共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BMP‐9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway 下载免费PDF全文
Dongxing Zhu Neil Charles Wallace Mackenzie Catherine M. Shanahan Rukshana C. Shroff Colin Farquharson Vicky Elizabeth MacRae 《Journal of cellular and molecular medicine》2015,19(1):165-174
The process of vascular calcification shares many similarities with that of physiological skeletal mineralization, and involves the deposition of hydroxyapatite crystals in arteries. However, the cellular mechanisms responsible have yet to be fully explained. Bone morphogenetic protein (BMP‐9) has been shown to exert direct effects on both bone development and vascular function. In the present study, we have investigated the role of BMP‐9 in vascular smooth muscle cell (VSMC) calcification. Vessel calcification in chronic kidney disease (CKD) begins pre‐dialysis, with factors specific to the dialysis milieu triggering accelerated calcification. Intriguingly, BMP‐9 was markedly elevated in serum from CKD children on dialysis. Furthermore, in vitro studies revealed that BMP‐9 treatment causes a significant increase in VSMC calcium content, alkaline phosphatase (ALP) activity and mRNA expression of osteogenic markers. BMP‐9‐induced calcium deposition was significantly reduced following treatment with the ALP inhibitor 2,5‐Dimethoxy‐N‐(quinolin‐3‐yl) benzenesulfonamide confirming the mediatory role of ALP in this process. The inhibition of ALK1 signalling using a soluble chimeric protein significantly reduced calcium deposition and ALP activity, confirming that BMP‐9 is a physiological ALK1 ligand. Signal transduction studies revealed that BMP‐9 induced Smad2, Smad3 and Smad1/5/8 phosphorylation. As these Smad proteins directly bind to Smad4 to activate target genes, siRNA studies were subsequently undertaken to examine the functional role of Smad4 in VSMC calcification. Smad4‐siRNA transfection induced a significant reduction in ALP activity and calcium deposition. These novel data demonstrate that BMP‐9 induces VSMC osteogenic differentiation and calcification via ALK1, Smad and ALP dependent mechanisms. This may identify new potential therapeutic strategies for clinical intervention. 相似文献
3.
4.
Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. Taurine
is a free β-amino acid and plays an important physiological role in mammals. We have recently demonstrated that vascular smooth
muscle cells (VSMCs) express a functional taurine transporter. To evaluate the possible role of taurine in vascular calcification,
we assessed its effects on osteoblastic differentiation of VSMCs in vitro. The results showed that taurine inhibited the β-glycerophosphate-induced
osteoblastic differentiation of VSMCs as evidenced by both the decreasing alkaline phosphate (ALP) activity and expression
of the core binding factor α1 (Cbfα1). Taurine also activated the extracellular signal-regulated protein kinase (ERK) pathway.
Inhibition of ERK pathway reversed the effect of taurine on ALP activity and Cbfα1 expression. These results suggested that
taurine inhibited osteoblastic differentiation of vascular cells via the ERK pathway. 相似文献
5.
Yan‐Ling Shi Li‐Wen Wang Jian Huang Bao‐Di Gou Tian‐Lan Zhang Kui Wang 《Journal of cellular biochemistry》2009,108(5):1184-1191
A major cellular event in vascular calcification is the phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteoblast‐like cells. After demonstrating that lanthanum chloride (LaCl3) suppresses hydrogen peroxide‐enhanced calcification in rat calcifying vascular cells (CVCs), here we report its effect on the osteoblastic differentiation of rat VSMCs, a process leading to the formation of CVCs. Cells were isolated from aortic media of male SD rats, and passages between three and eight were cultured in Dulbeccol's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum (FBS) and 10 mM β‐glycerophosphate (β‐GP) in the presence or absence of LaCl3. Exposure of cells to LaCl3 suppressed the β‐GP‐induced elevations in calcium deposition, alkaline phosphatase (ALP) activity, and Cbfa1/Runx2 expression, as well as the concomitant loss of SM α‐actin. Furthermore, LaCl3 activated the phosphorylation of extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK), and the blockage of either pathway with a specific inhibitor abolished the effects of LaCl3. In addition, pretreatment of the cells with pertussis toxin (PTx), an inhibitor of G protein‐mediated signaling pathway, repealed all the changes induced by LaCl3. These findings demonstrate that LaCl3 suppresses the β‐GP‐induced osteoblastic differentiation and calcification in rat VSMCs, and its effect is mediated by the activation of both ERK and JNK MAPK pathways via PTx‐sensitive G proteins. J. Cell. Biochem. 108: 1184–1191, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
6.
