首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic light harvesting in plants is regulated by a pH- and xanthophyll-dependent nonphotochemical quenching process (qE) that dissipates excess absorbed light energy and requires the psbS gene product. An Arabidopsis thaliana mutant, npq4-1, lacks qE because of a deletion of the psbS gene, yet it exhibits a semidominant phenotype. Here it is shown that the semidominance is due to a psbS gene dosage effect. Diploid Arabidopsis plants containing two psbS gene copies (wild-type), one psbS gene (npq4-1/NPQ4 heterozygote), and no psbS gene (npq4-1/npq4-1 homozygote) were compared. Heterozygous plants had 56% of the wild-type psbS mRNA level, 58% of the wild-type PsbS protein level, and 60% of the wild-type level of qE. Global analysis of the chlorophyll a fluorescence lifetime distributions revealed three components in wild-type and heterozygous plants, but only a single long lifetime component in npq4-1. The short lifetime distribution associated with qE was inhibited by more than 40% in heterozygous plants compared with the wild type. Thus, the extent of qE measured as either the fractional intensities of the PSII chlorophyll a fluorescence lifetime distributions or steady state intensities was stoichiometrically related to the amount of PsbS protein.  相似文献   

2.
The involvement of excited and highly reactive intermediates in oxygenic photosynthesis inevitably results in the generation of reactive oxygen species. To protect the photosynthetic apparatus from oxidative damage, xanthophyll pigments are involved in the quenching of excited chlorophyll and reactive oxygen species, namely 1Chl*, 3Chl*, and 1O2*. Quenching of 1Chl* results in harmless dissipation of excitation energy as heat and is measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence. The multiple roles of xanthophylls in photoprotection are being addressed by characterizing mutants of Chlarnydomonas reinhardtii and Arabidopsis thaliana. Analysis of Arabidopsis mutants that are defective in 1Chl* quenching has shown that, in addition to specific xanthophylls, the psbS gene is necessary for NPQ. Double mutants of Chlamydomonas and Arabidopsis that are deficient in zeaxanthin, lutein and NPQ undergo photo-oxidative bleaching in high light. Extragenic suppressors of the Chlamydomonas npq1 lor1 double mutant identify new mutations that restore varying levels of zeaxanthin accumulation and allow survival in high light.  相似文献   

3.
Defining a quantitative relationship between chlorophyll a fluorescence yield and Photosystem II (PS II) function is important to photosynthesis research. Prior work [Peterson and Havir (2003) Photosynth Res 75: 57-70] indicated an apparent effect of psbS genotype on the in vivo rate constant for photochemistry in PS II (k(P0)). The nuclear psbS gene encodes a 22-kDa pigment-binding antenna protein (PS II-S) essential for photoprotective nonphotochemical quenching (NPQ) in PS II. Ten Arabidopsis thaliana lines were chosen for study, encompassing effects on PS II-S expression level and/or structure due to single-site amino acid substitution. Short-term (i.e. seconds) irradiance-dependent changes in steady state fluorescence yields F(o) and F(m)(open and closed centers, respectively) were evaluated for compliance with the reversible radical pair (RRP) model of PS II. All lines (including normal Nicotiana tabacum and Zea mays) deviated from the RRP scheme in the same way indicating that psbS genotype per se does not alter interactions between the antenna and reaction center and thereby affect k(P0). Rather, observed departures from RRP model behavior are consistent with overestimation of F(m) due to perturbing effects of the saturating multiple turnover flash employed in its measurement. Reversal of direct quenching of singlet states by plastoquinone during the flash could occur but by itself cannot account for the anomalous covariation in F(o) and F(m). Reduction of the PS II acceptor side apparently either amplifies the rate constant for fluorescence or suppresses that of xanthophyll-dependent thermal deactivation (q(E)). A procedure was devised that considers F(o) when correcting maximal fluorescence values for measurement bias. A high degree of consistency in assessment of PS II quantum yield based on corrected fluorescence parameters and simultaneous CO(2) exchange measurements was noted under both steady state and transient conditions (360 mul CO(2)l(-1), 1% O(2)).  相似文献   

