首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cell wall of mycobacteria includes a thick, robust, and highly impermeable outer membrane made from long-chain mycolic acids. These outer membranes form a primary layer of protection for mycobacteria and directly contribute to the virulence of diseases such as tuberculosis and leprosy. We have formed in vitro planar membranes using pure mycolic acids on circular apertures 20 to 90 μm in diameter. We find these membranes to be long lived and highly resistant to irreversible electroporation, demonstrating their general strength. Insertion of the outer membrane channel MspA into the membranes was observed indicating that the artificial mycolic acid membranes are suitable for controlled studies of the mycobacterial outer membrane and can be used in nanopore DNA translocation experiments.  相似文献   

2.

Background

Mycolic acids are a complex mixture of branched, long-chain fatty acids, representing key components of the highly hydrophobic mycobacterial cell wall. Pathogenic mycobacteria carry mycolic acid sub-types that contain cyclopropane rings. Double bonds at specific sites on mycolic acid precursors are modified by the action of cyclopropane mycolic acid synthases (CMASs). The latter belong to a family of S-adenosyl-methionine-dependent methyl transferases, of which several have been well studied in Mycobacterium tuberculosis, namely, MmaA1 through A4, PcaA and CmaA2. Cyclopropanated mycolic acids are key factors participating in cell envelope permeability, host immunomodulation and persistence of M. tuberculosis. While several antitubercular agents inhibit mycolic acid synthesis, to date, the CMASs have not been shown to be drug targets.

Methodology/Principle Findings

We have employed various complementary approaches to show that the antitubercular drug, thiacetazone (TAC), and its chemical analogues, inhibit mycolic acid cyclopropanation. Dramatic changes in the content and ratio of mycolic acids in the vaccine strain Mycobacterium bovis BCG, as well as in the related pathogenic species Mycobacterium marinum were observed after treatment with the drugs. Combination of thin layer chromatography, mass spectrometry and Nuclear Magnetic Resonance (NMR) analyses of mycolic acids purified from drug-treated mycobacteria showed a significant loss of cyclopropanation in both the α- and oxygenated mycolate sub-types. Additionally, High-Resolution Magic Angle Spinning (HR-MAS) NMR analyses on whole cells was used to detect cell wall-associated mycolates and to quantify the cyclopropanation status of the cell envelope. Further, overexpression of cmaA2, mmaA2 or pcaA in mycobacteria partially reversed the effects of TAC and its analogue on mycolic acid cyclopropanation, suggesting that the drugs act directly on CMASs.

Conclusions/Significance

This is a first report on the mechanism of action of TAC, demonstrating the CMASs as its cellular targets in mycobacteria. The implications of this study may be important for the design of alternative strategies for tuberculosis treatment.  相似文献   

3.
On the basis of the analysis of mycolates, the type strain of Mycobacterium thamnopheos has been considered as a member of the genus Nocardia. In a comparative study conducted on mycobacterial species we found that M. thamnopheos synthesized two types of mycolate having the same mobilities on thin-layer chromatography as those of mycobacteria, but different from nocardomycolates. Mass spectrometry analyzes showed that the major series of both types consisted of polyunsaturated mycolic acids, ranging from C72 to C78 with four or five double bonds. On pyrolytic mass spectrometry or gas chromatography, the least polar mycolates released mainly monounsaturated C22 esters whereas the other type yielded saturated C20 and C22 esters. These results suggested that M. thamnopheos might be more related to the Aurantiaca taxon than to mycobacteria and Nocardia. The permanganate-periodate oxidation products of esters obtained by pyrolysis of the least polar mycolates showed that they contained docosen-4-oic and docosen-6-oic acids. Both types of mycolate esters yielded the same set of long-chain meroaldehydes on pyrolysis. These meroaldehydes were significantly distinct from those of mycobacterial mycolates in the location of the double bonds. After hydrogenation of the double bond located in the alkyl-branched chain, the two types of mycolates had the same mobility on thin-layer chromatography, indicating that the difference of migration was due to the additional double bond found in the least polar mycolates. Based on stereochemical data, the relative configuration of both mycolates was found to be threo, like that established for all mycolates studied so far.  相似文献   

