首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA) is a chromophoric and fluorogenic substrate of aldehyde dehydrogenase. Fluorescence of DACA is enhanced by binding to aldehyde dehydrogenase in the absence of catalysis both in the presence and absence of the coenzyme analogue 5′AMP. DACA binds to aldehyde dehydrogenase with a dissociation constant of 1–3 μM and stoichiometry of 2 mol mol−1 enzyme. Incorporation of DACA during catalysis was also investigated and found to be 2 mol DACA mol−1 enzyme. Effect of pH on the stoichiometry of DACA incorporation during catalysis has shown that DACA incorporation remained constant at 2 mol DACA mol−1 enzyme, despite a 74-fold velocity enhancement between pH 5.0 and 9.0. Increase of pH increased decomposition of enzyme–acyl intermediate without affecting the rate-limiting step of the reaction. At pH 7.0 the pH stimulated velocity enhancement was 10-fold over that at pH 5.0; further velocity enhancement (11.5-fold that of pH 7.0) was achieved by 150 μM Mg2+ ions. The velocity at pH 7.0 with Mg2+ exceeded that of pH 9.0, and that at maximal pH stimulation at pH 9.5. It was observed that level of intermediate decreased to about 1 mol mol−1 enzyme, indicating that Mg2+ ions increased the rate of decomposition of the enzyme–acyl intermediate and shifted the rate-limiting step of the reaction to another step in the reaction sequence.  相似文献   

2.
4-trans-(N,N-Dimethylamino)cinnamaldehyde (DACA) is a chromophoric substrate of aldehyde dehydrogenase (EC 1.2.1.3) whose fate can be followed during catalysis. During this investigation we found that DACA also fluoresces and that this fluorescence is enhanced and blue-shifted upon binding to aldehyde dehydrogenase. Binding of DACA to aldehyde dehydrogenase also occurs in the absence of coenzyme. Benzaldehyde (a substrate), acetophenone (a substrate-competitive inhibitor), and the substrate-competitive affinity reagent bromoaceto-phenone interfere with DACA binding. Thus, DACA binds to the active site and can be employed for titration of active aldehyde dehydrogenase. Both E1 and E2 isozymes, which are homotetramers, bind DACA with dissociation constants of 1–4 M with a stoichiometry of 2 mol DACA/mol enzyme. The stoichiometry of enzyme–acyl intermediate was also found to be 2 mol DACA/mol enzyme for both E1 and E2 isozymes. Thus, both enzymes appear to have only two substrate-binding sites which participate in catalysis. The level of enzyme–acyl intermediate remained constant at different pH values, showing that enhancement of velocity with pH was not due to altered DACA–enzyme levels. When the reaction velocity was increased even further by using 150 M Mg2+ the intermediate level was decreased, suggesting that both increased pH and Mg2+ promote decomposition of the DACA–enzyme intermediate. Titration with DACA permits study of aldehyde substrate catalysis before central complex interconversion.  相似文献   

3.
The dehydrogenase activity of the mitochondrial isozyme (E2) of human liver aldehyde dehydrogenase was stimulated about 2-fold by the presence of low concentrations (about 120-140 microM) of Mg2+ in the assay at pH 7.0 using propionaldehyde as substrate. The stimulation was totally reversible by treatment with EDTA. Maximum stimulation was dependent on the concentration of NAD+ used in the assay; an increase in Km value of NAD+ was observed to parallel the increase in maximal velocity with increasing Mg2+ concentration, indicating that alterations in the catalytic properties of the E2 isozyme occur in the presence of Mg2+. The presteady state burst of NADH product was observed to decrease in the presence of Mg2+, suggesting that the rate-limiting step of the dehydrogenase reaction is altered by Mg2+. No evidence for Mg2+-induced alterations in the molecular weight properties of the E2 isozyme was observed using gel filtration column chromatography and fluorescence polarization techniques. In addition, no alterations in the inactivating properties of iodoacetamide or disulfiram were produced by Mg2+. These results suggest that the mechanism by which human mitochondrial aldehyde dehydrogenase (E2) is stimulated by Mg2+ is different from that of the horse enzyme, representing a significant species difference.  相似文献   

