首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation   总被引:39,自引:0,他引:39       下载免费PDF全文
While the transmembrane protein Notch plays an important role in various aspects of development, and diseases including tumors and neurological disorders, the intracellular pathway of mammalian Notch remains very elusive. To understand the intracellular pathway of mammalian Notch, the role of the bHLH genes Hes1 and Hes5 (mammalian hairy and Enhancer-of-split homologues) was examined by retrovirally misexpressing the constitutively active form of Notch (caNotch) in neural precursor cells prepared from wild-type, Hes1-null, Hes5-null and Hes1-Hes5 double-null mouse embryos. We found that caNotch, which induced the endogenous Hes1 and Hes5 expression, inhibited neuronal differentiation in the wild-type, Hes1-null and Hes5-null background, but not in the Hes1-Hes5 double-null background. These results demonstrate that Hes1 and Hes5 are essential Notch effectors in regulation of mammalian neuronal differentiation.  相似文献   

2.
Cerebellar granule cells, the most abundant neurons in the mammalian brain, arise in the rhombic lip located at the roof of the brain's fourth ventricle. Bordering the rhombic lip is the choroid plexus, a non-neuronal structure, composed of blood vessels enveloped by epithelial cells. Here, we show a striking decrease in neural differentiation of rhombic lip-derived cells, which failed to extend neuritic processes and attenuate Math1 promoter activity, when co-cultured with choroid plexus cells. Moreover, a blocking antibody against BMP7, a morphogenetic protein expressed in the choroid plexus, blocked the inhibitory effect of the choroid plexus, whereas purified BMP7 mimicked this effect, demonstrating causal involvement of BMP. On the other hand, the BMP antagonist NBL1 promoted neurogenesis in rhombic lip cultures from Math1 null mice displaying arrested differentiation. Our data indicate that besides its secretory and barrier functions, the choroid plexus has a novel role in attenuating the differentiation of adjacent neural progenitors.  相似文献   

3.
Wang VY  Rose MF  Zoghbi HY 《Neuron》2005,48(1):31-43
The rhombic lip (RL) is an embryonic proliferative neuroepithelium that generates several groups of hindbrain neurons. However, the precise boundaries and derivatives of the RL have never been genetically identified. We use beta-galactosidase expressed from the Math1 locus in Math1-heterozygous and Math1-null mice to track RL-derived cells and to evaluate their developmental requirements for Math1. We uncover a Math1-dependent rostral rhombic-lip migratory stream (RLS) that generates some neurons of the parabrachial, lateral lemniscal, and deep cerebellar nuclei, in addition to cerebellar granule neurons. A more caudal Math1-dependent cochlear extramural stream (CES) generates the ventral cochlear nucleus and cochlear granule neurons. Similarly, mossy-fiber precerebellar nuclei require Math1, whereas the inferior olive and locus coeruleus do not. We propose that Math1 expression delimits the extent of the rhombic lip and is required for the generation of the hindbrain superficial migratory streams, all of which contribute neurons to the proprioceptive/vestibular/auditory sensory network.  相似文献   

4.
Recent studies have shown that Notch signaling plays an important role in epidermal development, but the underlying molecular mechanisms remain unclear. Here, by integrating loss- and gain-of-function studies of Notch receptors and Hes1, we describe molecular information about the role of Notch signaling in epidermal development. We show that Notch signaling determines spinous cell fate and induces terminal differentiation by a mechanism independent of Hes1, but Hes1 is required for maintenance of the immature state of spinous cells. Notch signaling induces Ascl2 expression to promote terminal differentiation, while simultaneously repressing Ascl2 through Hes1 to inhibit premature terminal differentiation. Despite the critical role of Hes1 in epidermal development, Hes1 null epidermis transplanted to adult mice showed no obvious defects, suggesting that this role of Hes1 may be restricted to developmental stages. Overall, we conclude that Notch signaling orchestrates the balance between differentiation and immature programs in suprabasal cells during epidermal development.  相似文献   

