首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laminins are a family of trimeric extracellular matrix proteins consisting of alpha, beta, and gamma chains. So far five different laminin alpha chains have been identified. The laminin alpha 4 chain, which is present in laminin-8/9, is expressed in cells of mesenchymal origin, such as endothelial cells and adipocytes. Previously, we identified heparin-binding sites in the C-terminal globular domain (G domain) of the laminin alpha 4 chain. Here we have focused on the biological functions of the laminin alpha 4 chain G domain and screened active sites using a recombinant protein and synthetic peptides. The rec-alpha 4G protein, comprising the entire G domain, promoted cell attachment activity. The cell attachment activity of rec-alpha 4G was completely blocked by heparin and partially inhibited by EDTA. We synthesized 116 overlapping peptides covering the entire G domain and tested their cell attachment activity. Twenty peptides showed cell attachment activity, and 16 bound to heparin. We further tested the effect of the 20 active peptides in competition assays for cell attachment and heparin binding to rec-alpha 4G protein. A4G6 (LAIKNDNLVYVY), A4G20 (DVISLYNFKHIY), A4G82 (TLFLAHGRLVFM), and A4G83 (LVFMFNVGHKKL), which promoted cell attachment and heparin binding, significantly inhibited both cell attachment and heparin binding to rec-alpha 4G. These results suggest that the four active sites are involved in the biological functions of the laminin alpha 4 chain G domain. Furthermore, rec-alpha 4G, A4G6, and A4G20 were found to interact with syndecan-4. These active peptides may be useful for defining of the molecular mechanism laminin-receptor interactions and laminin-mediated cellular signaling pathways.  相似文献   

2.
Laminins are expressed in specific tissues and are involved in various biological activities including promoting cell adhesion, growth, migration, neurite outgrowth, and differentiation. The laminin alpha3 chain is mainly located in the skin and is also expressed in the floor plate of the developing neural tube. Previously, we showed that the human laminin alpha3 chain LG4 module binds to syndecan-2/4, a membrane-associated proteoglycan, and promotes human fibroblast adhesion. Here, we have evaluated the neurite outgrowth activity of the laminin alpha3 chain LG4 and LG5 modules. Three overlapping recombinant proteins, which contained LG4 and/or LG5 modules of the human laminin alpha3 chain, were prepared using a mammalian cell expression system. Two proteins, rec-alpha3LG4-5 and rec-alpha3LG4, promoted cell attachment and neurite outgrowth of rat pheochromocytoma PC12 cells, but rec-alpha3LG5 was inactive. Twenty-two peptides covering the entire LG4 module were synthesized and tested for cell attachment and neurite outgrowth activity to identify active sites of the LG4 module. A3G75 (KNSFMALYLSKG, alpha3 chain 1411-1422) and A3G83 (GNSTISIRAPVY, alpha3 chain 1476-1487) promoted PC12 cell attachment and neurite outgrowth. Additionally, A3G75 and A3G83 inhibited PC12 cell attachment to rec-alpha3LG4. These results suggest that the A3G75 and A3G83 sites are important for PC12 cell attachment and neurite outgrowth in the laminin alpha3 chain LG4 module. We also conjugated the A3G75 and A3G83 peptides on chitosan membranes to test their potential as bio-materials. These peptide-conjugated chitosan membranes were more active for neurite outgrowth than the peptide-coated plates. These results suggest that the A3G75- and A3G83-conjugated chitosan membranes are applicable as bio-medical materials for neural tissue repair and engineering.  相似文献   

3.
AG73 (RKRLQVQLSIRT), a peptide from the G domain of the laminin alpha1 chain, has diverse biological activities with different cell types. The heparan sulfate side chains of syndecan-1 on human salivary gland cells were previously identified as the cell surface ligand for AG73. We used homologous peptides from the other laminin alpha-chains (A2G73-A5G73) to determine whether the bioactivity of the AG73 sequence is conserved. Human salivary gland cells and a mouse melanoma cell line (B16F10) both bind to the peptides, but cell attachment was inhibited by glycosaminoglycans, modified heparin, and sized heparin fragments in a cell type-specific manner. In other assays, AG73, but not the homologous peptides, inhibited branching morphogenesis of salivary glands and B16F10 network formation on Matrigel. We identified residues critical for AG73 bioactivity using peptides with amino acid substitutions and truncations. Fewer residues were critical for inhibiting branching morphogenesis (XKXLXVXXXIRT) than those required to inhibit B16F10 network formation on Matrigel (N-terminal XXRLQVQLSIRT). In addition, surface plasmon resonance analysis identified the C-terminal IRT of the sequence to be important for heparin binding. Structure-based sequence alignment predicts AG73 in a beta-sheet with the N-terminal K (Lys(2)) and the C-terminal R (Arg(10)) on the surface of the G domain. In conclusion, we have determined that differences in cell surface glycosaminoglycans and differences in the amino acids in AG73 recognized by cells modulate the biological activity of the peptide and provide a mechanism to explain its cell-specific activities.  相似文献   

