首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
3.
Somitogenesis is controlled by a genetic network consisting of an oscillator (clock) and a gradient (wavefront). The "hairy and Enhancer of Split"- related (her) genes act downstream of the Delta/Notch (D/N) signaling pathway, and are crucial components of the segmentation clock. Due to genome duplication events, the zebrafish genome, possesses two gene copies of the mouse Hes7 homologue: her1 and her7. To better understand the functional consequences of this gene duplication, and to determine possible independent roles for these two genes during segmentation, two zebrafish mutants her1(hu2124) and her7(hu2526) were analyzed. In the course of embryonic development, her1(hu2124) mutants exhibit disruption of the three anterior-most somite borders, whereas her7(hu2526) mutants display somite border defects restricted to somites 8 (+/-3) to 17 (+/-3) along the anterior-posterior axis. Analysis of the molecular defects in her1(hu2124) mutants reveals a her1 auto regulatory feedback loop during early somitogenesis that is crucial for correct patterning and independent of her7 oscillation. This feedback loop appears to be restricted to early segmentation, as cyclic her1 expression is restored in her1(hu2124) embryos at later stages of development. Moreover, only the anterior deltaC expression pattern is disrupted in the presomitic mesoderm of her1(hu2124) mutants, while the posterior expression pattern of deltaC remains unaltered. Together, this data indicates the existence of an independent and genetically separable anterior and posterior deltaC clock modules in the presomitic mesdorm (PSM).  相似文献   

4.
5.
Delta/Notch signaling controls a wide spectrum of developmental processes, including body and leg segmentation in arthropods. The various functions of Delta/Notch signaling vary among species. For instance, in Cupiennius spiders, Delta/Notch signaling is essential for body and leg segmentation, whereas in Drosophila fruit flies it is involved in leg segmentation but not body segmentation. Therefore, to gain further insight into the functional evolution of Delta/Notch signaling in arthropod body and leg segmentation, we analyzed the function of the Delta (Gb'Delta) and Notch (Gb'Notch) genes in the hemimetabolous, intermediate-germ cricket Gryllus bimaculatus. We found that Gb'Delta and Gb'Notch were expressed in developing legs, and that RNAi silencing of Gb'Notch resulted in a marked reduction in leg length with a loss of joints. Our results suggest that the role of Notch signaling in leg segmentation is conserved in hemimetabolous insects. Furthermore, we found that Gb'Delta was expressed transiently in the posterior growth zone of the germband and in segmental stripes earlier than the appearance of wingless segmental stripes, whereas Gb'Notch was uniformly expressed in early germbands. RNAi knockdown of Gb'Delta or Gb'Notch expression resulted in malformation in body segments and a loss of posterior segments, the latter probably due to a defect in posterior growth. Therefore, in the cricket, Delta/Notch signaling might be required for proper morphogenesis of body segments and posterior elongation, but not for specification of segment boundaries.  相似文献   

6.
Suppressor of Hairless (Su(H)) codes for a protein that interacts with the intracellular domain of Notch to activate the target genes of the Delta-Notch signalling pathway. We have cloned the zebrafish homologue of Su(H) and have analysed its function by morpholino mediated knockdown. While there are at least four notch and four delta homologues in zebrafish, there appears to be only one complete Su(H) homologue. We have analysed the function of Su(H) in the somitogenesis process and its influence on the expression of notch pathway genes, in particular her1, her7, deltaC and deltaD. The cyclic expression of her1, her7 and deltaC in the presomitic mesoderm is disrupted by the Su(H) knockdown mimicking the expression of these genes in the notch1a mutant deadly seven. deltaD expression is similarly affected by Su(H) knockdown like deltaC but shows in addition an ectopic expression in the developing neural tube. The inactivation of Su(H) in a fss/tbx24 mutant background leads furthermore to a clear breakdown of cyclic her1 and her7 expression, indicating that the Delta-Notch pathway is required for the creation of oscillation and not only for the synchronisation between neighbouring cells. The strongest phenotypes in the Su(H) knockdown embryos show a loss of all somites posterior to the first five to seven ones. This phenotype is stronger than the known amorphic phenotypes for notch1 (des) or deltaD (aei) in zebrafish, but mimicks the knockout phenotype of RBP-Jkappa gene in the mouse, which is the homologue of Su(H). This suggests that there is some functional redundancy among the Notch and Delta genes. This fact that the first five to seven somites are only weakly affected by Su(H) knockdown indicates that additional genetic pathways may be active in the specification of the most anterior somites.  相似文献   

