首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cdc42 and Rac1 Rho family GTPases, and their interacting protein IQGAP1 are the key regulators of cell polarity. We examined the role of Cdc42 and IQGAP1 in establishing the polarity of mouse oocyte and regulation of meiotic and mitotic divisions. We showed that Cdc42 was localized on the microtubules of meiotic and mitotic spindle and in the cortex of mouse oocytes and cleaving embryos. IQGAP1 was present in the cytoplasm and cortex of growing and fully-grown oocytes. During maturation it disappeared from the cortex and during meiotic and mitotic cytokinesis it concentrated in the contractile ring. Toxin B inhibition of the binding activity of Cdc42 changed the localization of IQGAP1, inhibited emission of the first polar body, and caused disappearance of the cortical actin without affecting the migration of meiotic spindle. This indicates, that in maturing oocytes accumulation of cortical actin is not indispensable for spindle migration. In zygotes treated with toxin B actin cytoskeleton was rearranged and the first and/or subsequent cytokinesis were inhibited. Our results indicate that Cdc42 acts upstream of IQGAP1 and is involved in regulation of cytokinesis in mouse oocytes and cleaving embryos, rather than in establishing the polarity of the oocyte.  相似文献   

2.
Summary The reorganization of the actin and microtubule (MT) cytoskeleton was immunocytochemically visualized by confocal laser scanning microscopy throughout the photomorphogenetic differentiation of tip-growing characean protonemata into multicellular green thalli. After irradiating dark-grown protonemata with blue or white light, decreasing rates of gravitropic tip-growth were accompanied by a series of events leading to the first cell division: the nucleus migrated towards the tip; MTs and plastids invaded the apical cytoplasm; the polar zonation of cytoplasmic organelles and the prominent actin patch at the cell tip disappeared and the tip-focused actin microfilaments (MFs) were reorganized into a homogeneous network. During prometaphase and metaphase, extranuclear spindle microtubules formed between the two spindle poles. Cytoplasmic MTs associated with the apical spindle pole decreased in number but did not disappear completely during mitosis. The basal cortical MTs represent a discrete MT population that is independent from the basal spindle poles and did not redistribute during mitosis and cytokinesis. Preprophase MT bands were never detected but cytokinesis was characterized by higher-plant-like phragmoplast MT arrays. Cytoplasmic actin MFs persisted as a dense network in the apical cytoplasm throughout the first cell division. They were not found in close contact with spindle MTs, but actin MFs were clearly coaligned along the MTs of the early phragmoplast. The later belt-like phragmoplast was completely depleted of MFs close to the time of cell plate fusion except for a few actin MF bundles that extended to the margin of the growing cell plate. The cell plate itself and young anticlinal cell walls showed strong actin immunofluorescence. After several anticlinal cell divisions, basal cells of the multicellular protonema produced nodal cell complexes by multiple periclinal divisions. The apical-dome cell of the new shoot which originated from a nodal cell becomes the meristem initial that regularly divides to produce a segment cell. The segment cell subsequently divides to produce a single file of alternating internodal cells and multicellular nodes which together form the complexly organized characean thallus. The actin and MT distribution of nodal cells resembles that of higherplant meristem cells, whereas the internodal cells exhibit a highly specialized cortical system of MTs and streaming-generating actin bundles, typical of highly vacuolated plant cells. The transformation from the asymmetric mitotic spindle of the polarized tip-growing protonema cell to the symmetric, higher-plant-like spindle of nodal thallus cells recapitulates the evolutionary steps from the more primitive organisms to higher plants.Abbreviations FITC fluorescein isothiocyanate - MF microfilament - MT microtubule - MSB microtubule-stabilizing buffer - PBS phosphate-buffered saline  相似文献   

3.
We have identified an F-actin cytoskeletal network that remains throughout interphase, mitosis, and cytokinesis of higher plant endosperm cells. Fluorescent labeling was obtained using actin monoclonal antibodies and/or rhodamine-phalloidin. Video-enhanced microscopy and ultrastructural observations of immunogold-labeled preparations illustrated microfilament-microtubule co-distribution and interactions. Actin was also identified in cell crude extract with Western blotting. During interphase, microfilament and microtubule arrays formed two distinct networks that intermingled. At the onset of mitosis, when microtubules rearranged into the mitotic spindle, microfilaments were redistributed to the cell cortex, while few microfilaments remained in the spindle. During mitosis, the cortical actin network remained as an elastic cage around the mitotic apparatus and was stretched parallel to the spindle axis during poleward movement of chromosomes. This suggested the presence of dynamic cross-links that rearrange when they are submitted to slow and regular mitotic forces. At the poles, the regular network is maintained. After midanaphase, new, short microfilaments invaded the equator when interzonal vesicles were transported along the phragmoplast microtubules. Colchicine did not affect actin distribution, and cytochalasin B or D did not inhibit chromosome transport. Our data on endosperm cells suggested that plant cytoplasmic actin has an important role in the cell cortex integrity and in the structural dynamics of the poorly understood cytoplasm-mitotic spindle interface. F-actin may contribute to the regulatory mechanisms of microtubule-dependent or guided transport of vesicles during mitosis and cytokinesis in higher plant cells.  相似文献   

