首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimum values of temperature, pH, and starting substrate concentration are experimentally determined for 2,3-butanediol production by Enterobacter aerogenes through three set of batch fermentations of synthetic glucose solutions. The results of tests carried out at variable temperature show an optimum of 39 °C and are used to estimate, for both fermentation and thermal inactivation, the activation enthalpies (7.19 and 23.6 kJ molу) and the related entropies (т.32 and т.27 kJ molу Kу). An optimum pH value of 6.0 is evidenced from batch runs at variable pH, whose results are also used to make reasonable hypotheses on the reaction controlling the metabolic pathway which leads to butanediol. The fermentability of different food industry wastes, namely starch hydrolysate, both raw and decoloured molasses, and whey, is finally checked.  相似文献   

2.
Summary The effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes from glucose was investigated in a microaerobic continuous culture. At a dilution rate of 0.20 h–1 and a fixed oxygen uptake rate (OUR) of 31.5 mmol l–1 h–1 the biomass concentration increased with pH ranging from 5.0 to 7.0, while the specific ATP requirement of the cells decreased. In the pH range 5.5–6.5 the product concentration (butanediol + acetoin) was maximal and nearly constant. However, the specific production continuously declined with increasing pH. Experiments with addition of acetic acid showed that the various effects of pH are due to inhibition of the by-product acetic acid on cell growth. The strength of the acetic and inhibition depended only on the concentration of its undissociated form [HAc]. The biomass concentration and the specific OUR were also only functions of [HAc], irrespective of the pH. Although the specific ATP requirement (q ATP) strongly depended on the pH, [HAc] at constant pH. Offprint requests to: W.-D. Deckwer  相似文献   

3.
2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.  相似文献   

4.
Stirred tank (STR), bubble column (BCR) and airlift (ALR) bioreactors of 0.05 and 1.5 m3 total volume were compared for the production of 2,3-butanediol using Enterobacter aerogenes under microaerobic conditions. Batch fermentations were carried out at constant oxygen transfer rate (OTR=35 mmol/lh). At 0.05 m3 scale, the STR reactor achieved much higher biomass and product concentrations than the BCR and ALR reactors. At 1.5 m3 scale, however, exactly the same biomass and product concentrations could be obtained in both STR and ALR reactors. The 1.5 m3 ALR reactor performed also much better than its counterpart at small scale, achieving a productivity 2.4-fold as high as that of the 0.05 m3 BCL and ALR reactors. No differences in performances were observed between BCR and ALR. As compared to STR the tower reactors have a 12 time higher energetic efficiency (referred to product formation) and thus should be the choice for large scale production of 2,3-butanediol.The criterion of constant OTR or constant k L a is not applicable for the scale-up of this oxygen-sensitive culture due to strong influence of reactor hydrodynamics under microaerobic conditions. The effects of mixing and circulation time on growth and metabolism of E. aerogenes were quantitatively studied in scaled-down experiments with continuous culture. For a successful scale-up of this microaerobic culture it is necessary to have an homogeneous oxygen supply over the entire reactor volume. Under conditions of inhomogeneous oxygen supply an optimum liquid circulation time exists which gives a maximum production of 2,3-butanediol.List of Symbols BD 2,3-butanediol - [mmol/l] saturation value of dissolved oxygen - D [h–1] dilution rate - D [mm] reactor diameter - D K [mm] top section diameter - D R [mm] stirrer diameter - D S [mm] draft tube diameter - EtOH ethanol - E P [kg/kWh] energy efficiency refered to product formation - H [mm] height of reactor - HAc acetate - H L [mm] height of liquid - k L a [h–1] volumetric oxygen transfer coefficient - N [rpm=min–1] stirrer speed - OTR [mmol/lh] oxygen transfer rate - OUR [mmol/lh] oxygen uptake rate - p [Pa] pressure - P [kW] power input - P/V L [kW/m3] specific power input - [mmHg] oxygen partial pressure (mmHg) or - [mmol/l] dissolved oxygen (mmol/l) - [mmol/gh] specific oxygen uptake rate - q P [mmol/gh] specific productivity - R [Nm/kgK] gas constant, R = 287.06 - RQ respiration quotient - t c [s] liquid circulation time - T [°C or K] temperature - TCA tricarboxylic acid - u G [cm/s] mean superficial gas velocity - v G [m/s] gas velocity at nozzels of gas distributor - VG [l/h] aeration rate at inlet - V [m3 or l] total volume - V L [m3 or l] liquid volume - V N [l/mol] gas mole volume under normal conditions, V N = 24.4116 - X [g/l] biomass concentration - CO2 mole fraction in the effluent gas - O2 mole fraction in the effluent gas - inlet (above the gas distributor) - ratio of oxygen consumed through TCA cycle to the total oxygen uptake rate - [g/l or kg/m3] density - [%] degree homogeneity - outlet of fermenter or top of the dispersion phase Dedicated to the 65th birthday of Professor Fritz Wagner.We thank Dr. C. Posten and T. Gabel for support with the computer control system UBICON. T.-G. Byun gratefully acknowledges financial support by DAAD.  相似文献   

