首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present work, molecular dynamics simulations have been carried out to study the dependence of counterion distribution around the DNA double helix on the character of ion hydration. The simulated systems consisted of DNA fragment d(CGCGAATTCGCG) in water solution with the counterions Na+, K+, Cs+ or Mg2+. The characteristic binding sites of the counterions with DNA and the changes in their hydration shell have been determined. The results show that due to the interaction with DNA at least two hydration shells of the counterions undergo changes. The first hydration shell of Na+, K+, Cs+, and Mg2+ counterions in the bulk consists of six, seven, ten, and six water molecules, respectively, while the second one has several times higher values. The Mg2+ and Na+ counterions, constraining water molecules of the first hydration shell, mostly form with DNA water-mediated contacts. In this case the coordination numbers of the first hydration shell do not change, while the coordination numbers of the second one decrease about twofold. The Cs+ and K+ counterions that do not constrain surrounding water molecules may be easily dehydrated, and when interacting with DNA their first hydration shell may be decreased by three and five water molecules, respectively. Due to the dehydration effect, these counterions can squeeze through the hydration shell of DNA to the bottom of the double helix grooves. The character of ion hydration establishes the correlation between the coordination numbers of the first and the second hydration shells.
Graphical Abstract Hydration of counterions interacting with DNA double helix
  相似文献   

2.
Theoretical studies of ion channels address several important questions. The mechanism of ion transport, the role of water structure, the fluctuations of the protein channel itself, and the influence of structural changes are accessible from these studies. In this paper, we have carried out a 70-ps molecular dynamics simulation on a model structure of gramicidin A with channel waters. The backbone of the protein has been analyzed with respect to the orientation of the carbonyl and the amide groups. The results are in conformity with the experimental NMR data. The structure of water and the hydrogen bonding network are also investigated. It is found that the water molecules inside the channel act as a collective chain; whereas the conformation in which all the waters are oriented with the dipoles pointing along the axis of the channel is a preferred one, others are also accessed during the dynamics simulation. A collective coordinate involving the channel waters and some of the hydrogen bonding peptide partners is required to describe the transition of waters from one configuration to the other.  相似文献   

3.
The structural and thermodynamic factors responsible for the singly and doubly occupied saturation states of the gramicidin channel are investigated with molecular dynamics simulations and free energy perturbation methods. The relative free energy of binding of all of the five common cations Li+, Na+, K+, Rb+, and Cs+ is calculated in the singly and doubly occupied channel and in bulk water. The atomic system, which includes the gramicidin channel, a model membrane made of neutral Lennard-Jones particles and 190 explicit water molecules to form the bulk region, is similar to the one used in previous work to calculate the free energy profile of a Na+ ion along the axis of the channel. In all of the calculations, the ions are positioned in the main binding sites located near the entrances of the channel. The calculations reveal that the doubly occupied state is relatively more favorable for the larger ions. Thermodynamic decomposition is used to show that the origin of the trend observed in the calculations is due to the loss of favorable interactions between the ion and the single file water molecules inside the channel. Small ions are better solvated by the internal water molecules in the singly occupied state than in the doubly occupied state; bigger ions are solvated almost as well in both occupation states. Water-channel interactions play a role in the channel response. The observed trends are related to general thermodynamical properties of electrolyte solutions.  相似文献   

4.
We investigate methods for extracting the potential of mean force (PMF) governing ion permeation from molecular dynamics simulations (MD) using gramicidin A as a prototypical narrow ion channel. It is possible to obtain well-converged meaningful PMFs using all-atom MD, which predict experimental observables within order-of-magnitude agreement with experimental results. This was possible by careful attention to issues of statistical convergence of the PMF, finite size effects, and lipid hydrocarbon chain polarizability. When comparing the modern all-atom force fields of CHARMM27 and AMBER94, we found that a fairly consistent picture emerges, and that both AMBER94 and CHARMM27 predict observables that are in semiquantitative agreement with both the experimental conductance and dissociation coefficient. Even small changes in the force field, however, result in significant changes in permeation energetics. Furthermore, the full two-dimensional free-energy surface describing permeation reveals the location and magnitude of the central barrier and the location of two binding sites for K(+) ion permeation near the channel entrance--i.e., an inner site on-axis and an outer site off-axis. We conclude that the MD-PMF approach is a powerful tool for understanding and predicting the function of narrow ion channels in a manner that is consistent with the atomic and thermally fluctuating nature of proteins.  相似文献   