5.
Notch signalling molecules, such as the basic helix-loop-helix factors Hes1 and Hes7, periodically change their expression in the presomitic mesoderm, and each cycle of gene expression is associated with somite formation (every two hours in mouse). This cyclic expression is the manifestation of an intrinsic mechanism, called the segmentation clock, which is essential for coordinated somite segmentation. Interestingly, the oscillatory expression of Hes1 is observed in many cell types after serum stimulation, suggesting that this ultradian clock is not unique to presomitic mesoderm cells but widely distributed. This oscillation depends on the negative feedback loop, and once its promoter is constitutively activated, Hes1 seems to start oscillatory gene expression autonomously. Thus, Hes1 acts as a device that transduces a direct current of input into an alternating current, which ticks the hours in many biological systems.  相似文献   

6.
Notch and neurotrophins control neuronal shape, but it is not known whether their signaling pathways intersect. Here we report results from hippocampal neuronal cultures that are in support of this possibility. We found that low cell density or blockade of Notch signaling by a soluble Delta-Fc ligand decreased the mRNA levels of the nuclear targets of Notch, the homologues of enhancer-of-split 1 and 5 (Hes1/5). This effect was associated with enhanced sprouting of new dendrites or dendrite branches. In contrast, high cell density or exposure of low-density cultures to NGF increased the Hes1/5 mRNA, reduced the number of primary dendrites and promoted dendrite elongation. The NGF effects on both Hes1/5 expression and dendrite morphology were prevented by p75-antibody (a p75NTR-blocking antibody) or transfection with enhancer-of-split 6 (Hes6), a condition known to suppress Hes activity. Nuclear translocation of NF-kappaB was identified as a link between p75NTR and Hes1/5 because it was required for the up-regulation of these two genes. The convergence of the Notch and p75NTR signaling pathways at the level of Hes1/5 illuminates an unexpected mechanism through which a diffusible factor (NGF) could regulate dendrite growth when cell-cell interaction via Notch is not in action.  相似文献   

7.
8.
Machold R  Fishell G 《Neuron》2005,48(1):17-24
We have utilized an in vivo-inducible genetic-fate-mapping strategy to permanently label cohorts of Math1-positive cells and their progeny that arise in the rhombic lip of the cerebellar primordium during embryogenesis. At stages prior to E12.5, with the exception of the deep cerebellar nuclei, we find that Math1 cells migrate out of the cerebellar primordium into the rostral hindbrain to populate specific nuclei that include cholinergic neurons of the mesopontine tegmental system. Moreover, analysis of Math1-null embryos shows that this gene is required for the formation of some of these nuclei. Around E12.5, granule cell precursors begin to be labeled: first, ones that give rise to granule cells that predominantly populate the anterior lobes of the adult cerebellum and later, those that populate progressing more caudally lobes until labeling of all granule cell precursors is complete by E17. Thus, we demonstrate that the cerebellar rhombic lip gives rise to multiple cell types within rhombomere 1.  相似文献   

9.
10.
To clarify the mechanisms that regulate neuroendocrine differentiation of fetal lung epithelia, we have studied the expression of the mammalian homologs of achaete-scute complex (Mash1) (Ascl1 - Mouse Genome Informatics); hairy and enhancer of split1 (Hes1); and the expression of Notch/Notch-ligand system in the fetal and adult mouse lungs, and in the lungs of Mash1- or Hes1-deficient mice. Immunohistochemical studies revealed that Mash1-positive cells seemed to belong to pulmonary neuroendocrine cells (PNEC) and their precursors. In mice deficient for Mash1, no PNEC were detected. Hes1-positive cells belong to non-neuroendocrine cells. In the mice deficient in Hes1, in which Mash1 mRNA was upregulated, PNEC appeared precociously, and the number of PNEC was markedly increased. NeuroD (Neurod1 - Mouse Genome Informatics) expression in the lung was detected in the adult, and was enhanced in the fetal lungs of Hes1-null mice. Expression of Notch1, Notch2, Notch3 and Notch4 mRNAs in the mouse lung increased with age, and Notch1 mRNA was expressed in a Hes1-dependent manner. Notch1, Notch2 and Notch3 were immunohistochemically detected in non-neuroendocrine cells. Moreover, analyses of the lungs from the gene-targeted mice suggested that expression of Delta-like 1 (Dll1 - Mouse Genome Informatics) mRNA depends on Mash1. Thus, the neuroendocrine differentiation depends on basic helix-loop-helix factors, and Notch/Notch-ligand pathways may be involved in determining the cell differentiation fate in fetal airway epithelium.  相似文献   