7.
The Tübingen large-scale zebrafish genetic screen completed in 1996 identified a set of five genes required for orderly somite segmentation. Four of them have been molecularly identified and three were found to code for components of the Notch pathway, which are required for the coordinated oscillation of gene expression, known as the segmentation clock, in the presomitic mesoderm (PSM). Here, we show that the final member of the group, beamter (bea), codes for the Notch ligand DeltaC, and we present and characterize two new alleles, including one allele encoding for a protein truncated in the 7th EGF repeat and an allele deleting only the DSL domain which was previously shown to be necessary for ligand function. Interestingly however, when we over-express any of the mutant deltaC mRNAs, we observe antimorphic effects on both hindbrain neurogenesis and hypochord formation. Expression of bea/deltaC oscillates in the PSM, and a triple fluorescent in situ analysis of its oscillation in relation to that of other oscillating genes in the PSM reveals differences in subcellular localization of the oscillating mRNAs in individual cells in different oscillation phases. Mutations in aei/deltaD and bea/deltaC differ in the way they disrupt the oscillating expression of her1 and deltaC. Furthermore, we find that the double mutants have significantly stronger defects in hypochord formation but not in somitogenesis or hindbrain neurogenesis, indicating genetically that the two delta's may function either semi-redundantly or distinctly, depending upon context.  相似文献   

8.
Zebrafish somitogenesis is governed by a segmentation clock that generates oscillations in expression of several Notch pathway genes, including her1, her7 and deltaC. Using a combination of pharmacological inhibition and Mendelian genetics, we show that DeltaD and DeltaC, two Notch ligands, represent functionally distinct signals within the segmentation clock. Using high-resolution fluorescent in situ hybridization, the oscillations were divided into phases based on eight distinct subcellular patterns of mRNA localization for 140,000 cells. her1, her7 and deltaC expression was examined in wild-type, deltaD(-/-) and deltaC(-/-) embryos. We identified areas within the tailbud where the clock is set up in the progenitor cells (priming), where the clock starts running (initiation), and where the clocks of neighbouring cells are entrained (synchronization). We find that the clocks of motile cells are primed by deltaD in a progenitor zone in the posterior tailbud and that deltaD is required for cells to initiate oscillations on exiting this zone. Oscillations of adjacent cells are synchronized and amplified by deltaC in the posterior presomitic mesoderm as cell movement subsides and cells maintain stable neighbour relationships.  相似文献   

9.
10.
11.
Arthropods and vertebrates display a segmental body organisation along all or part of the anterior-posterior axis. Whether this reflects a shared, ancestral developmental genetic mechanism for segmentation is uncertain. In vertebrates, segments are formed sequentially by a segmentation 'clock' of oscillating gene expression involving Notch pathway components. Recent studies in spiders and basal insects have suggested that segmentation in these arthropods also involves Notch-based signalling. These observations have been interpreted as evidence for a shared, ancestral gene network for insect, arthropod and bilaterian segmentation. However, because this pathway can play multiple roles in development, elucidating the specific requirements for Notch signalling is important for understanding the ancestry of segmentation. Here we show that Delta, a ligand of the Notch pathway, is not required for segment formation in the cricket Gryllus bimaculatus, which retains ancestral characteristics of arthropod embryogenesis. Segment patterning genes are expressed before Delta in abdominal segments, and Delta expression does not oscillate in the pre-segmental region or in formed segments. Instead, Delta is required for neuroectoderm and mesectoderm formation; embryos missing these tissues are developmentally delayed and show defects in segment morphology but normal segment number. Thus, what initially appear to be 'segmentation phenotypes' can in fact be due to developmental delays and cell specification errors. Our data do not support an essential or ancestral role of Notch signalling in segment generation across the arthropods, and show that the pleiotropy of the Notch pathway can confound speculation on possible segmentation mechanisms in the last common bilaterian ancestor.  相似文献   