4.
K H Dahl  M F Dunn 《Biochemistry》1984,23(26):6829-6839
Liver alcohol dehydrogenase (LADH) carboxymethylated at Cys-46 (CMLADH) forms two different ternary complexes with 4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA). The complex with reduced nicotinamide adenine dinucleotide (NADH) is characterized by a 38-nm red shift of the long-wavelength pi, pi* transition to 436 nm, while the complex with oxidized nicotinamide adenine dinucleotide (NAD+) is characterized by a 60-nm red shift to 458 nm. CMLADH also forms a ternary complex with NAD+ and the Z isomer of 4-trans-(N,N-dimethylamino)cinnamaldoxime in which the absorption of the oxime (lambda max = 354 nm) is red shifted 80 nm to 434 nm. Pyrazole and 4-methylpyrazole are weak competitive inhibitors of ligand binding to the substrate site of native LADH. These inhibitors were found to form ternary complexes with CMLADH and NADH which are more stable than the corresponding complexes with the native enzyme. The transient reductions of the aldehydes DACA and p-nitrobenzaldehyde (NBZA) were studied under single-turnover conditions. Carboxymethylation decreases the DACA reduction rate 80-fold and renders the process essentially independent of pH over the region 5-9, whereas this process depends on a pKa of 6.0 in the native enzyme. At pH 7.0, the rate constant for NBZA reduction also is decreased at least 80-fold to a value of 7.7 +/- 0.3 s-1. Since primary kinetic isotope effects are observed when NADH is substituted with (4R)-4-deuterio-NADH (kH/kD = 3.0 for DACA and kH/kD = 2.3 for NBZA), the rate-limiting step for both aldehydes involves hydride transfer. The altered pH dependence is concluded to be due to an increase in the pK value of the zinc-coordinated DACA-alcohol in the ternary complex with NAD+ by more than 3 units. This perturbation is brought about by the close proximity of the negatively charged carboxymethyl carboxylate.  相似文献   

5.
Ho KK  Hurley TD  Weiner H 《Biochemistry》2006,45(31):9445-9453
Random mutagenesis followed by a filter-based screening assay has been used to identify a mutant of human class 1 aldehyde dehydrogenase (ALDH1) that was no longer inhibited by Mg(2+) ions but was activated in their presence. Several mutants possessed double, triple, and quadruple amino acid substitutions with a total of seven different residues being altered, but each had a common T244S change. This point mutation proved to be responsible for the Mg(2+) ion activation. An ALDH1 T244S mutant was recombinantly expressed and was used for mechanistic studies. Mg(2+) ions have been shown to increase the rate of deacylation. Consistent with the rate-limiting step for ALDH1 being changed from coenzyme dissociation to deacylation was finding that chloroacetaldehyde was oxidized more rapidly than acetaldehyde. Furthermore, Mg(2+) ions only in the presence of NAD(H) increased the rate of hydrolysis of p-nitrophenyl acetate showing that the metal only affects the binary complex. Though the rate-limiting step for the T244S mutant was different from that of the native enzyme, the catalytic efficiency of the mutant was just 20% that of the native enzyme. The basis for the change in the rate-limiting step appears to be related to NAD(+) binding. Using the structure of a sheep class 1 ALDH, it was possible to deduce that the interaction between the side chain of T244 and its neighboring residues with the nicotinamide ring of NAD(+) were an essential determinant in the catalytic action of ALDH1.  相似文献   

6.
K H Dahl  M F Dunn 《Biochemistry》1984,23(18):4094-4100
Evidence that horse liver alcohol dehydrogenase forms a ternary complex with 4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA) and oxidized nicotinamide adenine dinucleotide (NAD+) is presented. Formation of the complex is characterized by a 97-nm red shift of the free chromophore to 495 nm (epsilon 495 approximately 6.0 X 10(4) M-1 cm-1). This shift is larger than the 66-nm red shift of the E(NADH,-DACA) complex (lambda max = 464 nm) previously reported by Dunn and Hutchinson [Dunn, M.F., & Hutchison, J.S. (1973) Biochemistry 12, 4882-4892]. The large red shift of the E(NAD+,DACA) complex is due to the combined effects of coordination of the carbonyl oxygen of DACA to the active-site zinc ion and to the close proximity of the positively charged nicotinamide ring of NAD+. The stability of this complex is pH dependent and depends on a single apparent ionization with pKa = 7.6 +/- 0.3. The pH-independent dissociation constant for binding of DACA to E(NAD+) is 23 +/- 6 microM. The stoichiometry of DACA binding to the E(NAD+) complex is shown to be one per active site (two per enzyme molecule). Liver alcohol dehydrogenase is also shown to catalyze the NAD+-mediated oxidation of DACA to the corresponding carboxylic acid with a very slow turnover rate. The possibility that the observed E(NAD+,DACA) complex is an intermediate in the enzyme-catalyzed oxidation of DACA is discussed.  相似文献   