11.
Notch signaling regulates numerous developmental processes, often acting either to promote one cell fate over another or else to inhibit differentiation altogether. In the embryonic pancreas, Notch and its target gene Hes1 are thought to inhibit endocrine and exocrine specification. Although differentiated cells appear to downregulate Hes1, it is unknown whether Hes1 expression marks multipotent progenitors, or else lineage-restricted precursors. Moreover, although rare cells of the adult pancreas express Hes1, it is unknown whether these represent a specialized progenitor-like population. To address these issues, we developed a mouse Hes1(CreERT2) knock-in allele to inducibly mark Hes1(+) cells and their descendants. We find that Hes1 expression in the early embryonic pancreas identifies multipotent, Notch-responsive progenitors, differentiation of which is blocked by activated Notch. In later embryogenesis, Hes1 marks exocrine-restricted progenitors, in which activated Notch promotes ductal differentiation. In the adult pancreas, Hes1 expression persists in rare differentiated cells, particularly terminal duct or centroacinar cells. Although we find that Hes1(+) cells in the resting or injured pancreas do not behave as adult stem cells for insulin-producing beta (β)-cells, Hes1 expression does identify stem cells throughout the small and large intestine. Together, these studies clarify the roles of Notch and Hes1 in the developing and adult pancreas, and open new avenues to study Notch signaling in this and other tissues.  相似文献   

12.
The vascular system is the first organ to form in the developing mammalian embryo. The Notch signaling pathway is an evolutionarily conserved signaling mechanism essential for proper embryonic development in almost all vertebrate organs. The analysis of targeted mouse mutants has demonstrated essential roles of the Notch signaling pathway in embryonic vascular development. However, Notch signaling-deficient mice have so far not been examined in detail in the head region. The bHLH genes Hes1 and Hes5 are essential effectors for Notch signaling, which regulate the maintenance of progenitor cells and the timing of their differentiation in various tissues and organs. Here, we report that endothelial-specific Hes1 and Hes5 mutant embryos exhibited defective vascular remodeling in the brain. In addition, arterial identity of endothelial cells was partially lost in the brain of these mutant mice. These data suggest that Hes1 and Hes5 regulate vascular remodeling and arterial fate specification of endothelial cells in the development of the brain. Hes1 and Hes5 represent critical transducers of Notch signals in brain vascular development.  相似文献   

13.
14.
Roles of bHLH genes in neural stem cell differentiation   总被引:29,自引:0,他引:29  
Neural stem cells change their characteristics over time during development: they initially proliferate only and then give rise to neurons first and glial cells later. In the absence of the repressor-type basic helix-loop-helix (bHLH) genes Hes1, Hes3 and Hes5, neural stem cells do not proliferate sufficiently but prematurely differentiate into neurons and become depleted without making the later born cell types such as astrocytes and ependymal cells. Thus, Hes genes are essential for maintenance of neural stem cells to make cells not only in correct numbers but also in full diversity. Hes genes antagonize the activator-type bHLH genes, which include Mash1, Math and Neurogenin. The activator-type bHLH genes promote the neuronal fate determination and induce expression of Notch ligands such as Delta. These ligands activate Notch signaling and upregulate Hes1 and Hes5 expression in neighboring cells, thereby maintaining these cells undifferentiated. Thus, the activator-type and repressor-type bHLH genes regulate each other, allowing only subsets of cells to undergo differentiation while keeping others to stay neural stem cells. This regulation is essential for generation of complex brain structures of appropriate size, shape and cell arrangement.  相似文献   