4.
An investigation was undertaken to determine the components of mycobacteria responsible for pulmonary cavity formation in tuberculosis. Rabbits received an intrapulmonary injection through the chest wall, of mycobacterial protein, II-p, mixed with either mycobacterial lipids, synthetic adjuvants or Nocardia cell wall skeleton as adjuvant. Six weeks later, they were killed and the lung lesions were examined. Cavities and necrosis were produced by the injection of II-p mixed with cord factor, Nocardia cell wall skeleton or N-acetylmuramyl dipeptide conjugated with long-chain branched fatty acids. Cavities were not produced by either the injection of II-p together with phospholipid, N-acetylmuramyl dipeptide (MDP), MDP-derivatives having no long-chain branched fatty acid, or by the injection of individual components of the mixtures. The results suggest that in tuberculosis a mycobacterial component with a long-chain branched fatty acid such as mycolic acid plays an important role in pulmonary cavity formation by enhancing the antigenicity of mycobacterial protein and helping it induce cell-mediated immunity at the site of the lesion. Passive transfer with sera from rabbits highly sensitized with tubercle bacilli failed to enhance cavity formation in the recipient animals.  相似文献   

5.
Mycobacteria, which cause tuberculosis and related diseases, possess a diverse set of complex envelope lipids that provide remarkable tolerance to antibiotics and are major virulence factors that drive pathogenesis. Recently, metabolic labeling and bio-orthogonal chemistry have been harnessed to develop chemical probes for tagging specific lipids in live mycobacteria, enabling a range of new basic and translational research avenues. A toolbox of probes has been developed for labeling mycolic acids and their derivatives, including trehalose-, arabinogalactan-, and protein-linked mycolates, as well as newer probes for labeling phthiocerol dimycocerosates (PDIMs) and potentially other envelope lipids. These lipid-centric tools have yielded fresh insights into mycobacterial growth and host interactions, provided new avenues for drug target discovery and characterization, and inspired innovative diagnostic and therapeutic strategies.  相似文献   

6.
Mycolic acid-producing bacteria isolated from the respiratory tract of human and non-human mammals were recently assigned as a distinct genus, Segniliparus, because they diverge from rhodococci and mycobacteria in genetic and chemical features. Using high accuracy mass spectrometry, we determined the chemical composition of 65 homologous mycolic acids in two Segniliparus species and separately analyzed the three subclasses to measure relative chain length, number and stereochemistry of unsaturations and cyclopropyl groups within each class. Whereas mycobacterial mycolate subclasses are distinguished from one another by R groups on the meromycolate chain, Segniliparus species synthesize solely non-oxygenated α-mycolates with high levels of cis unsaturation. Unexpectedly Segniliparus α-mycolates diverge into three subclasses based on large differences in carbon chain length with one bacterial culture producing mycolates that range from C58 to C100. Both the overall chain length (C100) and the chain length diversity (C42) are larger than previously seen for mycolic acid-producing organisms and provide direct chemical evidence for assignment of Segniliparus as a distinct genus. Yet, electron microscopy shows that the long and diverse mycolates pack into a typical appearing membrane. Therefore, these new and unexpected extremes of mycolic acid chemical structure raise questions about the modes of mycolic acid packing and folding into a membrane.  相似文献   

7.
Mycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development.  相似文献   

8.
The resurgence of tuberculosis and the emergence of multidrug-resistant mycobacteria necessitate the development of new antituberculosis drugs. The biosynthesis of mycolic acids, essential elements of the mycobacterial envelope, is a good target for chemotherapy. Species of the Mycobacterium tuberculosis complex synthesize oxygenated mycolic acids with keto and methoxy functions. In contrast, the fast-growing Mycobacterium smegmatis synthesizes oxygenated mycolic acids with an epoxy function. We describe the isolation and sequencing of a cluster of four genes from Mycobacterium bovis bacillus Calmette–Guérin (BCG), coding for methyl transferases, and which, when transferred into M. smegmatis , allow the synthesis of ketomycolic acid, in addition to an as yet undescribed mycolic acid, hydroxymycolic acid. These oxygenated mycolic acids, unlike the regular mycolic acids of M. smegmatis , and similar to the mycolic acids of M. bovis , are highly cyclopropanated. Furthermore, there is a perfect match between the structures of the keto- and the hydroxy-mycolic acids. We propose a biosynthetic model in which there is a direct relationship between these two types of mycolic acid.  相似文献   