4.
Complementary techniques of chlorophyll a fluorescence, steady state CO2 exchange, and O2 release during a multiple turnover flash were applied to compare responses to irradiance for leaves of wild type and psbS mutants. The latter included variants in which the psbS gene was deleted (npq4-1) or possessed a single point mutation (npq4-9). Nonphotochemical quenching (NPQ) was reduced by up to 80 and 50%, respectively, in these lines at high irradiance. Analysis of changes in steady-state fluorescence yields and quantum yield of linear electron transport in the context of the reversible radical pair model of Photosystem II (PS II) indicated that NPQ occurs by nonradiative deactivation of chlorophyll singlet states in normal leaves. In contrast, application of the same criteria together with the observed irreversibility of NPQ and decline in density of functional PS II reaction centers following excessive illumination indicated a change in reaction center properties for the psbS deletion phenotype (Npq4-1). Specifically, PS II reaction centers in Npq4-1 convert to a photochemically inactive, yet strongly quenching, form in intense light. The possibility of formation of a carotenoid or chlorophyll cation quencher in the reaction center is discussed. Results for the point mutant phenotype (Npq4-9) were intermediate to those of wild-type and Npq4-1. Furthermore, wild-type leaves exhibited a significant reversible increase in the PS II in vivo rate constant for photochemistry (kP0) in saturating compared to limiting light. Changes in kP0 could not be accounted for in terms of a classic phosphorylation-dependent (state transition) mechanism. Changes in kP0 may arise from alternate pigment—protein conformations that alter the way excitons equilibrate among PS II chromophores. The lack of similar irradiance-dependent changes in kP0 for the psbS mutants suggests a role for the PS II-S protein in the regulation of exciton distribution.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
Arabidopsis plants overexpressing beta-carotene hydroxylase 1 accumulate over double the amount of zeaxanthin present in wild-type plants. The final amplitude of non-photochemical quenching (NPQ) was found to be the same in these plants, but the kinetics were different. The formation and relaxation of NPQ consistently correlated with the de-epoxidation state of the xanthophyll cycle pool and not the amount of zeaxanthin. These data indicate that zeaxanthin and violaxanthin antagonistically regulate the switch between the light harvesting and photoprotective modes of the light harvesting system and show that control of the xanthophyll cycle pool size is necessary to optimize the kinetics of NPQ.  相似文献   

6.
Diurnal patterns of photosynthesis were studied in July and April populations of Cladophora glomerata (L.) Kütz. from open and from shaded sites. Summer samples exposed to full sunlight showed decreased efficiency of open photosystem II at noon, and only slight differences were found between samples that had grown at open or at shaded sites. Electron transport rate was limited at highest fluence rates in shade plants, and non‐photochemical quenching (NPQ) revealed faster regulation in samples from open sites. Daily course of de‐epoxidation was not linearly correlated with the course of NPQ. The comparison of samples from open and from shaded sites revealed a higher capacity of thermal energy dissipation and an increase in the total amount of xanthophyll‐cycle pigments (21%) in samples from open sites. In April, down‐regulation of the efficiency of open photosystem II was related to lower water temperature, and hence, increased excitation pressure. In April the pool size of xanthophyll‐cycle pigments was increased by 21% in comparison with summer and suggested higher levels of thermal energy dissipation via de‐epoxidized xanthophylls. In both, summer and spring the amount of xanthophyll‐cycle pigments was 20% higher in samples from open sites. Acclimation of C. glomerata to growth light conditions was further shown by experimental induction of NPQ, indicating NPQ increases of 23%, and increases of 77% in the reversible component of NPQ in open site samples. The effect of temperature on photosynthetic rate was non‐linear, and different optimum temperatures of electron transport rate and oxygen evolution were exhibited.  相似文献   

7.
8.
Genetic manipulation of carotenoid biosynthesis and photoprotection   总被引:11,自引:0,他引:11  
There are multiple complementary and redundant mechanisms to provide protection against photo-oxidative damage, including non-photochemical quenching (NPQ). NPQ dissipates excess excitation energy as heat by using xanthophylls in combination with changes to the light-harvesting complex (LHC) antenna. The xanthophylls are oxygenated carotenoids that in addition to contributing to NPQ can quench singlet or triplet chlorophyll and are necessary for the assembly and stability of the antenna. We have genetically manipulated the expression of the epsilon-cyclase and beta-carotene hydroxylase carotenoid biosynthetic enzymes in Arabidopsis thaliana. The epsilon-cyclase overexpression confirmed that lut2 (lutein deficient) is a mutation in the epsilon-cyclase gene and demonstrated that lutein content can be altered at the level of mRNA abundance with levels ranging from 0 to 180% of wild-type. Also, it is clear that lutein affects the induction and extent of NPQ. The deleterious effects of lutein deficiency on NPQ in Arabidopsis and Chlamydomonas are additive, no matter what the genetic background, whether npq1 (zeaxanthin deficient), aba1 or antisense beta-hydroxylase (xanthophyll cycle pool decreased). Additionally, increasing lutein content causes a marginal, but significant, increase in the rate of induction of NPQ despite a reduction in the xanthophyll cycle pool size.  相似文献   