5.
The carbon and nitrogen sources most suitable for L-asparaginase production by Enterobacter aerogenes were selected and their concentrations optimized in shake-flask cultures. Sodium citrate (1.0%) and diammonium hydrogen phosphate (0.16%) proved to be the best sources of carbon and nitrogen, respectively. Nitrogen catabolite repression of enzyme formation was absent in this bacterium. Cultivation in a reactor showed that the dissolved oxygen level is the limiting factor for L-asparaginase production by E. aerogenes. Glucose was found to be a repressor of enzyme synthesis. Asparagine was absent intracellularly when the L-asparaginase level was high. An increase in the extracellular alanine level when the dissolved oxygen remained low indicated a shift from aerobic to fermentative metabolism. Received: 20 July 1999 / Accepted: 2 October 1999  相似文献   

6.
Hydrogen bioproduction from agro-industrial residues by Enterobacter aerogenes in a continuous packed column has been investigated and a complete reactor characterization is presented. Experimental runs carried out at different residence time, liable of interest for industrial application, showed hydrogen yields ranging from 1.36 to 3.02 mmolH2mmolуglucose or, in other words, from 37.5% to 75% of the theoretical hydrogen yield. A simple kinetic model of cell growth, validated by experimental results and allowing the prediction of biomass concentration profile along the reactor and the optimization of superficial velocity, is suggested. By applying the developed approach to the selected operative conditions, the identification of the optimum superficial velocity v0,opt of about 2.2 cm hу corresponding to the maximum hydrogen evolution rate 2g,max, was performed.  相似文献   

7.
Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5 % yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions.  相似文献   

8.
A mixed continuous culture of Clostridium butyricum and Enterobacter aerogenes removed O2 in a reactor and produced H2 from starch with yield of more than 2 mol H2/mol glucose without any reducing agents in the medium. Co-immobilized cells of the bacteria on porous glass beads evolved H2 from starch at 1.3 l/l.h, with H2 yield of 2.6 mol H2/ mol glucose at dilution rate of 1.0 h–1 in a continuous culture.  相似文献   

9.
The recent rapid growth of the biodiesel industry has generated a significant amount of glycerol as a byproduct. As a result, the price of glycerol is currently relatively low, making it an attractive starting material for the production of chemicals with higher values. Crude glycerol can be directly converted through microbial fermentation into various chemicals such as hydrogen. In this study, we optimized immobilization of a facultative hydrogen producing microorganism, Enterobacter aerogenes, with the goal of developing biocatalysts that was appropriate for the continuous hydrogen production from glycerol. Several carriers were tested and agar was found to be the most effective. In addition, it was clearly shown that variables such as the carrier content and cell loading should be controlled for the immobilization of biocatalysts with high hydrogen productivity, stability, and reusability. After optimization of these variables, we were able to obtain reusable biocatalysts that could directly convert the byproduct stream from biodiesel processes into hydrogen in continuous processes.  相似文献   

10.
11.

2,3-Butanediol (2,3-BDO) is of considerable importance in the chemical, plastic, pharmaceutical, cosmetic, and food industries. The main bacterial species producing this compound are considered pathogenic, hindering large-scale productivity. The species Paenibacillus brasilensis is generally recognized as safe (GRAS) and is phylogenetically similar to P. polymyxa, a species widely used for 2,3-BDO production. Here, we demonstrate, for the first time, that P. brasilensis strains produce 2,3-BDO. Total 2,3-BDO concentrations for 15 P. brasilensis strains varied from 5.5 to 7.6 g/l after 8 h incubation at 32 °C in modified YEPD medium containing 20 g/l glucose. Strain PB24 produced 8.2 g/l of 2,3-BDO within a 12-h growth period, representing a yield of 0.43 g/g and a productivity of 0.68 g/l/h. An increase in 2,3-BDO production by strain PB24 was observed using higher concentrations of glucose, reaching 27 g/l of total 2,3-BDO in YEPD containing about 80 g/l glucose within a 72-h growth period. We sequenced the genome of P. brasilensis PB24 and uncovered at least six genes related to the 2,3-BDO pathway at four distinct loci. We also compared gene sequences related to the 2,3-BDO pathway in P. brasilensis PB24 with those of other spore-forming bacteria, and found strong similarity to P. polymyxa, P. terrae, and P. peoriae 2,3-BDO-related genes. Regulatory regions upstream of these genes indicated that they are probably co-regulated. Finally, we propose a production pathway from glucose to 2,3-BDO in P. brasilensis PB24. Although the gene encoding S-2,3-butanediol dehydrogenase (butA) was found in the genome of P. brasilensis PB24, only R,R-2,3- and meso-2,3-butanediol were detected by gas chromatography under the growth conditions tested here. Our findings can serve as a basis for further improvements to the metabolic capabilities of this little-studied Paenibacillus species in relation to production of the high-value chemical 2,3-butanediol.

