首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Matrix metalloproteinase-mediated degradation of extracellular matrix is a crucial event for invasion and metastasis of malignant cells. The expressions of matrix metalloproteinases (MMPs) are regulated by different cytokines and growth factors. VEGF, a potent angiogenic cytokine, induces invasion of ovarian cancer cells through activation of MMPs. Here, we demonstrate that invasion and scattering in SKOV-3 cells were induced by VEGF through the activation of p38 MAPK and PI3K/AKT pathways. VEGF induced the expression of MMP-2, MMP-9, and MMP-13 and hence regulated the metastasis of SKOV-3 ovarian cancer cells, and the activities of these MMPs were reduced after inhibition of PI3K/AKT and p38 MAPK pathways. Interestingly, VEGF induced expression of ETS-1 factor, an important trans-regulator of different MMP genes. ETS-1 bound to both MMP-9 and MMP-13 promoters. Furthermore, VEGF acted through its receptor to perform the said functions. In addition, VEGF-induced MMP-9 and MMP-13 expression and in vitro cell invasion were significantly reduced after knockdown of ETS-1 gene. Again, VEGF-induced MMP-9 and MMP-13 promoter activities were down-regulated in ETS-1 siRNA-transfected cells. VEGF enriched ETS-1 in the nuclear fraction in a dose-dependent manner. VEGF-induced expression of ETS-1 and its nuclear localization were blocked by specific inhibitors of the PI3K and p38 MAPK pathways. Therefore, based on these observations, it is hypothesized that the activation of PI3K/AKT and p38 MAPK by VEGF results in ETS-1 gene expression, which activates MMP-9 and MMP-13, leading to the invasion and scattering of SKOV-3 cells. The study provides a mechanistic insight into the prometastatic functions of VEGF-induced expression of relevant MMPs.  相似文献   

2.
The breakdown of the extracellular matrix (ECM) by proteinases is an essential step in the process of cancer invasion and metastasis. Malignant progression is frequently associated with upregulated production and/or activity of one or several ECM degrading proteinases. Prominent among them are the matrix metalloproteinases (MMPs). The MMPs constitute a family of structurally related, zinc-dependent endopeptidases collectively capable of degrading essentially all the components of the extracellular matrix. At present, 23 members of the human MMP gene family are known. The increased expression and/or activity of one or more members of this family have been documented in essentially all human malignancies and some have been implicated in the process of angiogenesis. Prominent among those are MMP-2 and MT1-MMP, two metalloproteinases that form a cell membrane-associated complex leading to MMP-2 activation and ECM proteolysis. Here, we review our data that identified the type 1 insulin-like growth factor receptor (IGF-IR) as a regulator of tumor invasion and the synthesis of MT1-MMP and MMP-2 and report on the signal transduction pathways that mediate this regulation. These findings are discussed in the context of a broader review of the role of the IGF-IR/IGF axis in the regulation of tumor invasion and metastasis.  相似文献   

3.
Ovarian cancer has one of the highest mortalities in malignancies in women, but little is known of its tumour progression properties and there is still no effective molecule that can monitor its growth or therapeutic responses. MSLN (mesothelin), a secreted protein that is overexpressed in ovarian cancer tissues with a poor clinical outcome, has been previously identified to activate PI3K (phosphoinositide 3-kinase)/Akt signalling and inhibit paclitaxel-induced apoptosis. The present study investigates the correlation between MSLN and MMP (matrix metalloproteinase)-7 in the progression of ovarian cancer, and the mechanism of MSLN in enhancing ovarian cancer invasion. The expression of MSLN correlated well with MMP-7 expression in human ovarian cancer tissues. Overexpressing MSLN or ovarian cancer cells treated with MSLN showed enhanced migration and invasion of cancer cells through the induction of MMP-7. MSLN regulated the expression of MMP-7 through the ERK (extracellular-signal-regulated kinase) 1/2, Akt and JNK (c-Jun N-terminal kinase) pathways. The expression of MMP-7 and the migrating ability of MSLN-treated ovarian cancer cells were suppressed by ERK1/2- or JNK-specific inhibitors, or a decoy AP-1 (activator protein 1) oligonucleotide in in vitro experiments, whereas in vivo animal experiments also demonstrated that mice treated with MAPK (mitogen-activated protein kinase)/ERK- or JNK-specific inhibitors could decrease intratumour MMP-7 expression, delay tumour growth and extend the survival of the mice. In conclusion, MSLN enhances ovarian cancer invasion by MMP-7 expression through the MAPK/ERK and JNK signal transduction pathways. Blocking the MSLN-related pathway could be a potential strategy for inhibiting the growth of ovarian cancer.  相似文献   