9.
Leaves of avocado (Persea americana) that develop and persist in deep shade canopies have very low rates of photosynthesis but contain high concentrations of lutein epoxide (Lx) that are partially deepoxidized to lutein (L) after 1 h of exposure to 120 to 350 μmol photons m(-2) s(-1), increasing the total L pool by 5% to 10% (ΔL). Deepoxidation of Lx to L was near stoichiometric and similar in kinetics to deepoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). Although the V pool was restored by epoxidation of A and Z overnight, the Lx pool was not. Depending on leaf age and pretreatment, the pool of ΔL persisted for up to 72 h in the dark. Metabolism of ΔL did not involve epoxidation to Lx. These contrasting kinetics enabled us to differentiate three states of the capacity for nonphotochemical chlorophyll fluorescence quenching (NPQ) in attached and detached leaves: ΔpH dependent (NPQ(ΔpH)) before deepoxidation; after deepoxidation in the presence of ΔL, A, and Z (NPQ(ΔLAZ)); and after epoxidation of A+Z but with residual ΔL (NPQ(ΔL)). The capacity of both NPQ(ΔLAZ) and NPQ(ΔL) was similar and 45% larger than NPQ(ΔpH), but dark relaxation of NPQ(ΔLAZ) was slower. The enhanced capacity for NPQ was lost after metabolism of ΔL. The near equivalence of NPQ(ΔLAZ) and NPQ(ΔL) provides compelling evidence that the small dynamic pool ΔL replaces A+Z in avocado to "lock in" enhanced NPQ. The results are discussed in relation to data obtained with other Lx-rich species and in mutants of Arabidopsis (Arabidopsis thaliana) with increased L pools.  相似文献   

10.
Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo   总被引:1,自引:0,他引:1  
As a response to high light, plants have evolved non-photochemical quenching (NPQ), mechanisms that lead to the dissipation of excess absorbed light energy as heat, thereby minimizing the formation of dangerous oxygen radicals. One component of NPQ is pH dependent and involves the formation of zeaxanthin from violaxanthin. The enzyme responsible for the conversion of violaxanthin to zeaxanthin is violaxanthin de-epoxidase, which is located in the thylakoid lumen, is activated by low pH, and has been shown to use ascorbate (vitamin C) as its reductant in vitro. To investigate the effect of low ascorbate levels on NPQ in vivo, we measured the induction of NPQ in a vitamin C-deficient mutant of Arabidopsis, vtc2-2. During exposure to high light (1,500 micromol photons m(-2) s(-1)), vtc2-2 plants initially grown in low light (150 micromol photons m(-2) s(-1)) showed lower NPQ than the wild type, but the same quantum efficiency of photosystem II. Crosses between vtc2-2 and Arabidopsis ecotype Columbia established that the ascorbate deficiency cosegregated with the NPQ phenotype. The conversion of violaxanthin to zeaxanthin induced by high light was slower in vtc2-2, and this conversion showed saturation below the wild-type level. Both the NPQ and the pigment phenotype of the mutant could be rescued by feeding ascorbate to leaves, establishing a direct link between ascorbate, zeaxanthin, and NPQ. These experiments suggest that ascorbate availability can limit violaxanthin de-epoxidase activity in vivo, leading to a lower NPQ. The results also demonstrate the interconnectedness of NPQ and antioxidants, both important protection mechanisms in plants.  相似文献   