9.
The resistance of saprophyte mycobacteria to acids increases on a medium containing paraffin. The content of free lipids and mycolic acids in the cells of Mycobacterium convolutum assimilating the hydrocarbon increases cf. that in the cells grown on meat-peptone broth. The structure of mycolic acids was established after studying their methyl esters by mass spectrometry. The cells grown on the medium with hexadecane contain mycolic acids C32--C36, with C34- and C36-compounds prevailing and the aliphatic chain in alpha-position containing 10, 11, 12, and 14 C-atoms. The cells cultivated on meat-peptone broth contain another type of acids of high molecular weight (greater than 700).  相似文献   

10.
The nonmycolic C16 to C55 fatty acids obtained from Mycobacterium smegmatis ATCC 356 by saponification were enriched with respect to the C28 to C55 acids by successive chromatography on silicic acid and Sephadex LH-20 columns. These partially purified fatty acids were then derivatized to the p-bromophenacyl ester and further fractionated by argentation thin-layer chromatography and reverse-phase high-performance liquid chromatography into their individual components. The esters were characterized by electron impact mass spectrometry. Two structural series of C28:1 to C42:1 and C45:2 to C55:2 fatty acids were identified as possible precursors of the monoenyl and dienyl mycolic acids, respectively. These acids were structurally related to the alpha-alkylhydroxyl group of the corresponding mycolic acid. The results suggest that these C28 to C55 fatty acids (meromycolic acids) of M. smegmatis might be precursors of mycolic acids.  相似文献   

11.
Mycolic acids are long chain fatty acids that constitute the lipid-rich cell wall framework of mycobacteria. Upon infection, mycobacteria begin to synthesize glucose monomycolate (GMM), a glucosylated species of mycolic acids, by utilizing host-derived glucose as sugar source. Accordingly, GMM production serves as a good indicator for local invasion of mycobacteria, and its detection by the host immune system would favor efficient monitoring of mycobacterial infection. Here, we found that GMM was produced abundantly at 30 degrees C rather than at 37 degrees C and recognized by a GMM-specific, CD1-restricted T cell line that was isolated from mycobacteria-infected human skin. Since the common portal sites for mycobacterial infection include ventilating alveoli of the lung and the externally exposed skin that often render invading microbes survive at reduced temperature, sampling GMM by CD1 lipid antigen-presenting molecules may allow the host to detect mycobacterial infection at its early phases.  相似文献   

12.
The type II fatty acid synthase system of mycobacteria is involved in the biosynthesis of major and essential lipids, mycolic acids, key-factors of Mycobacterium tuberculosis pathogenicity. One reason of the remarkable survival ability of M. tuberculosis in infected hosts is partly related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate synthesis of these lipids in response to environmental changes are unknown. We demonstrate here that HadAB and HadBC dehydratases of this system are phosphorylated by Ser/Thr protein kinases, which negatively affects their enzymatic activity. The phosphorylation of HadAB/BC is growth phase-dependent, suggesting that it represents a mechanism by which mycobacteria might tightly control mycolic acid biosynthesis under non-replicating condition.  相似文献   

13.
The composition of lipids and the structure of mycolic acids were studied in Mycobacterium lacticolum var. aliphaticum isolated from soil and grown on MPB. The lipids of all strains were found to contain phosphatidyl inositol mannosides, phosphatidyl ethanolamine, cardiolipin, mycolic and common fatty acids, triglycerides, wax, and several unidentified compounds. The structure of mycolic acids was established by mass spectrometry. The mycolic acids C34:0, C35:0 and C36:0 prevailed in strain 175, and the mycolic acids C34:1, C34:0, C36:1 and C36:0 predominated in strain 180. The composition of minor components was assayed. Variations in the composition of mycolic acids depending on the source of carbon in the medium are discussed.  相似文献   