5.
We develop a model for proton conduction through gramicidin based on the molecular dynamics simulations of Pomès and Roux (Biophys. J. 72:A246, 1997). The transport of a single proton through the gramicidin pore is described by a potential of mean force and diffusion coefficient obtained from the molecular dynamics. In addition, the model incorporates the dynamics of a defect in the hydrogen bonding structure of pore waters without an excess proton. Proton entrance and exit were not simulated by the molecular dynamics. The single proton conduction model includes a simple representation of these processes that involves three free parameters. A reasonable value can be chosen for one of these, and the other two can be optimized to yield a good fit to the proton conductance data of, Ann. N.Y. Acad. Sci. 339:8-20) for pH > or = 1.7. A sensitivity analysis shows the significance of this fit.  相似文献   

6.
S Crouzy  T B Woolf    B Roux 《Biophysical journal》1994,67(4):1370-1386
The gating transition of the RR and SS dioxolane ring-linked gramicidin A channels were studied with molecular dynamics simulations using a detailed atomic model. It was found that the probable reaction path, describing the transition of the ring from the exterior to the interior of the channel where it blocked the permeation pathway, involved several steps including the isomerization of the transpeptide plane dihedral angle of Val1. Reaction coordinates along this pathway were defined, and the transition rates between the stable conformers were calculated. It was found, in good accord with experimental observations, that the calculated blocking rate for the RR-linked channel was 280/s with a mean blocking time of 0.04 ms, whereas such blocking did not occur in the case of the SS-linked channel. An important observation is that the resulting lifetime for the blocked state of the RR-linked channel was in good accord with the experimental observations only when the calculations were performed in the presence of a potassium ion inside the channel.  相似文献   

7.
B Roux 《Biophysical journal》1996,71(6):3177-3185
The valence selectivity of the gramicidin channel is examined using computer simulations based on atomic models. The channel interior is modeled using a gramicidin-like periodic poly (L,D)-alanine beta-helix. Free energy perturbation calculations are performed to obtain the relative affinity of K+ and Cl- for the channel. It is observed that the interior of the gramicidin channel provides an energetically favorable interaction site for a cation but not for an anion. Relative to solvation in bulk water, the carbonyl CO oxygens can provide a favorable interaction to stabilize K+, whereas the amide NH hydrogens are much less effective in stabilizing Cl-. The results of the calculations demonstrate that, as a consequence of the structural asymmetry of the backbone charge distribution, a K+ cation can partition spontaneously from bulk water to the interior of the gramicidin channel, whereas a Cl- anion cannot.  相似文献   

8.
9.
To investigate the mechanisms by which oligonucleotides hybridize to target molecules, the binding of two oligodeoxynucleotide probes to RNA targets was measured over a broad range of temperatures. Mutations were then scanned across each DNA/RNA hybrid to map, at single base resolution, sequences important for hybridization. Despite being unrelated in sequence, each hybrid formed by a similar mechanism. In the absence of secondary structure, two stretches of bases, termed nucleation regions, cooperated with one another by a looping mechanism to nucleate hybridization. Mutations inside each nucleation region strongly decreased hybridization rates, even at temperatures well below the melting temperature (Tm) of the hybridized duplex. Surprisingly, nucleation regions were detected in a RNA target but not a corresponding DNA target. When either nucleation region was sequestered in secondary structure, the hybridization rate fell and the mechanism of hybridization changed. Single-stranded bases within the nucleation region of the probe and target first collided to form a double helix. If sufficiently G + C rich, the double helix then propagated throughout the oligonucleotide by a strand invasion process. On the basis of these results, general mechanisms for the hybridization of oligonucleotides to complementary and mutant targets are proposed.  相似文献   