11.
We tested the hypothesis that ferredoxin (Fd) limits the activity of cyclic electron flow around PSI (CEF-PSI) in vivo and that the relief of this limitation promotes the non-photochemical quenching (NPQ) of Chl fluorescence. In transplastomic tobacco (Nicotiana tabacum cv Xanthi) expressing Fd from Arabidopsis (Arabidopsis thaliana) in its chloroplasts, the minimum yield (F(o)) of Chl fluorescence was higher than in the wild type. F(o) was suppressed to the wild-type level upon illumination with far-red light, implying that the transfer of electrons by Fd-quinone oxidoreductase (FQR) from the chloroplast stroma to plastoquinone was enhanced in transplastomic plants. The activity of CEF-PSI became higher in transplastomic than in wild-type plants under conditions limiting photosynthetic linear electron flow. Similarly, the NPQ of Chl fluorescence was enhanced in transplastomic plants. On the other hand, pool sizes of the pigments of the xanthophyll cycle and the amounts of PsbS protein were the same in all plants. All these results supported the hypothesis strongly. We conclude that breeding plants with an NPQ of Chl fluorescence increased by an enhancement of CEF-PSI activity might lead to improved tolerance for abiotic stresses, particularly under conditions of low light use efficiency.  相似文献   

12.
The induction and relaxation of non-photochemical quenching (NPQ) under steady-state conditions, i.e. during up to 90 min of illumination at saturating light intensities, was studied in Arabidopsis thaliana. Besides the well-characterized fast qE and the very slow qI component of NPQ, the analysis of the NPQ dynamics identified a zeaxanthin (Zx) dependent component which we term qZ. The formation (rise time 10-15 min) and relaxation (lifetime 10-15 min) of qZ correlated with the synthesis and epoxidation of Zx, respectively. Comparative analysis of different NPQ mutants from Arabidopsis showed that qZ was clearly not related to qE, qT or qI and thus represents a separate, Zx-dependent NPQ component.  相似文献   

13.
Photosynthetic eukaryotes house two photosystems with distinct light absorption spectra. Natural fluctuations in light quality and quantity can lead to unbalanced or excess excitation, compromising photosynthetic efficiency and causing photodamage. Consequently, these organisms have acquired several distinct adaptive mechanisms, collectively referred to as non-photochemical quenching (NPQ) of chlorophyll fluorescence, which modulates the organization and function of the photosynthetic apparatus. The ability to monitor NPQ processes fluorometrically has led to substantial progress in elucidating the underlying molecular mechanisms. However, the relative contribution of distinct NPQ mechanisms to variable light conditions in different photosynthetic eukaryotes remains unclear. Here, we present a mathematical model of the dynamic regulation of eukaryotic photosynthesis using ordinary differential equations. We demonstrate that, for Chlamydomonas, our model recapitulates the basic fluorescence features of short-term light acclimation known as state transitions and discuss how the model can be iteratively refined by comparison with physiological experiments to further our understanding of light acclimation in different species.  相似文献   

14.
Xanthophylls (oxygen derivatives of carotenes) are essential components of the plant photosynthetic apparatus. Lutein, the most abundant xanthophyll, is attached primarily to the bulk antenna complex, light-harvesting complex (LHC) II. We have used mutations in Arabidopsis thaliana that selectively eliminate (and substitute) specific xanthophylls in order to study their function(s) in vivo. These include two lutein-deficient mutants, lut1 and lut2, the epoxy xanthophyll-deficient aba1 mutant and the lut2aba1 double mutant. Photosystem stoichiometry, antenna sizes and xanthophyll cycle activity have been related to alterations in nonphotochemical quenching of chlorophyll fluorescence (NPQ). Nondenaturing polyacrylamide gel electrophoresis indicates reduced stability of trimeric LHC II in the absence of lutein (and/or epoxy xanthophylls). Photosystem (antenna) size and stoichiometry is altered in all mutants relative to wild type (WT). Maximal ΔpH-dependent NPQ (qE) is reduced in the following order: WT>aba1>lut1lut2>lut2aba1, paralleling reduction in Photosystem (PS) II antenna size. Finally, light-activation of NPQ shows that zeaxanthin and antheraxanthin present constitutively in lut mutants are not qE active, and hence, the same can be inferred of the lutein they replace. Thus, a direct involvement of lutein in the mechanism of qE is unlikely. Rather, altered NPQ in xanthophyll biosynthetic mutants is explained by disturbed macro-organization of LHC II and reduced PS II-antenna size in the absence of the optimal, wild-type xanthophyll composition. These data suggest the evolutionary conservation of lutein content in plants was selected for due to its unique ability to optimize antenna structure, stability and macro-organization for efficient regulation of light-harvesting under natural environmental conditions.  相似文献   