4.
The widely conserved Arp2/3 complex regulates branched actin dynamics that are necessary for a variety of cellular processes. In Caenorhabditis elegans, the actin cytoskeleton has been extensively characterized in its role in establishing PAR asymmetry; however, the contributions of actin to the maintenance of polarity before the onset of mitosis are less clear. Endocytic recycling has emerged as a key mechanism in the dynamic stabilization of cellular polarity, and the large GTPase dynamin participates in the stabilization of cortical polarity during maintenance phase via endocytosis in C. elegans. Here we show that disruption of Arp2/3 function affects the formation and localization of short cortical actin filaments and foci, endocytic regulators, and polarity proteins during maintenance phase. We detect actin associated with events similar to early endosomal fission, movement of endosomes into the cytoplasm, and endosomal movement from the cytoplasm to the plasma membrane, suggesting the involvement of actin in regulating processes at the early endosome. We also observe aberrant accumulations of PAR-6 cytoplasmic puncta near the centrosome along with early endosomes. We propose a model in which Arp2/3 affects the efficiency of rapid endocytic recycling of polarity cues that ultimately contributes to their stable maintenance.  相似文献   

5.
Asymmetric cell division generates cell diversity during development and regulates stem-cell self-renewal in Drosophila and mammals. In Drosophila, neuroblasts align their spindle with a cortical Partner of Inscuteable (Pins)-G alpha i crescent to divide asymmetrically, but the link between cortical polarity and the mitotic spindle is poorly understood. Here, we show that Pins directly binds, and coimmunoprecipitates with, the NuMA-related Mushroom body defect (Mud) protein. Pins recruits Mud to the neuroblast apical cortex, and Mud is also strongly localized to centrosome/spindle poles, in a similar way to NuMA. In mud mutants, cortical polarity is normal, but the metaphase spindle frequently fails to align with the cortical polarity axis. When spindle orientation is orthogonal to cell polarity, symmetric division occurs. We propose that Mud is a functional orthologue of mammalian NuMA and Caenorhabditis elegans Lin-5, and that Mud coordinates spindle orientation with cortical polarity to promote asymmetric cell division.  相似文献   

6.
Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation.  相似文献   

7.
We compared the redistribution of mitochondria in the early embryos of Caenorhabditis elegans (C. elegans) and Acrobeloides sp. PS1146 (Acrobeloides)--two nematode species where the mechanisms for embryonic axis specification are different even though subsequent development is remarkably similar. During the first cell cycle of C. elegans, mitochondria move with the bulk cytoplasmic flows that are directed toward the sperm pronucleus and aggregate at the posterior cortex during the period known as "pseudocleavage." In contrast, in Acrobeloides embryos, where prominent cytoplasmic rearrangements are absent, mitochondria that are initially distributed loosely around the pronuclei and the cytoplasm are relocated around the mitotic spindle prior to cell division. Interestingly, this rearrangement is reiterated only in the germline and not the somatic lineage. In both species, the location of the mitochondria immediately prior to cell division correlates with the known location of the germline determinants, P granules, leading us to speculate that they may be associated.  相似文献   

8.
At anaphase, the mitotic spindle positions the cytokinesis furrow [1]. Two populations of spindle microtubules are implicated in cytokinesis: radial microtubule arrays called asters and bundled nonkinetochore microtubules called the spindle midzone [2-4]. In C. elegans embryos, these two populations of microtubules provide two consecutive signals that position the cytokinesis furrow: The first signal is positioned midway between the microtubule asters; the second signal is positioned over the spindle midzone [5]. Evidence for two cytokinesis signals came from the identification of molecules that block midzone-positioned cytokinesis [5-7]. However, no molecules that are only required for, and thus define, the molecular pathway of aster-positioned cytokinesis have been identified. With RNAi screening, we identify LET-99 and the heterotrimeric G proteins GOA-1/GPA-16 and their regulator GPR-1/2 [10-12] in aster-positioned cytokinesis. By using mechanical spindle displacement, we show that the anaphase spindle positions cortical LET-99, at the site of the presumptive cytokinesis furrow. LET-99 enrichment at the furrow depends on the G proteins. GPR-1 is locally reduced at the site of cytokinesis-furrow formation by LET-99, which prevents accumulation of GPR-1 at this site. We conclude that LET-99 and the G proteins define a molecular pathway required for aster-positioned cytokinesis.  相似文献   

