首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND INFORMATION: MAPKs (mitogen-activated protein kinases) are involved in the transduction of different signals in eukaryotes. They regulate different processes, such as differentiation, proliferation and stress response. MAPKs act through the phosphorylation cascade, being the last element that phosphorylates the final effector of the cell response. They are activated when their threonine and tyrosine residues are phosphorylated. Ntf4, a MAPK with a molecular mass of 45 kDa, has been reported to be expressed in pollen and seeds. Biochemical studies have indicated that the expression and the activation of Ntf4 is regulated during pollen maturation, although an increase of the activation is observed when the pollen is hydrated, just at the beginning of the germination. However, nothing is known about its subcellular localization. RESULTS: In the present study, the in situ expression and subcellular localization of Ntf4 have been analysed during the tobacco pollen developmental pathway. Cryosections, freeze-substitution and cryo-embedding in Lowicryl K4M were used as processing techniques for subsequent immunofluorescence, immunogold labelling and in situ hybridization assays. During pollen maturation, Ntf4 showed an increase in expression, as demonstrated by in situ hybridization, and specific subcellular distributions. We found that the protein was expressed from mid bicellular pollen stage until the pollen was mature. In germinating pollen, the protein increased after the initiation of germination. Translocation of the protein to the nucleus was found at specific stages; the presence of Ntf4 in the nucleus was found in the last stage of the pollen maturation and in germinating pollen. Double immunofluorescence and immunogold labelling with anti-Ntf4 (AbC4) and anti-P-MAPK (phosphorylated MAPK) antibodies revealed the co-localization of both epitopes in the nucleus at late developmental stages. CONCLUSIONS: The temporal and spatial pattern of the expression sites of Ntf4 has been characterized during pollen development, indicating that Ntf4 is a 'late gene' that is upregulated during maturation and germination, with a possible role in the gametophytic function. The translocation of the Ntf4 protein from the cytoplasm to the nucleus at late pollen developmental stages, and its co-localization with the P-MAPK epitope in several nuclear sites, indicates a relationship between the Ntf4 nuclear translocation and its active state.  相似文献   

2.
3.
Here we report for the first time the ultrastructural localization of DNA replication sites in the nucleus of plant cells and the timing of replication through the pollen developmental programme by proliferating cell nuclear antigen (PCNA) immunogold labelling. Replication sites were identified by labelling with anti-PCNA antibodies in fibrils of the interchromatin region close to the condensed chromatin, defining a perichromatin subdomain in the interchromatin space where DNA replication takes place. The same nuclear structures are decorated by anti-BrdU (5-bromo-2'-deoxyuridine) immunogold after short pulses of BrdU labelling. Double immunogold labelling for PCNA and DNA show colocalization on these perichromatin structures. PCNA immunoelectron microscopy also allows correlation of replicative activity with the dynamics of chromatin condensation. DNA replication was also monitored at different phases during pollen development by PCNA immunoelectron microscopy, revealing two peaks of DNA synthesis, at the beginning (early tetrad), and the end (late vacuolate), of microspore interphase. High-resolution autoradiography after [3H]thymidine incorporation also showed high replicative activity at the same two periods of microspore interphase. In the bicellular pollen grain, PCNA immunogold labelling revealed that DNA replication in the generative cell starts at an intermediate stage of pollen maturation, whereas the vegetative nucleus does not replicate and is arrested in G1. The use of anti-PCNA antibodies at the ultrastructural level is an easier, faster and more feasible method than the detection of in vivo-incorporated nucleotides, especially in plant systems with long cell cycles. PCNA immunogold labelling is, therefore, proposed as an efficient marker for mapping the sites and timing of replication at the electron microscopy level.  相似文献   

4.
5.
6.
7.
8.
9.
The occurrence and significance of changes in cell wall components and signalling molecules has been investigated during early microspore embryogenesis in cork oak (Quercus suber L.) in relation to cell proliferation and cell differentiation. Microspore embryogenesis has been induced in in vitro anther cultures of Q. suber by the application of a stress treatment of 33 degrees C. After the treatment, microspores at the responsive developmental stage of vacuolate microspore switched towards proliferation and the embryogenesis pathway to further produce haploid plantlets. Ultrastructural and immunocytochemical analysis revealed changes in cell organisation after induction at different developmental stages, the cellular features displayed being in relation to the activation of proliferative activity and the beginning of differentiation in young and late proembryos. Immunogold labelling with JIM5 and JIM7 antibodies showed a different presence of pectin and level of its esterification in cell walls at different developmental stages. Non-esterified pectins were found in higher proportions in cells of late proembryos, suggesting that pectin de-esterification could be related to the beginning of differentiation. The presence and subcellular distribution of Erk 1/2 MAPK homologues have been investigated by immunoblotting, immunofluorescence and immunogold labelling. The results showed an increase in the expression of these proteins with a high presence in the nucleus, during early microspore proembryos development. The reported changes during early microspore embryogenesis are modulated in relation to proliferation and differentiation events. These findings provided new evidences for a role of MAPK signalling pathways in early microspore embryogenesis, specifically in proliferation, and would confer information for the cell fate and the direction of the cell development.  相似文献   