目的:本研究运用差异显示技术研究动脉血管平滑肌细胞在钙化过程中基因表达的改变,探讨与动脉钙化相关的基因.方法:体外培养牛主动脉平滑肌细胞,在培养环境中加入10 mmol/L的β-磷酸甘油酯,诱导细胞钙化,作为动脉钙化模型,分别提取对照细胞和钙化细胞的总RNA,用荧光标记的引物进行DD-PCR扩增,电泳显示差异表达的cDNA,再用反向Northern blot对这些差异cDNA进行鉴定确认,并对确认的差异cDNA片段进行克隆测序.结果:DD-PCR显示65个表达差异的片段,经过回收、扩增和反向Northern blot有7个片断确定有持续的差异表达.经过测序和同源性比较,发现有3个片段为新的基因片段.结论:初步确定7个与血管钙化相关的cDNA片段,其中3个片段为新的未知基因片段. 相似文献
7.
Yong Li Wei Sun Fatma Saaoud Yuzhen Wang Quanyi Wang Johnie Hodge Yvonne Hui Sophia Yin Susan M. Lessner Xiangqing Kong Daping Fan 《Journal of cellular and molecular medicine》2021,25(1):535-548
microRNA-155 (miR155) is pro-atherogenic; however, its role in vascular calcification is unknown. In this study, we aim to examine whether miR155 regulates vascular calcification and to understand the underlying mechanism. Quantitative real-time PCR showed that miR155 is highly expressed in human calcific carotid tissue and positively correlated with the expression of osteogenic genes. Wound-healing assay and TUNEL staining showed deletion of miR155 inhibited vascular smooth muscle cell (VSMC) migration and apoptosis. miR155 deficiency attenuated calcification of cultured mouse VSMCs and aortic rings induced by calcification medium, whereas miR155 overexpression promoted VSMC calcification. Compared with wild-type mice, miR155−/− mice showed significant resistance to vitamin D3 induced vascular calcification. Protein analysis showed that miR155 deficiency alleviated the reduction of Rictor, increased phosphorylation of Akt at S473 and accelerated phosphorylation and degradation of FOXO3a in cultured VSMCs and in the aortas of vitamin D3-treated mice. A PI3K inhibitor that suppresses Akt phosphorylation increased, whereas a pan-caspase inhibitor that suppresses apoptosis reduced VSMC calcification; and both inhibitors diminished the protective effects of miR155 deficiency on VSMC calcification. In conclusion, miR155 deficiency attenuates vascular calcification by increasing Akt phosphorylation and FOXO3a degradation, and thus reducing VSMC apoptosis induced by calcification medium. 相似文献
8.
Jun-Kun Zhan Yan-Jiao WangYi Wang Zhi-Yong TangPan Tan Wu HuangYou-Shuo Liu 《Experimental cell research》2014
Vascular calcification is common in patients with peripheral artery diseases and coronary artery diseases. The osteoblastic differentiation of vascular smooth muscle cells (VSMCs) contributes significantly to vascular calcification. Adiponectin has been demonstrated to exert a protective effect in osteoblastic differentiation of VSMCs through regulating mTOR activity. However, the upstream and downstream signaling molecules of adiponectin-regulated mTOR signaling have not been identified in VSMCs with osteoblastic differentiation. In this study, the VSMC differentiation model was established by beta-glycerophosphate (β-GP) induction. The mineralization was identified by Alizarin Red S staining. Protein expression and phosphorylation were detected by Western blot or immunofluorescence. Adiponectin attenuated osteoblastic differentiation and mineralization of β-GP-treated VSMCs. Adiponectin inhibited osteoblastic differentiation of VSMCs through increasing the level of p-AMPKα. Pretreatment of VSMCs with AMPK inhibitor blocked while AMPK activator enhanced the effect of adiponectin on osteoblastic differentiation of VSMCs. Adiponectin upregulated TSC2 expression and downregulated mTOR and S6K1 phosphorylation in β-GP-treated VSMCs. Adiponectin treatment significantly attenuates the osteoblastic differentiation and calcification of VSMCs through modulation of AMPK–TSC2–mTOR–S6K1 signal pathway. 相似文献
9.