12.
Segmentation is unquestionably a major factor in the evolution of complex body plans, but how this trait itself evolved is unknown. Approaching this problem requires comparing the molecular mechanisms of segmentation in diverse segmented and unsegmented taxa. Notch/Hes signaling is involved in segmentation in sequentially segmenting vertebrates and arthropods, as judged by patterns of expression of one or more genes in this network and by the disruption of segmental patterning when Notch/Hes signaling is disrupted. We have previously shown that Notch and Hes homologs are expressed in the posterior progress zone (PPZ), from which segments arise, in the leech Helobdella robusta, a sequentially segmenting lophotrochozoan (phylum Annelida). Here, we show that disrupting Notch/Hes signaling disrupts segmentation in this species as well. Thus, Notch/Hes functions in either the maintenance of the PPZ and/or the patterning processes of segmentation in representatives of all three superphyla of bilaterally symmetric animals. These results are consistent with two evolutionary scenarios. In one, segmentation was already present in the ancestor of all three superphyla. In the other, Notch/Hes signaling functioned in axial growth by terminal addition in an unsegmented bilaterian ancestor, and was subsequently exapted to function in segmentation as that process evolved independently in two or more taxa.  相似文献   

13.
14.
BACKGROUND: One prominent example of segmentation in vertebrate embryos is the subdivision of the paraxial mesoderm into repeating, metameric structures called somites. During this process, cells in the presomitic mesoderm (PSM) are first patterned into segments leading secondarily to differences required for somite morphogenesis such as the formation of segmental boundaries. Recent studies have shown that a segmental pattern is generated in the PSM of Xenopus embryos by genes encoding a Mesp-like bHLH protein called Thylacine 1 and components of the Notch signaling pathway. These genes establish a repeating pattern of gene expression that subdivides cells in the PSM into anterior and posterior half segments, but how this pattern of gene expression leads to segmental boundaries is unknown. Recently, a member of the protocadherin family of cell adhesion molecules, called PAPC, has been shown to be expressed in the PSM of Xenopus embryos in a half segment pattern, suggesting that it could play a role in restricting cell mixing at the anterior segmental boundary. RESULTS: Here, we examine the expression and function of PAPC during segmentation of the paraxial mesoderm in Xenopus embryos. We show that Thylacine 1 and the Notch pathway establish segment identity one segment prior to the segmental expression of PAPC. Altering segmental identity in embryos by perturbing the activity of Thylacine 1 and the Notch pathway, or by treatment with a protein synthesis inhibitor, cycloheximide, leads to the predicted changes in the segmental expression of PAPC. By disrupting PAPC function in embryos using a putative dominant-negative or an activated form of PAPC, we show that segmental PAPC activity is required for proper somite formation as well as for maintaining segmental gene expression within the PSM. CONCLUSIONS: Segmental expression of PAPC is established in the PSM as a downstream consequence of segmental patterning by Thylacine 1 and the Notch pathway. We propose that PAPC is part of the mechanism that establishes the segmental boundaries between posterior and anterior cells in adjacent segments.  相似文献   

15.
Ten years ago we showed for the first time that Notch signalling is required in segmentation in spiders, indicating the existence of similar mechanisms in arthropod and vertebrate segmentation. However, conflicting results in various arthropod groups hampered our understanding of the ancestral function of Notch in arthropod segmentation. Here we fill a crucial data gap in arthropods and analyse segmentation in a crustacean embryo. We analyse the expression of homologues of the Drosophila and vertebrate segmentation genes and show that members of the Notch signalling pathway are expressed at the same time as the pair-rule genes. Furthermore, inactivation of Notch signalling results in irregular boundaries of the odd-skipped-like expression domains and affects the formation of segments. In severe cases embryos appear unsegmented. We suggest two scenarios for the function of Notch signalling in segmentation. The first scenario agrees with a segmentation clock involving Notch signalling, while the second scenario discusses an alternative mechanism of Notch function which is integrated into a hierarchical segmentation cascade.  相似文献   

