concluded that antioxidant properties of quercetin and its mucus protective effect might be the main factors responsible for its protective effect against ischemia/reperfusion-induced gastric mucosal injury.  相似文献   

17.
Methanolic extract of Musa sapientum var. Paradisiaca (MSE, 100 mg/kg) was studied for its antiulcer and mucosal defensive factors in normal and non-insulin dependent diabetes mellitus (NIDDM) rats. NIDDM was induced by administering streptozotocin (STZ, 70 mg/kg, ip) to 5 days old rat pups. The animals showing blood glucose level >140mg/dL after 12 weeks of STZ administration were considered as NIDDM positive. Effects of MSE were compared with known ulcer protective drug, sucralfate (SFT, 500 mg/kg) and anti-diabetic drug glibenclamide (GLC, 0.6 mg/kg) when administered orally, once daily for 6 days against gastric ulcers (GU) induced by cold-restraint stress (CRS) and ethanol and subsequent changes in gastric mucosal glycoproteins, cell proliferation, free radicals (lipid peroxidation and nitric oxide) and anti-oxidants enzymes (super oxide dismutase and catalase) and glutathione (GSH) levels. MSE showed better ulcer protective effect in NIDDM rats compared with SFT and GLC in CRS-induced GU. NIDDM caused a significant decrease in gastric mucosal glycoprotein level without having any effect on cell proliferation. However, all the test drugs reversed the decrease in glycoprotein level in NIDDM rats, but cell proliferation was enhanced in case of MSE alone. Both CRS or NIDDM as such enhanced gastric mucosal LPO, NO and SOD, but decreased CAT levels while CRS plus NIDDM rats caused further increase in LPO and NO level without causing any further changes in SOD and CAT level. MSE pretreatment showed reversal in the levels of all the above parameters better than GLC. Ethanol caused a decrease in glutathione level which was further reduced in NIDDM-ethanol rats. MSE reversed the above changes significantly in both normal as well as in NIDDM rats, while GLC reversed it only in NIDDM rats. However, SFT was ineffective in reversing the changes induced by CRS or ethanol or when given in NIDDM-CRS or NIDDM-ethanol rats. The results indicated that the ulcer protective effect of MSE could be due to its predominant effect on mucosal glycoprotein, cell proliferation, free radicals and antioxidant systems.  相似文献   

18.
The effect of pretreatment with intragastric sucralfate on aspirin acid-induced gastric mucosal lesions in the rat was studied. The finding by others that sucralfate is cytoprotective and that this cytoprotective effect probably is mediated, at least in part, by stimulation of endogenous prostaglandin synthesis was confirmed. In addition, a time course study revealed that the maximum cytoprotective effect was present 1 min after sucralfate administration and persisted for at least 6 hr. Microscopic evaluation of histologic sections revealed that sucralfate significantly decreased aspirin-induced deep mucosal erosions (those extending into the parietal cell area) but not superficial mucosal damage. Superficial mucosal damage (surface cell injury and erosions involving the mucous neck cell area) could not be detected grossly. The lesions seen grossly were deeper erosions involving the parietal cell area of the mucosa.  相似文献   

19.
The effect of H. pylori lipopolysaccharide on the synthesis and secretion of sulfated mucin in gastric mucosa was investigated using mucosal segments incubated in the presence of [3H]proline, [3H]glucosamine and [35S]Na2SO4. The lipopolysaccharide, while showing no discernible effect on the apomucin synthesis was found to inhibit the process of mucin glycosylation and sulfation, which at 100 micrograms/ml lipopolysaccharide reached the optimal inhibition of 65%. The analysis of mucin secretory responses revealed that the lipopolysaccharide by first 15 min caused a 57% stimulation in sulfomucin secretion followed thereafter by inhibition, which reached maximum of 32% by 45 min. The results suggest that colonization of gastric mucosa by H. pylori may be detrimental to the process of gastric sulfomucin synthesis and secretion.  相似文献   

20.
The mechanism of action of the "mast cell stabilizers" sodium cromoglycate and FPL-52694 as protective agents against ethanol-induced gastric mucosal damage was investigated in the rat. Using an ex vivo gastric chamber model, various concentrations (10-80 mg/mL) of the two agents were applied to the gastric mucosa prior to exposure to 40% ethanol. Both agents significantly reduced ethanol-induced damage in a dose-dependent manner. When given orally (80 mg/kg) both agents significantly reduced gastric damage induced by subsequent oral administration of absolute ethanol. Pretreatment with indomethacin did not significantly affect the protection afforded by FPL-52694, but did cause a partial reversal of the protective effect of sodium cromoglycate. Changes in gastric leukotriene C4 synthesis did not correlate with the protective effects of the two agents. Both mucosal and connective tissue mast cell numbers were significantly reduced following oral ethanol administration. In the groups pretreated with FPL-52694 or sodium cromoglycate, mucosal mast cell numbers were not significantly different from those in rats not treated with ethanol. Furthermore, the connective tissue mast cell numbers were significantly lower than in ethanol-treated control rats, despite a greater than 95% reduction of ethanol-induced hemorrhagic damage. These results therefore suggest that stimulation of gastric prostaglandin synthesis is not important in the mechanism of action of FPL-52694, and neither agent appears to reduce damage through a mechanism related to effects on gastric leukotriene C4 synthesis. The present studies further suggest that the protection afforded by pretreatment with sodium cromoglycate or FPL-52694 may be unrelated to effects of these agents on the connective tissue mast cell population in the stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号