14.
Ligation of mycolic acids to structural components of the mycobacterial cell wall generates a hydrophobic, impermeable barrier that provides resistance to toxic compounds such as antibiotics. Secreted proteins FbpA, FbpB, and FbpC attach mycolic acids to arabinogalactan, generating mycolic acid methyl esters (MAME) or trehalose, generating alpha,alpha'-trehalose dimycolate (TDM; also called cord factor). Our studies of Mycobacterium smegmatis showed that disruption of fbpA did not affect MAME levels but resulted in a 45% reduction of TDM. The fbpA mutant displayed increased sensitivity to both front-line tuberculosis-targeted drugs as well as other broad-spectrum antibiotics widely used for antibacterial chemotherapy. The irregular, hydrophobic surface of wild-type M. smegmatis colonies became hydrophilic and smooth in the mutant. While expression of M. smegmatis fbpA restored defects of the mutant, heterologous expression of the Mycobacterium tuberculosis fbpA gene was less effective. A single mutation in the M. smegmatis FbpA esterase domain inactivated its ability to provide antibiotic resistance. These data show that production of TDM by FbpA is essential for the intrinsic antibiotic resistance and normal colonial morphology of some mycobacteria and support the concept that FbpA-specific inhibitors, alone or in combination with other antibiotics, could provide an effective treatment to tuberculosis and other mycobacterial diseases.  相似文献   

15.
A mutant strain of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids was recently isolated (Liu, J., and Nikaido, H. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 4011-4016). This mutant failed to synthesize full-length mycolic acids and accumulated a series of long chain beta-hydroxymeromycolates. In this work, we provide a detailed characterization of the localization of meromycolates and of the cell wall structure of the mutant. Thin layer chromatography showed that the insoluble cell wall matrix remaining after extraction with chloroform/methanol and SDS still contained a large portion of the total meromycolates. Matrix-assisted laser desorption/ionization and electrospray ionization mass spectroscopy analysis of fragments arising from Smith degradation of the insoluble cell wall matrix revealed that the meromycolates were covalently attached to arabinogalactan at the 5-OH positions of the terminal arabinofuranosyl residues. The arabinogalactan appeared to be normal in the mutant strain, as analyzed by NMR. Analysis of organic phase lipids showed that the mutant cell wall contained some of the extractable lipids but lacked glycopeptidolipids and lipooligosaccharides. Differential scanning calorimetry of the mutant cell wall failed to show the large cooperative thermal transitions typical of intact mycobacterial cell walls. Transmission electron microscopy showed that the mutant cell wall had an abnormal ultrastructure (without the electron-transparent zone associated with the asymmetric mycolate lipid layer). Taken together, these results demonstrate the importance of mycolic acids for the structural and functional integrity of the mycobacterial cell wall. The lack of highly organized lipid domains in the mutant cell wall explains the drug-sensitive and temperature-sensitive phenotypes of the mutant.  相似文献   

16.
A 23-26-carbon chain length range of omega-19 (1'R,2'S) cyclopropane fatty acids, related to mycobacterial mycolic acids, has been prepared. The key cyclopropyl intermediate, (1'R,2'S)-(Z)-1-formyl-2-octadecylcyclopropane, underwent Wittig chemistry with various reagents to provide vinylic precursors, which were selectively reduced to the corresponding saturated omega-19 cyclopropane fatty acids or esters. The 24-carbon omega-19 cyclopropane ester was made by chain elongation of the 23-carbon ester. Saturated and unsaturated chiral cyclopropane acids and esters were assayed, using wall extracts of Mycobacterium smegmatis; the incorporation of 14C-acetate was used to measure inhibition or stimulation of mycolic acid synthesis. Minor inhibition (2-3%) was shown by the 23- and 24-carbon saturated esters; all the other compounds were stimulants. The most effective (38-55%) stimulators of mycolate synthesis were the unsaturated esters with 23- and 26-carbons and the saturated and unsaturated 25-carbon acids.  相似文献   