9.
Asymmetric cell divisions require the establishment of an axis of polarity, which is subsequently communicated to downstream events. During the asymmetric cell division of the P(1) blastomere in C. elegans, establishment of polarity depends on the establishment of anterior and posterior cortical domains, defined by the localization of the PAR proteins, followed by the orientation of the mitotic spindle along the previously established axis of polarity. To identify genes required for these events, we have screened a collection of maternal-effect lethal mutations on chromosome II of C. elegans. We have identified a mutation in one gene, ooc-3, with mis-oriented division axes at the two-cell stage. Here we describe the phenotypic and molecular characterization of ooc-3. ooc-3 is required for the correct localization of PAR-2 and PAR-3 cortical domains after the first cell division. OOC-3 is a novel putative transmembrane protein, which localizes to a reticular membrane compartment, probably the endoplasmic reticulum, that spans the whole cytoplasm and is enriched on the nuclear envelope and cell-cell boundaries. Our results show that ooc-3 is required to form the cortical domains essential for polarity after cell division.  相似文献   

10.
冯应龙 《生命科学》2003,15(4):238-242
早期线虫胚胎提供了一个研究发育过程的极佳模型。线虫胚胎的第一次分裂是不对称的,产生的两个子细胞在尺度的大小和发育命运上均有不同,而这些不同是由第一次有丝分裂周期中胞质决定子的不均匀分布造成的。通常相信,在受精过程中,精子所携带的中心体介导了对极性建成至关重要的胞质流动的产生。同时,细胞骨架成分被认为参与了胞质成分的定位事件。关于par基因的研究目前进展迅速,大多数par基因的突变都导致了线虫早期胚胎分裂不对称性的丧失。  相似文献   

11.
Actin cytoskeleton and microtubules were studied in a human fungal pathogen, the basidiomycetous yeast Cryptococcus neoformans (haploid phase of Filobasidiella neoformans), during its asexual reproduction by budding using fluorescence and electron microscopy. Staining with rhodamine-conjugated phalloidin revealed an F-actin cytoskeleton consisting of cortical patches, cables and cytokinetic ring. F-actin patches accumulated at the regions of cell wall growth, i. e. in sterigma, bud and septum. In mother cells evenly distributed F-actin patches were joined to F-actin cables, which were directed to the growing sterigma and bud. Some F-actin cables were associated with the cell nucleus. The F-actin cytokinetic ring was located in the bud neck, where the septum originated. Antitubulin TAT1 antibody revealed a microtubular cytoskeleton consisting of cytoplasmic and spindle microtubules. In interphase cells cytoplasmic microtubules pointed to the growing sterigma and bud. As the nucleus was translocated to the bud for mitosis, the cytoplasmic microtubules disassembled and were replaced by a short intranuclear spindle. Astral microtubules then emanated from the spindle poles. Elongation of the mitotic spindle from bud to mother cell preceded nuclear division, followed by cytokinesis (septum formation in the bud neck). Electron microscopy of ultrathin sections of chemically fixed and freeze-substituted cells revealed filamentous bundles directed to the cell cortex. The bundles corresponded in width to the actin microfilament cables. At the bud neck numerous ribosomes accumulated before septum synthesis. We conclude: (i) the topology of F-actin patches, cables and rings in C. neoformans resembles ascomycetous budding yeast Saccharomyces, while the arrangement of interphase and mitotic microtubules resembles ascomycetous fission yeast Schizosaccharomyces. The organization of the cytoskeleton of the mitotic nucleus, however, is characteristic of basidiomycetous yeasts. (ii) A specific feature of C. neoformans was the formation of a cylindrical sterigma, characterized by invasion of F-actin cables and microtubules, followed by accumulation of F-actin patches around its terminal region resulting in development of an isodiametrical bud.  相似文献   