7.
Choline oxidase catalyzes the four-electron oxidation of choline to glycine-betaine, with betaine-aldehyde as intermediate and molecular oxygen as primary electron acceptor. The enzyme is capable of accepting betaine-aldehyde as a substrate, allowing the investigation of the reaction mechanism for both the conversion of choline to the aldehyde intermediate and of betaine-aldehyde to glycine-betaine. The steady state kinetic mechanism has been determined at pH 7 with choline and betaine-aldehyde as substrate to be sequential, consistent with oxygen reacting with the reduced enzyme before release of betaine-aldehyde or glycine-betaine, respectively. A K(m) value < or =20 microM has been estimated for betaine-aldehyde based on the kinetic pattern with a y-intercept seen in a plot of 1/rate versus 1/[oxygen]. The kinetic data suggest that betaine-aldehyde predominantly remains bound at the active site during turnover of the enzyme with choline. In agreement with such a conclusion, less than 10% betaine-aldehyde has been found in the reaction mixture under enzymatic turnover with saturating concentrations of choline. The k(cat) values were 6.4+/-0.3 and 15.3+/-2.5 s(-1) for choline and betaine-aldehyde, respectively, suggesting that a kinetic step in the oxidation of choline to the aldehyde intermediate must be partially rate-limiting for catalysis. Cleavage of the CH bond of choline as being partially rate-limiting for catalysis is discussed.  相似文献   

8.
Chlorella virus DNA ligase (ChVLig) is an instructive model for mechanistic studies of the ATP-dependent DNA ligase family. ChVLig seals 3'-OH and 5'-PO(4) termini via three chemical steps: 1) ligase attacks the ATP α phosphorus to release PP(i) and form a covalent ligase-adenylate intermediate; 2) AMP is transferred to the nick 5'-phosphate to form DNA-adenylate; 3) the 3'-OH of the nick attacks DNA-adenylate to join the polynucleotides and release AMP. Each chemical step requires Mg(2+). Kinetic analysis of nick sealing by ChVLig-AMP revealed that the rate constant for phosphodiester synthesis (k(step3) = 25 s(-1)) exceeds that for DNA adenylylation (k(step2) = 2.4 s(-1)) and that Mg(2+) binds with similar affinity during step 2 (K(d) = 0.77 mm) and step 3 (K(d) = 0.87 mm). The rates of DNA adenylylation and phosphodiester synthesis respond differently to pH, such that step 3 becomes rate-limiting at pH ≤ 6.5. The pH profiles suggest involvement of one and two protonation-sensitive functional groups in catalysis of steps 2 and 3, respectively. We suggest that the 5'-phosphate of the nick is the relevant protonation-sensitive moiety and that a dianionic 5'-phosphate is necessary for productive step 2 catalysis. Motif VI, located at the C terminus of the OB-fold domain of ChVLig, is a conserved feature of ATP-dependent DNA ligases and GTP-dependent mRNA capping enzymes. Presteady state and burst kinetic analysis of the effects of deletion and missense mutations highlight the catalytic contributions of ChVLig motif VI, especially the Asp-297 carboxylate, exclusively during the ligase adenylylation step.  相似文献   