4.
The laminin alpha1 chain is a subunit of laminin-1, a heterotrimeric basement membrane protein. The LG4-5 module at the C terminus of laminin alpha1 contains major binding sites for heparin, sulfatide, and alpha-dystroglycan and plays a critical role in early embryonic development. We previously identified active synthetic peptides AG73 and EF-1 from the sequence of laminin alpha1 LG4 for binding to syndecan and integrin alpha2beta1, respectively. However, their activity and functional relationship within the laminin-1 and LG4 as well as the functional relation between these sites and alpha-dystroglycan binding sites in LG4 are not clear. To address these questions, we created mutant recombinant LG4 proteins containing alanine substitutions within the AG73 (M1), EF-1 (M2, M3), and alpha-dystroglycan binding sites (M4, M5) and analyzed their activities. We found that recombinant proteins rec-M1 and rec-M5, containing mutations within M1 and M5, respectively, did not bind heparin or lymphoid cell lines expressing syndecans. These results suggest that LG4 binds to heparin and syndecans through M1 and M5. Rec-M1 and rec-M5 reduced fibroblast attachment, whereas mutant rec-M2 and rec-M3 retained cell attachment activity but did not promote cell spreading. Fibroblast attachment to rec-LG4 was inhibited by heparin but not by integrin antibodies. Spreading of fibroblasts on rec-LG4 was inhibited by anti-integrin alpha2 and beta1 but not by anti-integrin alpha1 and alpha6. These results suggest that the M1 and M5 sites are necessary for cell attachment on LG4 through syndecans and that the EF-1 site is for cell spreading activity through integrin alpha2beta1. In contrast, laminin-1-mediated fibroblast attachment and spreading were not inhibited by heparin or anti-integrin alpha2. Our findings indicate that LG4 has a unique function distinct from laminin-1 and suggest that laminin alpha1 LG4-5 may also be produced by a proteolytic cleavage in certain tissues where it exerts its activity.  相似文献   

5.
Laminins, heterotrimeric glycoproteins in the basement membrane, are involved in diverse biological activities. So far, five alpha, three beta, and three gamma chains have been identified, and at least 15 laminin isoforms exist composed of various combinations of the different three chains. The major cell-surface receptors for laminins are integrins and proteoglycans, such as dystroglycans and syndecans. Previously, we reported that synthetic peptide A4G82 (TLFLAHGRLVFM, mouse laminin alpha4 chain residues 1514-1525) showed strong cell attachment and syndecan binding activities. On the basis of the crystal structure of the LG module and sequence alignment, A4G82 is located in the connecting loop region between beta-strands E and F in the laminin alpha4 chain LG4 module. Here, we have focused on the structural importance of this E-F loop region for the biological activity of the alpha4 chain LG4 module. To determine the importance of the loop structure, we synthesized peptide A4G82X (cyclo-A4G82X, Cys-TLFLAHGRLVFX-Cys, X= norleucine), which was cyclized via disulfide bridges at both the N- and C-termini. The cyclic peptides derived from A4G82X inhibited the heparin binding activity of the alpha4 chain G domain and promoted HT-1080 cell attachment better than the corresponding linear peptides. We determined FLAHGRLVFX as a minimal sequence of cyclo-A4G82X important for cell adhesion and heparin binding using a series of truncated peptides. Moreover, HT-1080 cell attachment to the cyclic peptides was more efficiently blocked by heparin than cell attachment to the linear peptides. Furthermore, the cyclic peptides showed significantly enhanced syndecan-2-mediated cell attachment activity. These results indicate that the activity of A4G82 is highly conformation-dependent, suggesting that the E-F loop structure is crucial for its biological activity.  相似文献   

6.
Laminin-5, consisting of the alpha 3, beta 3, and gamma 2 chains, is localized in the skin basement membrane and supports the structural stability of the epidermo-dermal linkage and regulates various cellular functions. The alpha chains of laminins have been shown to have various biological activities. In this study, we identified a sequence of the alpha 3 chain C-terminal globular domain (LG1-LG5 modules) required for both heparin binding and cell adhesion using recombinant proteins and synthetic peptides. We found that the LG3 and LG4 modules have activity for heparin binding and that LG4 has activity for cell adhesion. Studies with synthetic peptides delineated the A3G75aR sequence (NSFMALYLSKGR, residues 1412--1423) within LG4 as a major site for both heparin and cell binding. Substitution mutations in LG4 and A3G75aR identified the Lys and Arg of the A3G75aR sequence as critical for these activities. Cell adhesion to LG4 and A3G75aR was inhibited by heparitinase I treatment of cells, suggesting that cell binding to the A3G75aR site was mediated by cell surface heparan sulfate proteoglycans. We showed by affinity chromatography that syndecan-2 from fibroblasts bound to LG4. Solid-phase assays confirmed that syndecan-2 interacted with the A3G75aR peptide sequence. Stably transfected 293T cells with expression vectors for syndecan-2 and -4, but not glypican-1, specifically adhered to LG4 and A3G75aR. These results indicate that the A3G75aR sequence within the laminin alpha 3 LG4 module is responsible for cell adhesion and suggest that syndecan-2 and -4 mediate this activity.  相似文献   