12.
Astral microtubules (MTs) are known to be important for cleavage furrow induction and spindle positioning, and loss of astral MTs has been reported to increase cortical contractility. To investigate the effect of excess astral MT activity, we depleted the MT depolymerizer mitotic centromere-associated kinesin (MCAK) from HeLa cells to produce ultra-long, astral MTs during mitosis. MCAK depletion promoted dramatic spindle rocking in early anaphase, wherein the entire mitotic spindle oscillated along the spindle axis from one proto-daughter cell to the other, driven by oscillations of cortical nonmuscle myosin II. The effect was phenocopied by taxol treatment. Live imaging revealed that cortical actin partially vacates the polar cortex in favor of the equatorial cortex during anaphase. We propose that this renders the polar actin cortex vulnerable to rupture during normal contractile activity and that long astral MTs enlarge the blebs. Excessively large blebs displace mitotic spindle position by cytoplasmic flow, triggering the oscillations as the blebs resolve.  相似文献   

13.
BACKGROUND: Epithelial tubes are a key component of organs and are generated from cells with distinct apico-basolateral polarity. Here, we describe a novel function during tubulogenesis for ZEN-4, the Caenorhabditis elegans ortholog of mitotic kinesin-like protein 1 (MKLP1), and CYK-4, which contains a RhoGAP (GTPase-activating protein) domain. Previous studies revealed that these proteins comprise centralspindlin (a complex that functions during mitosis to bundle microtubules), construct the spindle midzone, and complete cytokinesis. RESULTS: Our analyses demonstrate that ZEN-4/MKLP1 functions postmitotically to establish the foregut epithelium. Mutants that lack ZEN-4/MKLP1 express polarity markers but fail to target these proteins appropriately to the cell cortex. Affected proteins include PAR-3/Bazooka and PKC-3/atypical protein kinase C at the apical membrane domain, and HMR-1/cadherin and AJM-1 within C. elegans apical junctions (CeAJ). Microtubules and actin are disorganized in zen-4 mutants compared to the wild-type. CONCLUSION: We suggest that ZEN-4/MKLP1 and CYK-4/RhoGAP regulate an early step in epithelial polarization that is required to establish the apical domain and CeAJ.  相似文献   

14.
Cytokinesis is the last ritual of a dividing cell. Determining the position and horizon of the cell furrow is important for equal distribution of cytoplasmic content between the two daughter cells. The traditional view promotes a classical sequence of bipolar spindle formation followed by cytokinesis. However, a new understanding has recently emerged that uncouples these events. The cell-furrow formation seems to ignore spindle polarity and is instead dependent on the stability and dynamics of cortical microtubules.  相似文献   

15.
Female meiotic divisions in higher organisms are asymmetric and lead to the formation of a large oocyte and small polar bodies. These asymmetric divisions are due to eccentric spindle positioning which, in the mouse, requires actin filaments. Recently Formin-2, a straight actin filaments nucleator, has been proposed to control spindle positioning, chromosome segregation as well as first polar body extrusion in mouse oocytes. We reexamine here the possible role of Formin-2 during mouse meiotic maturation by live videomicroscopy. We show that Formin-2 controls first meiotic spindle migration to the cortex but not chromosome congression or segregation. We also show that the lack of first polar body extrusion in fmn2(-/-) oocytes is not due to a lack of cortical differentiation or central spindle formation but to a defect in the late steps of cytokinesis. Indeed, Survivin, a component of the passenger protein complex, is correctly localized on the central spindle at anaphase in fmn2(-/-) oocytes. We show here that attempts of cytokinesis in these oocytes abort due to phospho-myosin II mislocalization.  相似文献   

16.
Accurate control of spindle length is a conserved feature of eukaryotic cell division. Lengthening of mitotic spindles contributes to chromosome segregation and cytokinesis during mitosis in animals and fungi. In contrast, spindle shortening may contribute to conservation of egg cytoplasm during female meiosis. Katanin is a microtubule-severing enzyme that is concentrated at mitotic and meiotic spindle poles in animals. We show that inhibition of katanin slows the rate of spindle shortening in nocodazole-treated mammalian fibroblasts and in untreated Caenorhabditis elegans meiotic embryos. Wild-type C. elegans meiotic spindle shortening proceeds through an early katanin-independent phase marked by increasing microtubule density and a second, katanin-dependent phase that occurs after microtubule density stops increasing. In addition, double-mutant analysis indicated that gamma-tubulin-dependent nucleation and microtubule severing may provide redundant mechanisms for increasing microtubule number during the early stages of meiotic spindle assembly.  相似文献   