15.
16.
Rhythmic gene expression in somite formation and neural development   总被引:1,自引:0,他引:1  
In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.  相似文献   

17.
Proper development of the hypothalamic-pituitary axis requires precise neuronal signaling to establish a network that regulates homeostasis. The developing hypothalamus and pituitary utilize similar signaling pathways for differentiation in embryonic development. The Notch signaling effector gene Hes1 is present in the developing hypothalamus and pituitary and is required for proper formation of the pituitary, which contains axons of arginine vasopressin (AVP) neurons from the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). We hypothesized that Hes1 is necessary for the generation, placement and projection of AVP neurons. We found that Hes1 null mice show no significant difference in cell proliferation or death in the developing diencephalon at embryonic day 10.5 (e10.5) or e11.5. By e16.5, AVP cell bodies are formed in the SON and PVN, but are abnormally placed, suggesting that Hes1 may be necessary for the migration of AVP neurons. GAD67 immunoreactivity is ectopically expressed in Hes1 null mice, which may contribute to cell body misplacement. Additionally, at e18.5 Hes1 null mice show continued misplacement of AVP cell bodies in the PVN and SON and additionally exhibit abnormal axonal projection. Using mass spectrometry to characterize peptide content, we found that Hes1 null pituitaries have aberrant somatostatin (SS) peptide, which correlates with abnormal SS cells in the pituitary and misplaced SS axon tracts at e18.5. Our results indicate that Notch signaling facilitates the migration and guidance of hypothalamic neurons, as well as neuropeptide content.  相似文献   

18.
19.
20.
BackgroundGegen Qinlian decoction (GQ) is a well-known traditional Chinese medicine that has been clinically proven to be effective in treating ulcerative colitis (UC). However, its therapeutic mechanism has not been fully elucidated. Notch signaling plays an essential role in the regeneration of the intestinal epithelium.PurposeThis study was designed to ascertain the mechanism by which GQ participates in the recovery of the colonic mucosa by regulating Notch signaling in acute and chronic UC models.MethodsAcute and chronic UC mice (C57BL/6) were established with 3 and 2% dextran sulfate sodium (DSS), respectively, and treated with oral administration of GQ. The expression of the Notch target gene Hes1 and the Notch-related proteins RBP-J, MAML and Math1 was analyzed by western blotting. PTEN mRNA levels were detected by qRT-PCR. Mucin production that is characteristic of goblet cells was determined by Alcian blue/periodic acid-Schiff staining and verified by examining MUC2 mRNA levels by qRT-PCR. Cell proliferation was assayed by immunohistochemistry analysis of Ki67. HT-29 and FHC cells and Toll-like receptor 4 knockout (TLR4−/−) acute UC mice were also used in this study.ResultsGQ restored the injured colonic mucosa in both acute and chronic UC models. We found that Notch signaling was hyperactive in acute UC mice and hypoactive in chronic UC mice. GQ downregulated Hes1, RBP-J and MAML proteins and augmented goblet cells in the acute UC models, whereas GQ upregulated Hes1, RBP-J and MAML proteins in chronic UC mice, reducing goblet cell differentiation and promoting crypt base columnar (CBC) stem cell proliferation. Hes1 mRNA was suppressed in TLR4−/− UC mice, and GQ treatment reversed this effect. In vitro, GQ reduced Hes1 protein in Notch-activated HT29 and FHC cells but increased Hes1 protein in Notch-inhibited cells.ConclusionsGQ restored the colonic epithelium by maintaining mucosal homeostasis via bidirectional regulation of Notch signaling in acute/chronic UC models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号