  相似文献   

12.
Kinetics of 2,3-butanediol production by Klebsiella pneumoniae (NRRL B199) from glucose have been studied in a continuous bioreactor. The effect of oxygen supply rate and dilution rate on the product output rate and yield of 2,3-butanediol were investigated. For a feed glucose concentration of 100 g l−1, the optimum oxygen transfer rate is between 25.0–35.0 mmol l−1 h−1. Under these conditions, maximum product concentration obtained was 35 g l−1 at a dilution rate of 0.1 h−1 and the maximum product output rate obtained was 4.25 g l−1 h−1. The product yield based on the substrate utilized approached the theoretical value (50%) at low values of oxygen transfer rate but decreased with increasing oxygen transfer rate.  相似文献   

13.
In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.  相似文献   

14.
Summary Ethanol is identified as a strongly inhibitory metabolite in addition to acetic acid and 2,3-butanediol in 2,3-butanediol production by Enterobacter aerogenes. A model is proposed to describe the multiproduct-inhibited growth of E. aerogenes in 2,3-butanediol fermentation. The model is verified with data from anaerobic and microaerobic continuous culture. On the basis of this model the difference in biomass production and product patterns during anaerobic and microaerobic growth of E. aerogenes is discussed. Offprint requests to: W.-D. Deckwer  相似文献   

15.
2,3-Butanediol (2,3-BD) is an organic compound, which is widely used as a fuel and fuel additive and applied in chemical, food, and pharmaceutical industries. Contemporary strategies for its economic synthesis include the development of microbial technologies that use starch as cheap and renewable feedstock. The present work encompasses the metabolic engineering of the excellent 2,3-BD producer Klebsiella pneumoniae G31. In order to perform direct starch conversion into 2,3-BD, the amyL gene encoding quite active, liquefying α-amylase in Bacillus licheniformis was cloned under lac promoter control in the recombinant K. pneumoniae G31-A. The enhanced extracellular over-expression of amyL led to the highest extracellular amylase activity (68 U/ml) ever detected in Klebsiella. The recombinant strain was capable of simultaneous saccharification and fermentation (SSF) of potato starch to 2,3-BD. In SSF batch process by the use of 200 g/l starch, the amount of total diols produced was 60.9 g/l (53.8 g/l 2,3-BD and 7.1 g/l acetoin), corresponding to 0.31 g/g conversion rate. The presented results are the first to show successful starch conversion to 2,3-BD by K. pneumoniae in a one-step process.  相似文献   

16.
17.
On-line monitoring of NAD(P)H fluorescence and 2D fluorescence spectroscopy was performed with Enterobacter aerogenes, a bacterium sensitive to oxygen availability. The organism was grown in a reactor under low and high dissolved oxygen concentrations and circulated through a bypass attached to the reactor. Under low dissolved oxygen concentration in the reactor, NAD(P)H fluorescence in the reactor and the bypass showed a deviation, but not when the dissolved oxygen level in the reactor was high. The pattern of growth curves was identical under low and high oxygen levels. This indicates a difference in the metabolic activity of E. aerogenes in response to oxygen. The difference spectrum of the 2D fluorescence shows that growing E. aerogenes under high dissolved oxygen levels increases the NAD(P)H content of the cells. Received: 2 March 1999 / Received revision: 25 May 1999 / Accepted: 28 May 1999  相似文献   

18.
Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways.  相似文献   

19.
Mercury resistance shown by a strain of Enterobacter aerogenes was found to be determined by a plasmid. The resistance appeared to be not due to enzymatic volatilization of mercury, but due to the alteration in cellular permeability to mercury.Comparison of the outer membrane proteins was made between the resistant cells and the sensitive counterparts obtained by the treatment with mitomycin C, showing that two proteins with molecular weight of 46,000 and 44,000 had disappeared from the outer membrane along with the plasmid by the curing. These results suggest that the two membrane proteins mediating the cellular permeability to mercury compound may be responsible for the mercury resistance of the strain.  相似文献   

20.
Laube  V. M.  Groleau  D.  Martin  S. M. 《Biotechnology letters》1984,6(4):257-262
In the xylose fermentation of Bacillus polymyxa strain 9035, best 2,3-butanediol yields were obtained with 1.0 % yeast extract, 4–6 % xylose, shaking at 125 rpm and incubation at 30°C. Under these conditions, mannose, galactose, L-arabinose, cellobiose, starch and glucose were readily metabolized and yielded significant amounts of diol. Diol production from xylan was also demonstrated. In addition, the screening of a number of B. polymyxa strains on xylose revealed that only strains 9031-1 and 9035 used xylose extensively and produced significant amounts of diol. The latter strain proved best under scaled-up conditions.NRCC #22775  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号