15.
Adaptive evolution of the histone fold domain in centromeric histones   总被引:5,自引:0,他引:5  
Centromeric DNA, being highly repetitive, has been refractory to molecular analysis. However, centromeric structural proteins are encoded by single-copy genes, and these can be analyzed by using standard phylogenetic tools. The centromere-specific histone, CenH3, replaces histone H3 in centromeric nucleosomes, and is required for the proper distribution of chromosomes during cell division. Whereas histone H3s are nearly identical between species, CenH3s are divergent, with an N-terminal tail that is highly variable in length and sequence. Both the N-terminal tail and histone fold domain (HFD) are subject to adaptive evolution in Drosophila. Similarly, comparisons between Arabidopsis thaliana and Arabidopsis arenosa detected adaptive evolution, but only in the N-terminal tail. We have extended our evolutionary analyses of CenH3s to other members of the Brassicaceae, which allowed the detection of positive selection in both the N-terminal tail and in the HFD. We find that adaptively evolving sites in the HFD can potentially interact with DNA, including sites in the loop 1 region of the HFD that are required for centromeric targeting in Drosophila. Other adaptively evolving sites in the HFD can be localized on the structure of the nucleosome core particle, revealing an extended surface in addition to loop 1 in which conformational changes might alter histone-DNA contacts or water bridges. The identification of adaptively evolving sites provides a structural basis for the interaction between centromeric DNA and the protein that is thought to underlie the evolution of centromeres and the accumulation of pericentric heterochromatin.  相似文献   

16.
A direct impact of chloroplastic protective energy dissipation (qE) on photosynthetic CO(2) assimilation has not been shown directly in plants in the absence of photoinhibition. To test this empirically we transformed rice to possess higher (overexpressors, OE) and lower (RNA interference, RNAi) levels of expression of the regulatory psbS gene and analysed CO(2) assimilation in transformants in a fluctuating measurement light regime. Western blots showed a several-fold difference in levels of PsbS protein between RNAi and OE plants with the wild type (WT) being intermediate. At a growth light intensity of 600 μmol m(-2) sec(-1) , the carboxylation capacity, electron transport capacity and dark adapted F(v)/F(m) (ratio of variable to maximum fluorescence) were inhibited in RNAi plants compared with WT and OE. The PsbS content had a significant impact on qE (measured here as non-photochemical quenching, NPQ) but the strongest effect was observed transiently, immediately following the application of light. This capacity for qE was several-fold lower in RNAi plants and significantly higher in OE plants during the first 10 min of illumination. At steady state the differences were reduced: notably at 500 μmol m(-2) sec(-1) all plants had the same NPQ values regardless of PsbS content. During a series of light-dark transitions the induction of CO(2) assimilation was inhibited in OE plants, reducing integrated photosynthesis during the light period. We conclude that the accumulation of PsbS and the resultant qE exerts control over photosynthesis in fluctuating light, showing that optimization of photoprotective processes is necessary for maximum photosynthetic productivity even in the absence of photoinhibitory stress.  相似文献   

17.
Acclimation to fluctuating light environment with short (lasting 20?s, at 650 or 1,250?μmol photons m(-2)?s(-1), every 6 or 12?min) or long (for 40?min at 650?μmol photons m(-2)?s(-1), once a day at midday) sunflecks was studied in Arabidopsis thaliana. The sunfleck treatments were applied in the background daytime light intensity of 50?μmol photons m(-2)?s(-1). In order to distinguish the effects of sunflecks from those of increased daily irradiance, constant light treatments at 85 and 120?μmol photons m(-2)?s(-1), which gave the same photosynthetically active radiation (PAR) per day as the different sunfleck treatments, were also included in the experiments. The increased daily total PAR in the two higher constant light treatments enhanced photosystem II electron transport and starch accumulation in mature leaves and promoted expansion of young leaves in Columbia-0 plants during the 7-day treatments. Compared to the plants remaining under 50?μmol photons m(-2)?s(-1), application of long sunflecks caused upregulation of electron transport without affecting carbon gain in the form of starch accumulation and leaf growth or the capacity of non-photochemical quenching (NPQ). Mature leaves showed marked enhancement of the NPQ capacity under the conditions with short sunflecks, which preceded recovery and upregulation of electron transport, demonstrating the initial priority of photoprotection. The distinct acclimatory responses to constant PAR, long sunflecks, and different combinations of short sunflecks are consistent with acclimatory adjustment of the processes in photoprotection and carbon gain, depending on the duration, frequency, and intensity of light fluctuations. While the responses of leaf expansion to short sunflecks differed among the seven Arabidopsis accessions examined, all plants showed NPQ upregulation, suggesting limited ability of this species to utilize short sunflecks. The increase in the NPQ capacity was accompanied by reduced chlorophyll contents, higher levels of the xanthophyll-cycle pigments, faster light-induced de-epoxidation of violaxanthin to zeaxanthin and antheraxanthin, increased amounts of PsbS protein, as well as enhanced activity of superoxide dismutase. These acclimatory mechanisms, involving reorganization of pigment-protein complexes and upregulation of other photoprotective reactions, are probably essential for Arabidopsis plants to cope with photo-oxidative stress induced by short sunflecks without suffering from severe photoinhibition and lipid peroxidation.  相似文献   