4.
5.
Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP-14), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because transforming growth factor-beta1 (TGF-beta1) promotes tumor invasion in advanced squamous cell carcinomas, the role of TGF-beta1 in the regulation of MMP activity in a cellular model of invasive oral squamous cell carcinoma was examined. Treatment of oral squamous cell carcinoma cells with TGF-beta1 promoted MMP-dependent cell scattering and collagen invasion, increased expression of MMP-2 and MT1-MMP, and enhanced MMP-2 activation. TGF-beta1 induced concomitant activation of ERK1/2 and p38 MAPK, and kinase inhibition studies revealed a negative regulatory role for ERK1/2 in modulating acquisition of MMP-2 activity. Thus, a reciprocal effect on proMMP-2 activation was observed whereupon blocking ERK1/2 phosphorylation promoted proMMP-2 activation and MT1-MMP activity, whereas inhibiting p38 MAPK activity decreased proteolytic potential. The cellular mechanism for the control of MT1-MMP catalytic activity involved concurrent reciprocal modulation of TIMP-2 expression by ERK1/2 and p38 MAPKs, such that inhibition of ERK1/2 phosphorylation decreased TIMP-2 production, and down-regulation of p38 MAPK activity enhanced TIMP-2 synthesis. Further, p38 MAPK inhibition promoted ERK1/2 phosphorylation, providing additional evidence for cross-talk between MAPK pathways. These observations demonstrate the complex reciprocal effects of ERK1/2 and p38 MAPK in the regulation of MMP activity, which could complicate the use of MAPK-specific inhibitors as therapeutic agents to down-regulate the biologic effects of TGF-beta1 on pericellular collagen degradation and tumor invasion.  相似文献   

6.
Tumor cell metastasis, a process which increases the morbidity and mortality of cancer patients, is highly dependent upon matrix metalloproteinase (MMP) production. Small molecule inhibitors of MMPs have proven unsuccessful at reducing tumor cell invasion in vivo. Therefore, finding an alternative approach to regulate MMP is an important endeavor. Tetraspanins, a family of cell surface organizers, play a major role in cell signaling events and have been implicated in regulating metastasis in numerous cancer cell lines. We stably expressed tetraspanin CD9 in an invasive and metastatic human fibrosarcoma cell line (CD9-HT1080) to investigate its role in regulating tumor cell invasiveness. CD9-HT1080 cells displayed a highly invasive phenotype as demonstrated by matrigel invasion assays. Statistically significant increases in MMP-9 production and activity were attributed to CD9 expression and were not due to any changes in other key tetraspanin complex members or MMP regulators. Increased invasion of CD9-HT1080 cells was reversed upon silencing of MMP-9 using a MMP-9 specific siRNA. Furthermore, we determined that the second extracellular loop of CD9 was responsible for the upregulation of MMP-9 production and subsequent cell invasion. We demonstrated for the first time that tetraspanin CD9 controls HT1080 cell invasion via upregulation of an integral member of the MMP family, MMP-9. Collectively, our studies provide mounting evidence that altered expression of CD9 may be a novel approach to regulate tumor cell progression.  相似文献   

7.
8.
9.
The increased migration and invasion of oral squamous cell carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. Although the chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1α, have been found to play an important role in tumor invasion, its precise role and potential underlying mechanisms remain largely unknown. In this study, we showed that knockdown of CXCR4 significantly decreased Tca8113 cells migration and invasion, accompanied with the reduction of MMP-9 and MMP-13 expression. Inhibition of ligand binding to CXCR4 by a specific antagonist TN14003, also led to reduced cancer cell migration and invasion. Because the degradation of the extracellular matrix and the basement membrane by proteases, such as matrix metalloproteinases (MMP) is critical for migration and invasion of cancer cells, we investigated the expression of several MMPs and found that the expression of functional MMP-9 and MMP-13 was selectively decreased in CXCR4 knockdown cells. More importantly, decreased cell migration and invasion of CXCR4 knockdown cells were completely rescued by exogenous expression of MMP-9 or MMP-13, indicating that the two MMPs are downstream targets of CXCR4-mediated signaling. Furthermore, we found the level of phosphorylated extracellular signal-regulated kinase (ERK) was significantly decreased in CXCR4-silenced cells, suggesting that ERK may be a potential mediator of CXCR4-regulated MMP-9 and MMP-13 expression in Tca8113 cells. Taken together, our results strongly suggest the underlying mechanism of CXCR4 promoting Tca8113 migration and invasion by regulating MMP-9 and MMP-13 expression perhaps via activation of the ERK signaling pathway.  相似文献   