17.
The distribution of actin and tubulin during the cell cycle of the budding yeast Saccharomyces was mapped by immunofluorescence using fixed cells from which the walls had been removed by digestion. The intranuclear mitotic spindle was shown clearly by staining with a monoclonal antitubulin; the presence of extensive bundles of cytoplasmic microtubules is reported. In cells containing short spindles still entirely within the mother cells, one of the bundles of cytoplasmic microtubules nearly always extended to (or into) the bud. Two independent reagents (anti-yeast actin and fluorescent phalloidin) revealed an unusual distribution of actin: it was present as a set of cortical dots or patches and also as distinct fibers that were presumably bundles of actin filaments. Double labeling showed that at no stage in the cell cycle do the distributions of actin and tubulin coincide for any significant length, and, in particular, that the mitotic spindle did not stain detectably for actin. However, both microtubule and actin staining patterns change in a characteristic way during the cell cycle. In particular, the actin dots clustered in rings about the bases of very small buds and at the sites on unbudded cells at which bud emergence was apparently imminent. Later in the budding cycle, the actin dots were present largely in the buds and, in many strains, primarily at the tips of these buds. At about the time of cytokinesis the actin dots clustered in the neck region between the separating cells. These aspects of actin distribution suggest that it may have a role in the localized deposition of new cell wall material.  相似文献   

18.
Survivin is a member of the chromosomal passenger complex implicated in kinetochore attachment, bipolar spindle formation, and cytokinesis. However, the mechanism by which survivin modulates these processes is unknown. Here, we show by time-lapse imaging of cells expressing either green fluorescent protein (GFP)-alpha-tubulin or the microtubule plus-end binding protein GFP-EB1 that depletion of survivin by small interfering RNAs (siRNAs) increased both the number of microtubules nucleated by centrosomes and the incidence of microtubule catastrophe, the transition from microtubule growth to shrinking. In contrast, survivin overexpression reduced centrosomal microtubule nucleation and suppressed both microtubule dynamics in mitotic spindles and bidirectional growth of microtubules in midbodies during cytokinesis. siRNA depletion or pharmacologic inhibition of another chromosomal passenger protein Aurora B, had no effect on microtubule dynamics or nucleation in interphase or mitotic cells even though mitosis was impaired. We propose a model in which survivin modulates several mitotic events, including spindle and interphase microtubule organization, the spindle assembly checkpoint and cytokinesis through its ability to modulate microtubule nucleation and dynamics. This pathway may affect the microtubule-dependent generation of aneuploidy and defects in cell polarity in cancer cells, where survivin is commonly up-regulated.  相似文献   

19.
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G(1) by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G(1) transition to control cyclin-CDK inactivation and cytokinesis.  相似文献   

20.
In the yeast Saccharomyces cerevisiae, positioning of the mitotic spindle requires both the cytoplasmic microtubules and actin. Kar9p is a novel cortical protein that is required for the correct position of the mitotic spindle and the orientation of the cytoplasmic microtubules. Green fluorescent protein (GFP)- Kar9p localizes to a single spot at the tip of the growing bud and the mating projection. However, the cortical localization of Kar9p does not require microtubules (Miller, R.K., and M.D. Rose. 1998. J. Cell Biol. 140: 377), suggesting that Kar9p interacts with other proteins at the cortex. To investigate Kar9p's cortical interactions, we treated cells with the actin-depolymerizing drug, latrunculin-A. In both shmoos and mitotic cells, Kar9p's cortical localization was completely dependent on polymerized actin. Kar9p localization was also altered by mutations in four genes, spa2Delta, pea2Delta, bud6Delta, and bni1Delta, required for normal polarization and actin cytoskeleton functions and, of these, bni1Delta affected Kar9p localization most severely. Like kar9Delta, bni1Delta mutants exhibited nuclear positioning defects during mitosis and in shmoos. Furthermore, like kar9Delta, the bni1Delta mutant exhibited misoriented cytoplasmic microtubules in shmoos. Genetic analysis placed BNI1 in the KAR9 pathway for nuclear migration. However, analysis of kar9Delta bni1Delta double mutants suggested that Kar9p retained some function in bni1Delta mitotic cells. Unlike the polarization mutants, kar9Delta shmoos had a normal morphology and diploids budded in the correct bipolar pattern. Furthermore, Bni1p localized normally in kar9Delta. We conclude that Kar9p's function is specific for cytoplasmic microtubule orientation and that Kar9p's role in nuclear positioning is to coordinate the interactions between the actin and microtubule networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号