首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
It has been shown that mammalian neurogenesis is partly controlled by multiple basic helix–loop–helix (bHLH) genes, as inDrosophila.Recently, mouse homologs ofDrosophila atonal,a proneural gene encoding a bHLH protein required for chordotonal organ and photoreceptor development, have been characterized to obtain further insights into the molecular nature of mammalian neurogenesis. Here, to assess their potential involvement in genetic neural disorders, we have determined genetic map positions for four mouseatonal-related genes,Atoh1, Atoh2, Atoh3,andNdrf,which encode MATH-1, MATH-2, MATH-3, and NDRF, respectively. Interspecific backcross analysis indicated thatAtoh1andAtoh2were located in separate positions of Chr 6 and thatAtoh3andNdrfwere mapped to Chr 10 and Chr 11, respectively. Thus, these structurally related genes are located separately on multiple chromosomes.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
With ∼1000 genes, the odorant receptor (OR) gene repertoire is the largest gene family in the mouse genome. Here we have established a 129/Sv BAC contig for mouse OR gene cluster 7 (Olfr7) on Chromosome (Chr) 9. The assembled ∼2-Mb contig consists of 75 BACs and may contain as many as 100 OR genes, or ∼10% of the mouse repertoire. Facilitated by the lack of introns in the coding region, we have determined the nucleotide sequence of 37 full-length, 2 partial, and 3 pseudo coding regions. These 42 OR genes and 3 additional OR genes previously mapped to the mouse Olfr7 cluster can be organized into 13 classes based on OR probe cross-hybridizations with 129/Sv mouse genomic DNA. OR genes belonging to the same class tend to be located next to each other within the cluster. Comparison of published full-length mouse and rat OR coding sequences with those identified here shows that the Olfr7 OR genes are highly related to each other, clustering on two major branches of an unrooted phylogenetic tree. Eight ORs contain an unusual NXC sequon at the amino-terminal extracellular domain that may represent a novel N-linked glycosylation site. The BAC contig presented here provides the substrate for sequencing of the cluster. Received: 27 June 2000 / Accepted: 17 August 2000  相似文献   

15.
CD5 is a member of the family of receptors which contain extracellular domains homologous to the type I macrophage scavenger receptor cysteine-rich (SRCR) domain. Here, we compare the exon/intron organization of the human CD5 gene with its mouse homologue, as well as with the human CD6 gene, the closest related member of the SRCR superfamily. The human CD5 gene spans about 24.5 kb and consists of at least 11 exons. These exons are conserved in size, number, and structure in the mouse CD5 homologue. No evidence for the biallelic polymorphism reported in the mouse could be found among a population of 100 individuals of different ethnic origins. The human CD5 gene maps to the Chromosome (Chr) 11q12.2 region, 82 kb downstream from the human CD6 gene, in a head-to-tail orientation, a situation which recalls that reported at mouse Chr 19. The exon/intron organization of the human CD5 and CD6 genes was very similar, differing in the size of intron 1 and the number of exons coding for their cytoplasmic regions. While several isoforms, resulting from alternative splicing of the cytoplasmic exons, have been reported for CD6, we only found evidence of a cytoplasmic tailless CD5 isoform. The conserved structure of the CD5 and CD6 loci, both in mouse and human genomes, supports the notion that the two genes may have evolved from duplication of a primordial gene. The existence of a gene complex for the SRCR superfamily on human Chr 11q (and mouse Chr 19) still remains to be disclosed.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号