10.
11.
The relative expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) is an important determinant in trophoblast invasion of the uterus and tumor invasion and metastasis. Our previous studies have shown that low oxygen levels increase the in vitro invasiveness of trophoblast and tumor cells. The present study examined whether changes in oxygen levels affect TIMP and MMP expression by cultured trophoblast and breast cancer cells. Reverse zymographic analysis demonstrated reduced TIMP-1 protein secretion by HTR-8/SVneo trophoblast cells as well as MDA-MB-231 and MCF-7 breast carcinoma cells cultured in 1% vs 20% oxygen for 24 h. While gelatin zymography revealed no changes in the levels of MMP-9 secreted by HTR-8/SVneo trophoblasts cultured under various oxygen concentrations for 24 h, human MDA-MB-231 breast carcinoma cells displayed increased MMP-9 secretion and human MCF-7 breast cancer cells exhibited reduced secretion of this enzyme when cultured under similar conditions. In contrast, MMP-2 levels remained unchanged in all cultures incubated under similar conditions. Western blot analysis of MMP-9 protein in cell extracts confirmed the results of zymography. To assess the contribution of enhanced MMP activity to hypoxia-induced invasion, the effect of an MMP inhibitor (llomastat) on the ability of MDA-MB-231 cells to penetrate reconstituted extracellular matrix (Matrigel) was examined. Results showed that MMP inhibition significantly decreased the hypoxic upregulation of invasion by these cells. These findings indicate that the increased cellular invasiveness observed under reduced oxygen conditions may be due in part to a shift in the balance between MMPs and their inhibitors favoring increased MMP activity.  相似文献   

12.
13.
Yoon JH  Choi YJ  Cha SW  Lee SG 《Phytomedicine》2012,19(3-4):284-292
Ginsenoside Rd is a protopanaxadiol-type ginsenoside found in ginseng and is the active ingredient in several Oriental herbal medicines. We investigated the effects of ginsenoside Rd on tumor invasion and metastasis in the human hepatocellular carcinoma HepG2 and its possible mechanism of action. HepG2 cells were treated with ginsenoside Rd at different concentrations. Scratch wound and Boyden chamber assays were used to determine the effects of ginsenoside Rd on the migration and invasiveness of HepG2 cells, respectively. The molecular mechanisms by which ginsenoside Rd inhibited the invasion and migration of HepG2 cells were investigated by RT-PCR, Western blotting, gelatin zymography, promoter assay, and treatment with inhibitors of MAPK signaling. Immunofluorescence analysis was conducted to evaluate the effect of ginsenoside Rd on focal adhesion formation in HepG2 cells. Treatment with ginsenoside Rd dose- and time-dependently inhibited the migration and invasion of HepG2 cells. It achieved this by reducing the expression of MMP-1, MMP-2, and MMP-7, by blocking MAPK signaling by inhibiting the phosphorylation of ERK and p38 MAPK, by inhibition of AP-1 activation, and by inducing focal adhesion formation and modulating vinculin localization and expression. Treatment of HepG2 cells with ginsenoside Rd significantly inhibited metastasis, most likely by blocking MMP activation and MAPK signaling pathways involved in cancer cell migration. These findings may be useful for the development of novel chemotherapeutic agents for the treatment of malignant cancers.  相似文献   

14.
Matrix metalloproteinases (MMPs) are extracellular matrix (ECM) degrading enzymes and have complex and specific regulation networks. This includes activation interactions, where one MMP family member activates another. ECM degradation and MMP activation can be initiated by several different stimuli including changes in ECM mechanical properties or intracellular contractility. These mechanical stimuli are known enhancers of metastatic potential. MMP-14 facilitates local ECM degradation and is well known as a major mediator of cell migration, angiogenesis and invasion. Recently, function blocking antibodies have been developed to specifically block MMP-14, providing a useful tool for research as well as therapeutic applications. Here we utilize a selective MMP-14 function blocking antibody to delineate the role of MMP-14 as an activator of other MMPs in response to changes in cellular contractility and ECM stiffness. Inhibition using function blocking antibodies reveals that MMP-14 activates soluble MMPs like MMP-2 and -9 under various mechanical stimuli in the pancreatic cancer cell line, Panc-1. In addition, inhibition of MMP-14 abates Panc-1 cell extension into 3D gels to levels seen with non-specific pan-MMP inhibitors at higher concentrations. This strengthens the case for MMP function blocking antibodies as more potent and specific MMP inhibition therapeutics.  相似文献   