Converging lines of evidence suggest that lanthanum tends to deposit in bone. The influence of lanthanum ion (La3+) on osteoblast differentiation and the related mechanism are essential to understanding its effect on bone metabolism. In this study, La3+ treatment enhanced in vitro osteoblast differentiation as evidenced by promoting alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion, and matrix mineralization. The expressions of osteoblast-specific genes of Cbfa-1, osteopontin (OPN), and bone sialoprotein (BSP) were all increased in the presence of La3+, but no change was observed in that of type I collagen (COL-I). Further studies demonstrated that La3+ treatment enhanced phosphorylation of extracellular signal-regulated kinase (ERK). Inhibition of ERK activation by U0126 suppressed the effects of La3+ on osteoblast activity. Moreover, pretreatment of the cells with pertussis toxin (PTx), a Gi protein inhibitor, suppressed the La3+-enhanced ERK phosphorylation and osteoblast differentiation. These findings suggest that La3+ exposure enhances in vitro osteoblast differentiation and the effect depends on ERK phosphorylation via PTx-sensitive Gi protein signaling. 相似文献
10.
Vascular calcification refers to the pathological deposition of calcium and phosphate minerals into the vasculature. It is prevalent in atherosclerosis, ageing, type 2 diabetes mellitus and chronic kidney disease, thus, increasing morbidity and mortality from these conditions. Vascular calcification shares similar mechanisms with bone mineralization, with smooth muscle cells playing a critical role in both processes. In the last decade, a variety of microRNAs have been identified as key regulators for the differentiation, phenotypic switch, proliferation, apoptosis, cytokine production and matrix deposition in vascular smooth muscle cells during vascular calcification. Therefore, this review mainly discusses the roles of microRNAs in the pathophysiological mechanisms of vascular calcification in smooth muscle cells and describes several interventions against vascular calcification by regulating microRNAs. As the exact mechanisms of calcification remain not fully elucidated, having a better understanding of microRNA involvement in vascular calcification may give impetus to development of novel therapeutics for the control and treatment of vascular calcification. 相似文献
11.
Statins inhibit in vitro calcification of human vascular smooth muscle cells induced by inflammatory mediators 总被引:6,自引:0,他引:6
Kizu A Shioi A Jono S Koyama H Okuno Y Nishizawa Y 《Journal of cellular biochemistry》2004,93(5):1011-1019
Although lipid-lowering therapy with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) decreases the progression of coronary artery and aortic valve calcification, the mechanism of action of these drugs to inhibit the calcification process remains unclear. In this study, we investigated the effect of statins such as cerivastatin and atorvastatin on vascular calcification by utilizing an in vitro model of inflammatory vascular calcification. Cerivastatin and atorvastatin dose-dependently inhibited in vitro calcification of human vascular smooth muscle cells (HVSMCs) induced by the following inflammatory mediators (IM): interferon-gamma, 1alpha,25-dihydroxyvitamin D3, tumor necrosis factor-alpha, and oncostatin M. These statins also depressed expression of alkaline phosphatase (ALP) in HVSMCs induced by these factors. Mevalonate and geranylgeranylpyrophosphate reversed the inhibitory effect of cerivastatin on ALP expression in HVSMCs, while farnesylpyrophosphate showed no effect on the ALP activities inhibited by this drug, suggesting that inhibition of Rho and its downstream target, Rho kinase may mediate the inhibitory effect of cerivastatin. Cerivastatin prevented RhoA activation in HVSMCs induced by the IM. A specific inhibitor of Rho kinase (Y-27632) inhibited in vitro calcification and induction of ALP in HVSMCs. These findings provide a possible mechanism of statins to prevent the progression of calcification in inflammatory vascular diseases such as atherosclerosis and cardiac valvular calcification. 相似文献
12.
Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells 总被引:12,自引:0,他引:12
Adipose tissue-derived stromal cells (ADSC) have previously been shown to possess stem cell properties such as transdifferentiation and self-renewal. Because future clinical applications are likely to use these adult stem cells in an autologous fashion, we wished to establish and characterize rat ADSC for pre-clinical tests. In the present study, we showed that rat ADSC expressed stem cell markers CD34 and STRO-1 at passage 1 but only STRO-1 at passage 3. These cells could also be induced to differentiate into adipocytes, smooth muscle cells, and neuron-like cells, the latter of which expressed neuronal markers S100, nestin, and NF70. Isobutylmethylxanthine (IBMX), indomethacin (INDO), and insulin were the active ingredients in a previously established neural induction medium (NIM); however, here we showed that IBMX alone was as effective as NIM in the induction of morphological changes as well as neuronal marker expression. Finally, we showed that vascular smooth muscle cells could also be induced by either NIM or IBMX to differentiate into neuron-like cells that expressed NF70. 相似文献
13.
Tissue factor pathway inhibitor (TFPI) plays a vitally important role in the blood coagulation pathway. Recent studies indicated that TFPI induces apoptosis in vascular smooth-muscle cells (VSMCs) in animals. The present study investigated whether the TFPI gene could also induce apoptosis in human vascular smooth-muscle cells (hVSMCs). Such cells were isolated from human umbilical arteries and subsequently transfected with pIRES-TFPI plasmid (2 μg/mL). MTT assaying and cell counting were applied to measure cell viability and proliferation, RT-PCR was utilized to analyze TFPI gene expression in the cells. Apoptosis was analyzed by fluorescence activated cell sorting (FACS). Several key proteins involved in apoptosis were examined through Western blotting. It was shown that TFPI gene transfer led to its increased cellular expression, with a subsequent reduction in hVSMC proliferation. Further investigation demonstrated that TFPI gene expression resulted in lesser amounts of procaspase-3, procaspase-8 and procascase-9, and an increased release of mitochondrial cytochrome c (cyt-c) into cytoplasm, thereby implying the involvement of both extrinsic and intrinsic pathways in TFPI gene-induced apoptosis in hVSMCs. 相似文献
14.
ERK5 is involved in proliferation of vascular smooth muscle cells (VSMC). The proliferative actions of insulin and angiotensin-II (A-II) in VSMC are mediated in part by ERK1/2. We hypothesized that insulin and A-II also regulate ERK5 activity in VSMC. Acute treatment (<60min) with insulin or A-II increased phosphorylation of ERK1/2 at 15min and ERK5 at 5min. Chronic treatment (< or = 8h) with insulin increased ERK1/2 phosphorylation by 4h and ERK5 by 8h. A-II-stimulated phosphorylation of ERK1/2 by 8h and ERK5 by 4h. The EC(50) for insulin treatment effecting ERK1/2 and ERK5 phosphorylation was 1.5 and 0.1nM, whereas the EC(50) for A-II was 2nM, each. Insulin plus A-II induced an additive effect only on ERK5 phosphorylation. Inhibition of insulin- and A-II-stimulated phosphorylation of ERK5 and ERK1/2 by PD98059 and Wortmannin exhibited differential and time-dependent effects. Taken together, these data indicate that insulin and A-II regulate the activity of ERK5, but different from that seen for ERK1/2. 相似文献
15.