9.
M Slatner  B Nidetzky  K D Kulbe 《Biochemistry》1999,38(32):10489-10498
To characterize catalysis by NAD-dependent long-chain mannitol 2-dehydrogenases (MDHs), the recombinant wild-type MDH from Pseudomonas fluorescens was overexpressed in Escherichia coli and purified. The enzyme is a functional monomer of 54 kDa, which does not contain Zn(2+) and has B-type stereospecificity with respect to hydride transfer from NADH. Analysis of initial velocity patterns together with product and substrate inhibition patterns and comparison of primary deuterium isotope effects on the apparent kinetic parameters, (D)k(cat), (D)(k(cat)/K(NADH)), and (D)(k(cat)/K(fructose)), show that MDH has an ordered kinetic mechanism at pH 8.2 in which NADH adds before D-fructose, and D-mannitol and NAD are released in that order. Isomerization of E-NAD to a form which interacts with D-mannitol nonproductively or dissociation of NAD from the binary complex after isomerization is the slowest step (>/=110 s(-)(1)) in D-fructose reduction at pH 8.2. Release of NADH from E-NADH (32 s(-)(1)) is the major rate-limiting step in mannitol oxidation at this pH. At the pH optimum for D-fructose reduction (pH 7.0), the rate of hydride transfer contributes significantly to rate limitation of the catalytic cascade and the overall reaction. (D)(k(cat)/K(fructose)) decreases from 2.57 at pH 7.0 to a value of 相似文献   

10.
DNA ligase I (LIG1) catalyzes the ligation of single-strand breaks to complete DNA replication and repair. The energy of ATP is used to form a new phosphodiester bond in DNA via a reaction mechanism that involves three distinct chemical steps: enzyme adenylylation, adenylyl transfer to DNA, and nick sealing. We used steady state and pre-steady state kinetics to characterize the minimal mechanism for DNA ligation catalyzed by human LIG1. The ATP dependence of the reaction indicates that LIG1 requires multiple Mg(2+) ions for catalysis and that an essential Mg(2+) ion binds more tightly to ATP than to the enzyme. Further dissection of the magnesium ion dependence of individual reaction steps revealed that the affinity for Mg(2+) changes along the reaction coordinate. At saturating concentrations of ATP and Mg(2+) ions, the three chemical steps occur at similar rates, and the efficiency of ligation is high. However, under conditions of limiting Mg(2+), the nick-sealing step becomes rate-limiting, and the adenylylated DNA intermediate is prematurely released into solution. Subsequent adenylylation of enzyme prevents rebinding to the adenylylated DNA intermediate comprising an Achilles' heel of LIG1. These ligase-generated 5'-adenylylated nicks constitute persistent breaks that are a threat to genomic stability if they are not repaired. The kinetic and thermodynamic framework that we have determined for LIG1 provides a starting point for understanding the mechanism and specificity of mammalian DNA ligases.  相似文献   

11.
The (Na+ +K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble form depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na+ +K+)-ATPase in its pH optimum being around 7.0, showing optimal activity at Mg2+:ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM. Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 degrees C, with activation energy (Ea) values of 13-15 kcal/mol above this temperature and 30-35 kcal below it. A further discontinuity was also found at 8.0 degrees C and the Ea below this was very high (greater than 100 kcal/mol). Increased Mg2+ concentrations at Mg2+:ATP ratios in excess of 1:1 inhibited the (Na+ +K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots. The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na+ +K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20 degrees C and Ea values of 22 and 68 kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 degrees C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km values for ATP. Since both cholesterol and Mg2+ are known to alter the effects of temperature on the fluidity of phospholipids, the above results are discussed in this context.  相似文献   

12.
Thermostable lipase produced by a genotypically identified extremophilic Bacillus subtilis NS 8 was purified 500-fold to homogeneity with a recovery of 16% by ultrafiltration, DEAE-Toyopearl 650M and Sephadex G-75 column. The purified enzyme showed a prominent single band with a molecular weight of 45 kDa. The optimum pH and temperature for activity of lipase were 7.0 and 60°C, respectively. The enzyme was stable in the pH range between 7.0 and 9.0 and temperature range between 40 and 70°C. It showed high stability with half-lives of 273.38 min at 60°C, 51.04 min at 70°C and 41.58 min at 80°C. The D-values at 60, 70 and 80°C were 788.70, 169.59 and 138.15 min, respectively. The enzyme's enthalpy, entropy and Gibb's free energy were in the range of 70.07-70.40 kJ mol(-1), -83.58 to -77.32 kJ mol(-1)K(-1) and 95.60-98.96 kJ mol(-1), respectively. Lipase activity was slightly enhanced when treated with Mg(2+) but there was no significant enhancement or inhibition of the activity with Ca(2+). However, other metal ions markedly inhibited its activity. Of all the natural vegetable oils tested, it had slightly higher hydrolytic activity on soybean oil compared to other oils. On TLC plate, the enzyme showed non-regioselective activity for triolein hydrolysis.  相似文献   