15.
16.
Various proteases are involved in cancer progression and metastasis. In particular, gelatinases, matrix metalloproteinase-2 (MMP-2) and MMP-9, have been implicated to play a role in colon cancer progression and metastasis in animal models and patients. In the present review, the clinical relevance and the prognostic value of messenger ribonucleic acid (mRNA) and protein expression and proenzyme activation of MMP-2 and MMP-9 are evaluated in relation to colorectal cancer. Expression of tissue inhibitors of MMPs (TIMPs) in relation with MMP expression in cancer tissues and the relevance of detection of plasma or serum levels of MMP-2 and/or MMP-9 and TIMPs for prognosis are also discussed. Furthermore, involvement of MMP-2 and MMP-9 in experimental models of colorectal cancer is reviewed. In vitro studies have suggested that gelatinase is expressed in cancer cells but animal models indicated that gelatinase expression in non-cancer cells in tumors contributes to cancer progression. In fact, interactions between cancer cells and host tissues have been shown to modulate gelatinase expression in host cells. Inhibition of gelatinases by synthetic MMP inhibitors has been considered to be an attractive approach to block cancer progression. However, despite promising results in animal models, clinical trials with MMP inhibitors have been disappointing so far. To obtain more insight in the (patho)physiological functions of gelatinases, regulation of MMP-2 and MMP-9 expression is discussed. Mitogen activated protein kinase (MAPK) signalling has been shown to be involved in regulation of gelatinase expression in both cancer cells and non-cancer cells. Expression can be triggered by a variety of stimuli including growth factors, cytokines and extracellular matrix (ECM) components. On the other hand, MMP-2 and MMP-9 activity regulates bioavailability and activity of growth factors and cytokines, affects the immune response and is involved in angiogenesis. Because of the multifunctionality of gelatinases, it is unpredictable at what stage of cancer development and in which processes gelatinase activity is involved. Therefore, it is concluded that the use of MMP inhibitors to treat cancer should be considered carefully.  相似文献   

17.
Regulation of tumor cell invasion by extracellular matrix   总被引:10,自引:0,他引:10  
  相似文献   

18.
Despite tremendous advances in cancer treatment and survival rates, pancreatic cancer remains one of the most deadly afflictions and the fourth leading cause of cancer deaths in the world. Matrix Metalloproteinases (MMPs) are thought to be involved in cancer progression. Matrix metalloproteinase (MMP)-2 is known to play a pivotal role in tumor invasion, metastasis and angiogenesis, and validated to be the anticancer target. Inhibition of MMP-2 activity is able to reduce the cancer cell invasion and suppress tumor growth in vivo. Two novel peptides, M204C4 and M205C4, which could specially inhibit MMP-2 activity, were identified by a phage display library screening. We showed that M204C4 and M205C4 inhibited the activity of MMP-2 in a dose dependent manner in vitro. Two peptides reduced MMP-2 mediated invasion of the pancreatic cancer cell lines PANC-1 and CFPAC-1, but not affected the expression and release of MMP-2. Furthermore, these two peptides could suppress tumor growth in vivo. Our results indicated that two peptides selected by phase display technology may be used as anticancer drugs in the future.  相似文献   

19.
Esophageal cancer (EC) is one of the most aggressive malignant tumors of the gastrointestinal tract. There are two distinct histological types of EC: esophageal squamous cell carcinoma and adenocarcinoma of the esophagus. Etiologic factors and the patterns of incidence of both subtypes are different. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play an important role in esophageal carcinogenesis. Gellatinases MMP-2 and MMP-9 are able to degrade collagen IV from basement membranes and extracellular matrix which is related to tumor progression, including invasion, metastasis, growth and angiogenesis. It has been shown that increased expression of MMPs plays a crucial role in the development of several human malignancies, including esophageal cancer. The activity of MMPs is regulated by their endogenous natural inhibitors (TIMPs). Among these, the roles of TIMP-1 and TIMP-2 in EC development, tumor progression and formation of metastases have been most extensively characterized and best recognized.  相似文献   

20.
Qian LW  Xie J  Ye F  Gao SJ 《Journal of virology》2007,81(13):7001-7010
Matrix metalloproteinases (MMPs) play important roles in cancer invasion, angiogenesis, and inflammatory infiltration. Kaposi's sarcoma is a highly disseminated angiogenic tumor of proliferative endothelial cells linked to infection by Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we showed that KSHV infection increased the invasiveness of primary human umbilical vein endothelial cells (HUVEC) in a Matrigel-based cell invasion assay. KSHV-induced cell invasion was abolished by an inhibitor of MMPs, BB-94, and occurred in both autocrine- and paracrine-dependent fashions. Analysis by zymography and Western blotting showed that KSHV-infected HUVEC cultures had increased secretion of MMP-1, -2, and -9. KSHV increased the secretion of MMP-2 within 1 h following infection without upregulating its mRNA expression level. In contrast, the secretion of MMP-1 and -9 was not increased until 6 h after KSHV infection and was correlated with the upregulation of their mRNA expression levels. Promoter analysis by reporter assays and electrophoretic mobility shift assays identified an AP-1 cis-element as the dominant KSHV-responsive site in the MMP-1 promoter. Together, these results suggest that KSHV infection modulates the production of multiple MMPs to increase cell invasiveness and thus contributes to the pathogenesis of KSHV-induced malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号