Michael Schoppet Mary M. Kavurma Lorenz C. Hofbauer Catherine M. Shanahan 《Biochemical and biophysical research communications》2011,(1):741
Osteoprotegerin (OPG), a member of the TNF receptor superfamily, was initially found to modulate bone mass by blocking osteoclast maturation and function. Rodent models have also revealed a role for OPG as an inhibitor of vascular calcification. However, the precise mode of how OPG blocks mineralization is unclear. In this study, OPG was found in an in vitro assay to significantly inhibit calcification of vascular smooth muscle cells (VSMC) induced by high calcium/phosphate (Ca/P) treatment (p = 0.0063), although this effect was blunted at high OPG concentrations. By confocal microscopy, OPG was detected in VSMC in the Golgi, the same localization seen in osteoblasts, which express OPG in bone. Treatment of VSMC by minerals (Ca, P, or both) induced OPG mRNA expression as assessed by real-time quantitative PCR, and VSMC derived from atherosclerotic plaque material also exhibited higher OPG expression as compared to control cells (p < 0.05). Furthermore, OPG was detected by Western blotting in matrix vesicles (MV), nanoparticles that are released by VSMC with the capacity to nucleate mineral. In atherosclerotic arteries, OPG colocalized immunohistochemically with annexin VI, a calcium-dependent membrane and phospholipid binding protein found in MV. Thus, the calcification inhibitor OPG is contained in crystallizing MV and has a biphasic effect on VSMC: physiologic concentrations inhibit calcification, whereas high concentrations commonly seen in patients with vascular disease have no effect. Like other calcification inhibitors, OPG may be specifically loaded into these nanoparticles to be deposited at remote sites, where it acts to inhibit calcification. 相似文献
16.
17.
JingWei Gao WanBing He ChangMing Xie Ming Gao LeiYu Feng ZhaoYu Liu JingFeng Wang Hui Huang PinMing Liu 《Journal of cellular and molecular medicine》2020,24(23):13648
It remains unclear whether the necessity of calcified mellitus induced by high inorganic phosphate (Pi) is required and the roles of autophagy plays in aldosterone (Aldo)‐enhanced vascular calcification (VC) and vascular smooth muscle cell (VSMC) osteogenic differentiation. In the present study, we found that Aldo enhanced VC both in vivo and in vitro only in the presence of high Pi, alongside with increased expression of VSMC osteogenic proteins (BMP2, Runx2 and OCN) and decreased expression of VSMC contractile proteins (α‐SMA, SM22α and smoothelin). However, these effects were blocked by mineralocorticoid receptor inhibitor, spironolactone. In addition, the stimulatory effects of Aldo on VSMC calcification were further accelerated by the autophagy inhibitor, 3‐MA, and were counteracted by the autophagy inducer, rapamycin. Moreover, inhibiting adenosine monophosphate‐activated protein kinase (AMPK) by Compound C attenuated Aldo/MR‐enhanced VC. These results suggested that Aldo facilitates high Pi‐induced VSMC osteogenic phenotypic switch and calcification through MR‐mediated signalling pathways that involve AMPK‐dependent autophagy, which provided new insights into Aldo excess‐associated VC in various settings. 相似文献
18.
19.
Bing Yan Dongmei Liu Jie Zhu Xiaoling Pang 《Journal of cellular biochemistry》2019,120(12):19660-19672
20.
赫荣乔 《生物化学与生物物理进展》2009,36(6):661-662
血管平滑肌细胞(vascular smooth muscle cells,VSMCs)的发育与血管壁的构建是目前相关领域中的重要学科前沿.国内外同行的工作多集中在血管发育初始阶段内皮细胞及其前体细胞在血管新生中的作用、调节因素及生物学机制.VSMCs参与血管壁早期构建,特别是VSMCs的募集与分化机制已经成为血管新生研究中的一个新领域.
本期发表的《 抑制Rac1蛋白活化阻碍胚胎发育早期血管新生 》(见696~701页)报道了韩雅玲教授及其合作者在这一领域取得的最新研究结果.Rac1是真核细胞内重要的一类信号传递分子,在细胞信号传递过程中发挥分子开关作用.他们采用胚胎干细胞(ESCs)为模型,建立稳定表达持续型Rac1和显性失活型Rac1编码序列的小鼠ESCs并制备胚胎小体,诱导分化后观察其对内皮细胞分化和迁移的影响,发现抑制Rac1可以干扰血管内皮细胞连接成血管网状结构,细胞骨架F-actin排列紊乱,细胞的迁移受到明显抑制,表明Rac1在胚胎早期血管发育过程中与内皮细胞的迁移有关[1].
近年来,韩雅玲教授及其研究集体在VSMCs发育与血管构建、胚胎干细胞来源的拟胚体血管平滑肌发育与血管新生机制以及胚胎主动脉VSMCs起源等方面开展了研究,取得了一系列有价值的成果[2~11],可能为闭塞性和增生性血管病的发生及防治提供理论依据和候选基因.详见“相关链接”. 相似文献