10.
Mitogen-activated protein kinases (MAPKs) phosphorylate target proteins in both the cytoplasm and nucleus, and a strong correlation exists between the subcellular localization of MAPK and resulting cellular responses. It was thought that MAPK phosphorylation was always followed by rapid nuclear translocation. However, we and others have found that MAPK phosphorylation is not always sufficient for nuclear translocation in vivo. In the developing Drosophila wing, MAPK-mediated signaling is required both for patterning and for cell proliferation, although the mechanism of this differential control is not fully understood. Here, we show that phosphorylated MAPK (pMAPK) is held in the cytoplasm in differentiating larval and pupal wing vein cells, and we show that this cytoplasmic hold is required for vein cell fate. At the same time, we show that MAPK does move into the nucleus of other wing cells where it promotes cell proliferation. We propose a novel Ras pathway bifurcation in Drosophila and our results suggest a mechanism by which MAPK phosphorylation can signal two different cellular outcomes (differentiation versus proliferation) based on the subcellular localization of MAPK.  相似文献   

11.
12.
13.
A cytochemical technique for the ultrastructural localization of unique nuclear antigens is reported. Using a post-embedding indirect immunogold labeling procedure, nuclear antigens in electron-dense regions of the nucleus are localized with a minimum of nonspecific staining. Using this technique and indirect immunofluorescence, a panel of antinuclear monoclonal antibodies is shown to recognize preferentially cell cycle-dependent nuclear substructures. The antigenic domains recognized include specific regions in condensed chromatin, interchromatin granules, euchromatin, and chromosomes. The specificity of antigen recognition is demonstrated with qualitative and quantitative immunogold electron microscopy and immunoblot analysis. These results reveal the existence of previously undefined supramolecular organization within the nucleus and demonstrate the utility of the immunogold procedure when monoclonal antibodies are used.  相似文献   

14.
The switch of the gametophytic developmental program toward pollen embryogenesis to form a haploid plant represents an important alternative for plant breeding. In the present study, the switch of the gametophytic developmental program toward a sporophytic pathway, "embryogenesis," has been studied in three different plant species, Brassica, tobacco, and pepper. The switch has been induced by stress (heat shock) at the very responsive stage of the microspore, which is the vacuolate period. As a result, the cell nucleus undergoes striking structural changes with regard to late gametophytic development, including alterations of biosynthetic activities and proliferative activity. An enrichment in HSP70 heat-shock protein and in the presence of Ntf6-MAP kinase was observed after inductive treatment in the nuclei during early embryogenesis. This apparently reflected the possible roles of these proteins, specifically the protective role of HSP70 for the nuclear machinery, and signal transduction of Ntf6-MAPK for the entry of cells into proliferation. Importantly, the observed nuclear changes were similar in the three species investigated and represented convenient markers for early monitoring of embryogenesis and selection purposes for obtaining double-haploid plants in plant breeding.  相似文献   

15.
In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.  相似文献   

16.
17.
Mitogen-activated protein kinase (MAPK) cascade is a ubiquitous signaling module that transmits extracellular stimuli through the cytoplasm to the nucleus; in response to activating stimuli, MAPKs translocate into the nucleus. Mammalian MEK MAPK kinases (MAPKKs) have in their N termini an MAPK-docking site and a nuclear export signal (NES) sequence, which are known to play critical roles in maintaining ERK MAPKs in the cytoplasm of unstimulated cells. Herein, we show that the Wis1 MAPKK of the stress-activated Spc1 MAPK cascade in fission yeast also has a MAPK-docking site and an NES sequence in its N-terminal domain. Unexpectedly, an inactivating mutation to the NES of chromosomal wis1(+) does not affect the subcellular localization of Spc1 MAPK, whereas this NES mutation disturbs the cytoplasmic localization of Wis1. However, when Wis1 is targeted to the nucleus by fusing to a nuclear localization signal sequence, stress-induced nuclear translocation of Spc1 is abrogated, indicating that cytoplasmic Wis1 is required for nuclear transport of Spc1 upon stress. Moreover, we have observed that a fraction of Wis1 translocates into the nucleus in response to stress. These results suggest that cytoplasmic localization of Wis1 MAPKK by its NES is important for stress signaling to the nucleus.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号