18.
Non-photochemical quenching (NPQ) is a photoprotection mechanism in photosynthesis that can be monitored by NPQ of chlorophyll a fluorescence. Comparing NPQ response of Arabidopsis thaliana intact leaves between the wild type and ΔGLB3, which lacks truncated hemoglobin gene, we report here the effects of nitric oxide (NO) on NPQ under stress conditions. Heat stress was found to severely decline NPQ of ΔGLB3. The effect was mimicked by chemical NO donors, and it was completely prevented by the NO scavenger cPTIO. These results suggest that NO is involved in the decline of NPQ which is pronounced under heat stress conditions.  相似文献   

19.
The photoprotective nature of non-photochemical quenching (NPQ) has not been effectively quantified and the major reason is the inability to quantitatively separate NPQ that acts directly to prevent photoinhibition of photosystem II (PSII). Here we describe a technique in which we use the values of the PSII yield and qP measured in the dark following illumination. We expressed the quantum yield of PSII (Φ(PSII)) via NPQ as: Φ(PSII)=qP×(Fv/Fo)/(1+Fv/Fo+NPQ). We then tested this theoretical relationship using Arabidopsis thaliana plants that had been exposed to gradually increasing irradiance. The values of qP in the dark immediately after the illumination period (here denoted qPd) were determined using a previously described technique for Fo' calculation: Fo'(calc.)=1/(1/Fo-1/Fm-1/Fm'). We found that in every case the actual Φ(PSII) deviated from theoretical values at the same point that qPd deviated from a value of 1.0. In an increasing series of irradiance levels, WT leaves tolerated 1000μmolm(-2)s(-1) of light before qP(d) declined. Leaves treated with the uncoupler nigericin, leaves of the mutant lacking PsbS protein and leaves overexpressing PsbS showed a qP(d) reduction at 100, 600 and 2000μmolm(-2)s(-1) respectively, each at an increasing value of NPQ. Therefore we suggest that this simple and timely technique will be instrumental for identifying photoprotective NPQ (pNPQ) and that it is more appropriate than the qE component. Its applications should be broad: for example it will be useful in physiology-based studies to define the optimal level of nonphotochemical quenching for plant protection and productivity.  相似文献   

20.
To prevent photo-oxidative damage to the photosynthetic membrane in strong light, plants dissipate excess absorbed light energy as heat in a mechanism known as non-photochemical quenching (NPQ). NPQ is triggered by the trans-membrane proton gradient (ΔpH), which causes the protonation of the photosystem II light-harvesting antenna (LHCII) and the PsbS protein, as well as the de-epoxidation of the xanthophyll violaxanthin to zeaxanthin. The combination of these factors brings about formation of dissipative pigment interactions that quench the excess energy. The formation of NPQ is associated with certain absorption changes that have been suggested to reflect a conformational change in LHCII brought about by its protonation. The light-minus-dark recovery absorption difference spectrum is characterized by a series of positive and negative bands, the best known of which is ΔA(535). Light-minus-dark recovery resonance Raman difference spectra performed at the wavelength of the absorption change of interest allows identification of the pigment responsible from its unique vibrational signature. Using this technique, the origin of ΔA(535) was previously shown to be a subpopulation of red-shifted zeaxanthin molecules. In the absence of zeaxanthin (and antheraxanthin), a proportion of NPQ remains, and the ΔA(535) change is blue-shifted to 525 nm (ΔA(525)). Using resonance Raman spectroscopy, it is shown that the ΔA(525) absorption change in Arabidopsis leaves lacking zeaxanthin belongs to a red-shifted subpopulation of violaxanthin molecules formed during NPQ. The presence of the same ΔA(535) and ΔA(525) Raman signatures in vitro in aggregated LHCII, containing zeaxanthin and violaxanthin, respectively, leads to a new proposal for the origin of the xanthophyll red shifts associated with NPQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号