10.
11.
The force fields commonly used in molecular dynamics simulations of proteins are optimized under bulk conditions. Whether the same force fields can be used in simulations of membrane proteins is not well established, although they are increasingly being used for such purposes. Here we consider ion permeation in the gramicidin A channel as a test of the AMBER force field in a membrane environment. The potentials of mean force for potassium ions are calculated along the channel axis and compared with the one deduced from the experimental conductance data. The calculated result indicates a rather large central barrier similar to those obtained from other force fields, which are incompatible with the conductance data. We suggest that lack of polarizability is the most likely cause of this problem, and, therefore, urge development of polarizable force fields for simulations of membrane proteins.  相似文献   

12.
Structure and dynamics of ion transport through gramicidin A.   总被引:19,自引:13,他引:6       下载免费PDF全文
Molecular dynamics calculations in which all atoms were allowed to move were performed on a water-filled ion channel of the polypeptide dimer gramicidin A (approximately 600 atoms total) in the head-to-head Urry model conformation. Comparisons were made among nine simulations in which four different ions (lithium, sodium, potassium, and cesium) were each placed at two different locations in the channel as well as a reference simulation with only water present. Each simulation lasted for 5 ps and was carried out at approximately 300 K. The structure and dynamics of the peptide and interior waters were found to depend strongly on the ion tested and upon its location along the pore. Speculations on the solution and diffusion of ions in gramicidin are offered based on the observations in our model that smaller ions tended to lie off axis and to distort the positions of the carbonyl oxygens more to achieve proper solvation and that the monomer-monomer junction was more distortable than the center of the monomer. With the potential energy surface used, the unique properties of the linear chain of interior water molecules were found to be important for optimal solvation of the various ions. Strongly correlated motions persisting over 25 A among the waters in the interior single-file column were observed.  相似文献   

13.
14.
Potassium channels enable K(+) ions to move passively across biological membranes. Multiple nanosecond-duration molecular dynamics simulations (total simulation time 5 ns) of a bacterial potassium channel (KcsA) embedded in a phospholipid bilayer reveal motions of ions, water, and protein. Comparison of simulations with and without K(+) ions indicate that the absence of ions destabilizes the structure of the selectivity filter. Within the selectivity filter, K(+) ions interact with the backbone (carbonyl) oxygens, and with the side-chain oxygen of T75. Concerted single-file motions of water molecules and K(+) ions within the selectivity filter of the channel occur on a 100-ps time scale. In a simulation with three K(+) ions (initially two in the filter and one in the cavity), the ion within the central cavity leaves the channel via its intracellular mouth after approximately 900 ps; within the cavity this ion interacts with the Ogamma atoms of two T107 side chains, revealing a favorable site within the otherwise hydrophobically lined cavity. Exit of this ion from the channel is enabled by a transient increase in the diameter of the intracellular mouth. Such "breathing" motions may form the molecular basis of channel gating.  相似文献   

15.
Conjugated linoleic acids (CLA) are found naturally in dairy products. Two isomers of CLA, that differ only in the location of cis and trans double bonds, are found to have distinct and different biological effects. The cis 9 trans 11 (C9T11) isomer is attributed to have the anti-carcinogenic effects, while the trans 10 cis 12 (T10C12) isomer is believed to be responsible for the anti-obesity effects. Since dietary CLA are incorporated into membrane phospholipids, we have used Molecular Dynamics (MD) simulations to investigate the comparative effects of the two isomers on lipid bilayer structure. Specifically, simulations of phosphatidylcholine lipid bilayers in which the sn-2 chains contained one of the two isomers of CLA were performed. Force field parameters for the torsional potential of double bonds were obtained from ab initio calculations. From the MD trajectories we calculated and compared structural properties of the two lipid bilayers, including areas per molecule, density profiles, thickness of bilayers, tilt angle of tail chains, order parameters profiles, radial distribution function (RDF) and lateral pressure profiles. The main differences found between bilayers of the two CLA isomers, are (1) the order parameter profile for C9T11 has a dip in the middle of sn-2 chain while the profile for T10C12 has a deeper dip close to terminal of sn-2 chain, and (2) the lateral pressure profiles show differences between the two isomers. Our simulation results reveal localized physical structural differences between bilayers of the two CLA isomers that may contribute to different biological effects through differential interactions with membrane proteins or cholesterol.  相似文献   