16.
The centipede Strigamia maritima forms all of its segments during embryogenesis. Trunk segments form sequentially from an apparently undifferentiated disk of cells at the posterior of the germ band. We have previously described periodic patterns of gene expression in this posterior disc that precede overt differentiation of segments, and suggested that a segmentation oscillator may be operating in the posterior disc. We now show that genes of the Notch signalling pathway, including the ligand Delta, and homologues of the Drosophila pair-rule genes even-skipped and hairy, show periodic expression in the posterior disc, consistent with their involvement in, or regulation by, such an oscillator. These genes are expressed in a pattern of apparently expanding concentric rings around the proctodeum, which become stripes at the base of the germ band where segments are emerging. In this transition zone, these primary stripes define a double segment periodicity: segmental stripes of engrailed expression, which mark the posterior of each segment, arise at two different phases of the primary pattern. Delta and even-skipped are also activated in secondary stripes that intercalate between primary stripes in this region, further defining the single segment repeat. These data, together with observations that Notch mediated signalling is required for segment pattern formation in other arthropods, suggest that the ancestral arthropod segmentation cascade may have involved a segmentation oscillator that utilised Notch signalling.  相似文献   

17.
Somite segmentation depends on a gene expression oscillator or clock in the posterior presomitic mesoderm (PSM) and on read-out machinery in the anterior PSM to convert the pattern of clock phases into a somite pattern. Notch pathway mutations disrupt somitogenesis, and previous studies have suggested that Notch signalling is required both for the oscillations and for the read-out mechanism. By blocking or overactivating the Notch pathway abruptly at different times, we show that Notch signalling has no essential function in the anterior PSM and is required only in the posterior PSM, where it keeps the oscillations of neighbouring cells synchronized. Using a GFP reporter for the oscillator gene her1, we measure the influence of Notch signalling on her1 expression and show by mathematical modelling that this is sufficient for synchronization. Our model, in which intracellular oscillations are generated by delayed autoinhibition of her1 and her7 and synchronized by Notch signalling, explains the observations fully, showing that there are no grounds to invoke any additional role for the Notch pathway in the patterning of somite boundaries in zebrafish.  相似文献   

18.
Developmental mechanisms of segmentation appear to be varied among insects in spite of their conserved body plan. Although the expression patterns of the segment polarity genes in all insects examined imply well conserved function of this class of genes, expression patterns and function of the pair-rule genes tend to exhibit diversity. To gain further insights into the evolution of the segmentation process and the role of pair-rule genes, we have examined expression and function of an ortholog of the Drosophila pair-rule gene even-skipped (eve) in a phylogenetically basal insect, Gryllus bimaculatus (Orthoptera, intermediate germ cricket). We find that Gryllus eve (Gb'eve) is expressed as stripes in each of the prospective gnathal, thoracic, and abdominal segments and as a broad domain in the posterior growth zone. Dynamics of stripe formation vary among Gb'eve stripes, representing one of the three modes, the segmental, incomplete pair-rule, and complete pair-rule mode. Furthermore, we find that RNAi suppression of Gb'eve results in segmentation defects in both anterior and posterior regions of the embryo. Mild depletion of Gb'eve shows a pair-rule-like defect in anterior segments, while stronger depletion causes a gap-like defect showing deletion of anterior and posterior segments. These results suggest that Gb'eve acts as a pair-rule gene at least during anterior segmentation and also has segmental and gap-like functions. Additionally, Gb'eve may be involved in the regulation of hunchback and Krüppel expression. Comparisons with eve functions in other species suggest that the Gb'eve function may represent an intermediate state of the evolution of pair-rule patterning by eve in insects.  相似文献   

19.
20.
Somitic segmentation provides the framework on which the segmental pattern of the vertebrae, some muscles and the peripheral nervous system is established. Recent evidence indicates that a molecular oscillator, the 'segmentation clock', operates in the presomitic mesoderm (PSM) to direct periodic expression of c-hairy1 and lunatic fringe (l-fng). Here, we report the identification and characterisation of a second avian hairy-related gene, c-hairy2, which also cycles in the PSM and whose sequence is closely related to the mammalian HES1 gene, a downstream target of Notch signalling in vertebrates. We show that HES1 mRNA is also expressed in a cyclic fashion in the mouse PSM, similar to that observed for c-hairy1 and c-hairy2 in the chick. In HES1 mutant mouse embryos, the periodic expression of l-fng is maintained, suggesting that HES1 is not a critical component of the oscillator mechanism. In contrast, dynamic HES1 expression is lost in mice mutant for Delta1, which are defective for Notch signalling. These results suggest that Notch signalling is required for hairy-like genes cyclic expression in the PSM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号