17.
The cell envelope architectures and cytoplasmic structures of Mycobacterium aurum CIPT 1210005, M. fortuitum, M. phlei 425, and M. thermoresistible ATCC 19527 were compared by conventional embedding and freeze-substitution methods. To ascertain the integrity of cells during each stage of the processing regimens, [1-14C]acetate was incorporated into the mycolic acids of mycobacterial walls, and the extraction of labeled mycolic acids was monitored by liquid scintillation counting. Radiolabeled mycolic acids were extracted by both processing methods; however, freeze-substitution resulted in the extraction of markedly less radiolabel. During conventional processing of cells, most of the radiolabel was extracted during the dehydration stage, whereas postsubstitution washes in acetone yielded the greatest loss of radiolabel during freeze-substitution. Conventional embedding frequently produced cells with condensed fibrous nucleoids and occasional mesosomes. Their cell walls were relatively thick (approximately 25 nm) but lacked substance. Freeze-substituted cells appeared more robust, with well-dispersed nucleoids and ribosomes. The walls of all species were much thinner than those of their conventionally processed counterparts, but these stained well, which was an indication of more wall substance; the fabric of these walls, in particular the plasma membrane, appeared highly condensed and tightly apposed to the peptidoglycan. Some species possessed a thick, irregular outer layer that was readily visualized in the absence of exogenous stabilizing agents by freeze-substitution. Since freeze-substituted mycobacteria retained a greater percentage of mycolic acids in their walls, and probably other labile wall and cytoplasmic constituents, we believe that freeze-substitution provides a more accurate image of structural organization in mycobacteria than that achieved by conventional procedures.  相似文献   

18.
Members of the Mycobacterium tuberculosis group synthesize a family of long-chain fatty acids, mycolic acids, which are located in the cell envelope. These include the non-oxygenated alpha-mycolic acid and the oxygenated keto- and methoxymycolic acids. The function in bacterial virulence, if any, of these various types of mycolic acids is unknown. We have constructed a mutant strain of M. tuberculosis with an inactivated hma (cmaA, mma4) gene; this mutant strain no longer synthesizes oxygenated mycolic acids, has profound alterations in its envelope permeability and is attenuated in mice.  相似文献   

19.
Methyl esters of normal fatty acids, corynomycolate and corynomycolenate were used as model compounds for thermospray mass spectrometric procedures for molecular weight determination of the related nocardial mycolic acids. By using ammonium acetate at the positive ion generator, in both cases, a family of ions was produced. The following members were found and corresponded to the adducts: (1) M + H; M + NH4 and M + H + NH4 for methyl esters of normal fatty acids, whereas M + H, M + 2H and M + H + NH4 were the adducts most frequently observed with methyl corynomycolates. The methyl esters of C40-C48 mycolic acids from Rhodococcus rhodochrous exhibited prominent peaks corresponding to adducts M + H + NH4 whereas those corresponding to M + 2H showed slightly lower intensities. The structure M + H had no significant representatives with this subclass of mycolic acids. A similar pattern was observed with methyl esters of C50-C54 mycolic acids from Nocardia asteroides GUH-2. Ion peaks C50-C54 representing adducts M + 2H and M + H + NH4 prevailed in the mass spectrum. In this case, the intensities of peaks corresponding to M + 2H were slightly higher than those of the M + H + NH4. Essentially three main species of nocardomycolic acids were detected: (1) monounsaturated C50:1, C52:1 and C54:1; (2) diunsaturated C50:2, C52:2 and C54:2 and (3) triunsaturated C52:3 and C54:3 mycolic acids. The most abundant mycolic acid was C52:2 followed in decreasing abundance by C52:1, C54:2, C50:2, C52:3 and C54:3 mycolic acids.  相似文献   

20.
Trans mycolic acid content is directly related to cell wall fluidity and permeability in mycobacteria. Carbon-13 NMR spectroscopy of mycolic acids isolated from Mycobacterium tuberculosis (MTB) and Mycobacterium smegmatis (MSM) fed 13C-labeled precursor molecules was used to probe the biosynthetic pathways that modify mycolic acids. Heteronuclear correlation spectroscopy (HMQC) of ketomycolic acid from MTB allowed assignment of the complete 13C-NMR spectrum. Incorporation patterns from [1-13C]-acetate and [2-13C]-acetate feeding experiments suggested that the mero chain and alpha branch of mycolic acids are both synthesized by standard fatty acid biosynthetic reactions. [13C-methyl]-L-methionine was used to specifically label carbon atoms derived from the action of the methyl transferases involved in meromycolate modification. To enrich for trans mycolic acids a strain of MTB overexpressing the mma1 gene was labeled. Carbon-carbon coupling was observed in mycolate samples doubly labeled with 13C-acetate and [13C-methyl]-L-methionine and this information was used to assess positional specificity of methyl transfer. In MTB such methyl groups were found to occur exclusively on carbons derived from the 2 position of acetate, while in MSM they occurred only on carbons derived from the 1 position. These results suggest that the MSM methyltransferase MMAS-1 operates in an inverted manner to that of MTB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号