16.
17.
Proton transfer in biological systems is thought to often proceed through hydrogen-bonded chains of water molecules. The ion channel, gramicidin A (gA), houses within its helical structure just such a chain. Using the density functional theory based ab initio molecular dynamics Car-Parrinello method, the structure and dynamics of proton diffusion through a polyglycine analog of the gA ion channel has been investigated. In the channel, a proton, which is initially present as hydronium (H3O+), rapidly forms a strong hydrogen bond with a nearest neighbor water, yielding a transient H5O2+ complex. As in bulk water, strong hydrogen bonding of this complex to a second neighbor solvation shell is required for proton transfer to occur. Within gA, this second neighbor shell included not only a channel water molecule but also a carbonyl of the channel backbone. The present calculations suggest a transport mechanism in which a priori carbonyl solvation is a requirement for proton transfer.  相似文献   

18.
19.
Ion permeation through the gramicidin channel is studied using a model that circumvents two major difficulties inherent to standard simulational methods. It exploits the timescale separation between electronic and structural contributions to dielectric stabilization, accounting for the influence of electronic polarization by embedding the channel in a dielectric milieu that describes this polarization in a mean sense. The explicit mobile moieties are the ion, multipolar waters, and the carbonyls and amides of the peptide backbone. The model treats the influence of aromatic residues and the membrane dipole potential. A new electrical geometry is introduced that treats long-range electrostatics exactly and avoids problems related to periodic boundary conditions. It permits the translocating ion to make a seamless transition from nearby electrolyte to the channel interior. Other degrees of freedom (more distant bulk electrolyte and nonpolar lipid) are treated as dielectric continua. Reasonable permeation free energy profiles are obtained for potassium, rubidium, and cesium; binding wells are shallow and the central barrier is small. Estimated cationic single-channel conductances are smaller than experiment, but only by factors between 2 (rubidium) and 50 (potassium). When applied to chloride the internal barrier is large, with a corresponding miniscule single-channel conductance. The estimated relative single-channel conductances of gramicidin A, B, and C agree well with experiment.  相似文献   

20.
Dimerization or oligomerization of the ErbB/Neu receptors are necessary but not sufficient for initiation of receptor signaling. The two intracellular domains must be properly oriented for the juxtaposition of the kinase domains allowing trans-phosphorylation. This suggests that the transmembrane (TM) domain acts as a guide for defining the proper orientation of the intracellular domains. Two structural models, with the two helices either in left-handed or in right-handed coiling have been proposed as the TM domain structure of the active receptor. Because experimental data do not distinguish clearly helix-helix packing, molecular dynamics (MD) simulations are used to investigate the energetic factors that drive Neu TM-TM interactions of the wild and the oncogenic receptor (Val664/Glu mutation) in DMPC or in POPC environments. MD results indicate that helix-lipid interactions in the bilayer core are extremely similar in the two environments and raise the role of the juxtamembrane residues in helix insertion and helix-helix packing. The TM domain shows a greater propensity to adopt a left-handed structure in DMPC, with helices in optimal position for strong inter-helical Hbonds induced by the Glu mutation. In POPC, the right-handed structure is preferentially formed with the participation of water in inter-helical Hbonds. The two structural arrangements of the Neu(TM) helices both with GG4 residue motif in close contact at the interface are permissible in the membrane environment. According to the hypothesis of a monomer-dimer equilibrium of the proteins it is likely that the bilayer imposes structural constraints that favor dimerization-competent structure responsible of the proper topology necessary for receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号