13.
Yeast exopolyphosphatase (scPPX) processively splits off the terminal phosphate group from linear polyphosphates longer than pyrophosphate. scPPX belongs to the DHH phosphoesterase superfamily and is evolutionarily close to the well characterized family II pyrophosphatase (PPase). Here, we used steady-state kinetic and binding measurements to elucidate the metal cofactor requirement for scPPX catalysis over the pH range 4.2-9.5. A single tight binding site for Mg(2+) (K(d) of 24 microm) was detected by equilibrium dialysis. Steady-state kinetic analysis of tripolyphosphate hydrolysis revealed a second site that binds Mg(2+) in the millimolar range and modulates substrate binding. This step requires two protonated and two deprotonated enzyme groups with pK(a) values of 5.0-5.3 and 7.6-8.2, respectively. The catalytic step requiring two deprotonated groups (pK(a) of 4.6 and 5.6) is modulated by ionization of a third group (pK(a) of 8.7). Conservative mutations of Asp(127), His(148), His(149) (conserved in scPPX and PPase), and Asn(35) (His in PPase) reduced activity by a factor of 600-5000. N35H and D127E substitutions reduced the Mg(2+) affinity of the tight binding site by 25-60-fold. Contrary to expectations, the N35H variant was unable to hydrolyze pyrophosphate, but markedly altered metal cofactor specificity, displaying higher catalytic activity with Co(2+) bound to the weak binding site versus the Mg(2+)- or Mn(2+)-bound enzyme. These results provide an initial step toward understanding the dynamics of scPPX catalysis and reveal significant functional differences between structurally similar scPPX and family II PPase.  相似文献   

14.
Hays H  Berdis AJ 《Biochemistry》2002,41(15):4771-4778
The effect of metal ion substitution on the dynamics of translesion DNA synthesis catalyzed by the bacteriophage T4 DNA polymerase was quantitatively evaluated through steady-state and transient kinetic techniques. Substitution of Mn(2+) for Mg(2+) enhances the steady-state rate of dNMP misinsertion opposite an abasic site by 11-34-fold. At the molecular level, the enhancement in translesion DNA synthesis reflects a substantial increase in the rate of the conformational change preceding phosphoryl transfer for all dNTPs that were tested. This is best illustrated by the biphasic pre-steady-state time course of dAMP insertion opposite an abasic site which indicates that a step after chemistry is rate-limiting for steady-state enzyme turnover. Furthermore, the k(pol) value of 40 s(-1) measured under single-turnover reaction conditions is 20-fold greater than the k(cat) value of 2 s(-1) measured for steady-state enzyme turnover. Finally, the low elemental effect ( approximately 2.4-fold reduction in k(pol)) measured by substituting the alpha-thiotriphosphate analogue for dATP further argues that chemistry is not rate-limiting. In contrast to the biphasic insertion of dAMP, pre-steady-state time courses for the insertion of dCMP, dGMP, or dTMP opposite an abasic site were linear. Nearly identical k(pol) values ( approximately 1 s(-1)) were measured for the insertion of dCMP, dGMP, and dTMP opposite the abasic site using single-turnover conditions. However, the large elemental effects of 27 and 70 measured by substituting the alpha-thiotriphosphate analogues for dCTP and dGTP, respectively, suggest that phosphoryl transfer may be the rate-limiting step for their insertion opposite the abasic site. Various models are discussed in an attempt to explain the effect of metal ion substitution on the dynamics of translesion DNA replication.  相似文献   

15.
Nakano S  Proctor DJ  Bevilacqua PC 《Biochemistry》2001,40(40):12022-12038
Hepatitis delta virus (HDV) uses genomic and antigenomic ribozymes in its replication cycle. We examined ribozyme self-cleavage over eight orders of magnitude of Mg(2+) concentration, from approximately 10(-9) to 10(-1) M. These experiments were carried out in 1 M NaCl to aid folding of the ribozyme and to control the ionic strength. The concentration of free Mg(2+) ions was established using an EDTA-Mg(2+) buffered system. Over the pH range of 5-9, the rate was independent of Mg(2+) concentration up to 10(-7) M, and of the addition of a large excess of EDTA. This suggests that in the presence of 1 M NaCl, the ribozyme can fold and cleave without using divalent metal ions. Br?nsted analysis under these reaction conditions suggests that solvent and hydroxide ions may play important roles as general base and specific base catalysts. The observed rate constant displayed a log-linear dependence on intermediate Mg(2+) concentration from approximately 10(-7) to 10(-4) M. These data combined with the shape of the pH profile under these conditions are consistent with the binding of at least one structural divalent metal ion that does not participate in catalysis and binds tighter at lower pH. No evidence for a catalytic role for Mg(2+) was found at low or intermediate Mg(2+) concentrations. Addition of Mg(2+) to physiological and higher concentrations, from 10(-3) to 10(-1) M, revealed a second saturable divalent metal ion which binds tighter at high pH. The shape of the pH profile is inverted relative to that at low Mg(2+) concentrations, consistent with a general acid-base catalysis mechanism in which a cytosine (C75) acts as the general acid and a hydroxide ion from the divalent metal ion, or possibly from solvent, acts as the base. Overall, the data support a model in which the HDV ribozyme can self-cleave by multiple divalent ion-independent and -dependent channels, and in which the contribution of Mg(2+) to catalysis is modest at approximately 25-fold. Surface electrostatic potential maps were calculated on the self-cleaved form of the ribozyme using the nonlinear Poisson-Boltzmann equation. These calculations revealed several patches of high negative potential, one of which is present in a cleft near N4 of C75. These calculations suggest that distinct catalytic and structural metal ion sites exist on the ribozyme, and that the negative potential at the active site may help shift the pK(a) for N3 of C75 toward neutrality.  相似文献   

16.
Renal hyperosmotic conditions may produce reactive oxygen species, which could have a deleterious effect on the enzymes involved in osmoregulation. Hydrogen peroxide was used to provoke oxidative stress in the environment of betaine aldehyde dehydrogenase in vitro. Enzyme activity was reduced as hydrogen peroxide concentration was increased. Over 50% of the enzyme activity was lost at 100 μM hydrogen peroxide at two temperatures tested. At pH 8.0, under physiological ionic strength conditions, peroxide inhibited the enzyme. Initial velocity assays of betaine aldehyde dehydrogenase in the presence of hydrogen peroxide (0-200 μM) showed noncompetitive inhibition with respect to NAD(+) or to betaine aldehyde at saturating concentrations of the other substrate at pH 7.0 or 8.0. Inhibition data showed that apparent V(max) decreased 40% and 26% under betaine aldehyde and NAD(+) saturating concentrations at pH 8.0, while at pH 7.0 V(max) decreased 40% and 29% at betaine aldehyde and NAD(+) saturating concentrations. There was little change in apparent Km(NAD) at either pH, while Km(BA) increased at pH 7.0. K(i) values at pH 8 and 7 were calculated. Our results suggest that porcine kidney betaine aldehyde dehydrogenase could be inhibited by hydrogen peroxide in vivo, thus compromising the synthesis of glycine betaine.  相似文献   

17.
Catalytic properties of alkaline phosphatase from pig kidney   总被引:6,自引:5,他引:1       下载免费PDF全文
The enzymic properties of alkaline phosphatase (EC 3.1.3.1) from pig kidney brush-border membranes were studied. 1. It hydrolyses ortho- and pyro-phosphate esters, the rate limiting step (V(max.)) being independent of the substrate. It transphosphorylates to Tris at concentrations above 0.1m-Tris. 2. The pH optimum for hydrolysis was between 9.8 and 10. The pK of the enzyme-substrate complex is 8.7 for p-nitrophenyl phosphate and beta-glycerophosphate. Excess of substrate inhibits the enzymic activity with decreasing pH. The pK of the substrate-inhibited enzyme-substrate complex, 8.7, is very similar to that for the enzyme-substrate complex. The pK values of the free enzyme appear to be 8.7 and 7.9. 3. Inactivation studies suggest that there is an essential tyrosine residue at the active centre of the enzyme. 4. The energy of activation (E) and the heat of activation (DeltaH) at pH9.5 showed a transition at 24.8 degrees C that was unaffected by Mg(2+). 5. Kinetic and atomic-absorption analysis indicated the essential role of two Zn(2+) ions/tetrameric enzyme for an ordered association of the monomers. Zn(2+) in excess and other bivalent ions compete for a second site with Mg(2+). Mg(2+) enhances only the rate-limiting step of substrate hydrolysis. 6. Amino acid inhibition studies classified the pig kidney enzyme as an intermediate type of previously described alkaline phosphatases. It has more similarity with the enzyme from liver and bone than with that from placenta.  相似文献   

18.
The kcat value for the oxidation of propionaldehyde by sheep liver cytosolic aldehyde dehydrogenase increased 3-fold, from 0.16 s-1 at pH 7.6 to 0.49 s-1 at pH 5.2, in parallel with the increase in the rate of displacement of NADH from binary enzyme.NADH complexes. A burst in nucleotide fluorescence was observed at all pH values consistent with the rate of isomerization of binary enzyme.NADH complexes constituting the rate-limiting step in the steady state. No substrate activation by propionaldehyde was observed at pH 5.2, but the enzyme exhibited dissociation/association behavior. The inactive dissociated form of the enzyme was favored by low enzyme concentration, low pH, and low ionic strength. Propionaldehyde protected the enzyme against dissociation.  相似文献   

19.
Ultrafast, laser-induced pH jump with time-resolved photoacoustic detection has been used to investigate the early protonation steps leading to the formation of the compact acid intermediate (I) of apomyoglobin (ApoMb). When ApoMb is in its native state (N) at pH 7.0, rapid acidification induced by a laser pulse leads to two parallel protonation processes. One reaction can be attributed to the binding of protons to the imidazole rings of His24 and His119. Reaction with imidazole leads to an unusually large contraction of -82 +/- 3 ml/mol, an enthalpy change of 8 +/- 1 kcal/mol, and an apparent bimolecular rate constant of (0.77 +/- 0.03) x 10(10) M(-1) s(-1). Our experiments evidence a rate-limiting step for this process at high ApoMb concentrations, characterized by a value of (0. 60 +/- 0.07) x 10(6) s(-1). The second protonation reaction at pH 7. 0 can be attributed to neutralization of carboxylate groups and is accompanied by an apparent expansion of 3.4 +/- 0.2 ml/mol, occurring with an apparent bimolecular rate constant of (1.25 +/- 0.02) x 10(11) M(-1) s(-1), and a reaction enthalpy of about 2 kcal/mol. The activation energy for the processes associated with the protonation of His24 and His119 is 16.2 +/- 0.9 kcal/mol, whereas that for the neutralization of carboxylates is 9.2 +/- 0.9 kcal/mol. At pH 4.5 ApoMb is in a partially unfolded state (I) and rapid acidification experiments evidence only the process assigned to carboxylate protonation. The unusually large contraction and the high energetic barrier observed at pH 7.0 for the protonation of the His residues suggests that the formation of the compact acid intermediate involves a rate-limiting step after protonation.  相似文献   

20.
The activity of yeast enolase is inhibited by Li+ and Na+. At pH 7.1, inhibition by Li+ is "mixed" with respect to Mg2+; both Vmax and Km (Mg2+) are increased by Li+. The inhibition by Li+ appears to be partial, indicating that enzyme with Li+ bound is active. The step inhibited by Li+ cannot be proton abstraction since Li+ decreases the kinetic isotope effect on Vmax. At pH 9.2, where proton abstraction is no longer partially rate-limiting, inhibiton by Li+ is competitive with respect to Mg2+. The rate of enzyme-catalyzed exchange of the C-2 hydrogen with solvent is not affected by Li+. We interpret these results as follows: Li+ (and Na+) binds to enolase and decreases the rate of at least one step in the mechanism. At pH 7.1, this step is partially rate-limiting; at pH 9.2, this step is a fast step in the reaction. The step inhibited by Li+ cannot be proton abstraction but may be release of product (phosphoenol pyruvate) or Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号