7.
The laminin alpha4 chain is widely distributed in various mesodermal tissues, including the perineurium of peripheral nerves, dorsal root ganglion (DRG), skeletal muscle, and capillaries, and plays important roles in synaptic specialization at the neuromuscular junction and in microvascular formation. The C-terminal globular domain (G domain) of the laminin alpha4 chain was previously found to be critical for heparin binding and cell attachment activity. Here, we focused on neurite outgrowth activity of the laminin alpha4 chain G domain. We found that the recombinant alpha4 chain G domain protein (rec-alpha4G) promoted neurite outgrowth of rat pheochromocytoma PC12 cells. When 114 overlapping synthetic peptides that covered the entire G domain were tested for neurite outgrowth activity, nine peptides were active, but the 105 remaining peptides did not exhibit activity. Three of the nine active peptides, A4G6 (LAIKNDNLVYVY), A4G20 (DVISLYNFKHIY), and A4G107 (VIRDSNVVQLDV), strongly promoted neurite outgrowth of PC12 cells. A4G107 was found to form amyloid-like fibrils in Congo red, X-ray, and electron microscopy analyses. We also synthesized cyclic peptides to evaluate their conformational requirements. Cyclic peptide A4G82X (cyc-A4G82X;TLFLAHGRLVFX, where X is norleucine) significantly enhanced neurite outgrowth activity, but the rest of the cyclic peptides eliminated the activity. The A4G82 sequence is located on the loop region, suggesting that the activity of A4G82 is required for a loop conformation. These peptides also exhibited neurite outgrowth activity with dorsal root ganglion (DRG) explants and with DRG cells from E14.5 mouse embryos, indicating that they are active in both neuronal cell lines and native neuronal cells. Taken together, the data suggest that the peptides from the laminin alpha4 chain G domain promote neurite outgrowth activity via a specific conformation.  相似文献   

8.
The newly discovered laminin alpha(5) chain is a multidomain, extracellular matrix protein implicated in various biological functions such as the development of blood vessels and nerves. The N-terminal globular domain of the laminin alpha chains has an important role for biological activities through interactions with cell surface receptors. In this study, we identified residues that are critical for cell binding within the laminin alpha(5) N-terminal globular domain VI (approximately 270 residues) using site-directed mutagenesis and synthetic peptides. A recombinant protein of domain VI and the first four epidermal growth factor-like repeats of domain V, generated in a mammalian expression system, was highly active for HT-1080 cell binding, while a recombinant protein consisting of only the epidermal growth factor-like repeats showed no cell binding. By competition analysis with synthetic peptides for cell binding, we identified two sequences: S2, (123)GQVFHVAYVLIKF(135) and S6, (225)RDFTKATNIRLRFLR(239), within domain VI that inhibited cell binding to domain VI. Alanine substitution mutagenesis indicated that four residues (Tyr(130), Arg(225), Lys(229), and Arg(239)) within these two sequences are crucial for cell binding. Real-time heparin-binding kinetics of the domain VI mutants analyzed by surface plasmon resonance indicated that Arg(239) of S6 was critical for both heparin and cell binding. In addition, cell binding to domain VI was inhibited by heparin/heparan sulfate, which suggests an overlap of cell and heparin-binding sites. Furthermore, inhibition studies using integrin subunit monoclonal antibodies showed that integrin alpha(3)beta(1) was a major receptor for domain VI binding. Our results provide evidence that two sites spaced about 90 residues apart within the laminin alpha(5) chain N-terminal globular domain VI are critical for cell surface receptor binding.  相似文献   

9.
Laminin-1, a major component of the basement membrane, consists of three different chains, alpha1, beta1, and gamma1. We sought to identify cell adhesive sequences from the mouse laminin beta1 chain by testing HT-1080 fibrosarcoma and B16-F10 melanoma cells for binding to 187 overlapping synthetic peptides which covered the entire chain. Fourteen peptides showed cell adhesive activities with either peptide-conjugated Sepharose beads or peptide-coated plates or both. Additional cells, including neuronal, endothelial, and salivary gland cells, showed biological responses in a cell type-specific manner. B-7, B-133, and B-160 showed the most potent cell attachment. Cell binding on three peptides (B-34, B-133, and B-160) was inhibited by EDTA. Cell adhesion to 11 of the 12 active peptides was inhibited to varying degrees by heparin. Of the 17 active peptides identified in the laminin beta1 chain in this and other studies, 8 are clustered on the amino terminal globular domain, suggesting a possible important role in cell binding for this domain that may be multifunctional. These data demonstrate that the laminin beta1 chain has multiple active sites for cell adhesion, some of which are cell-type specific.  相似文献   

10.
The G domain of the laminin alpha chains consists of five homologous G modules (LG1-5) and has been implicated in various biological functions. In this study, we identified an active site for cell and heparin binding within the laminin alpha5 G domain using recombinant proteins and synthetic peptides. Recombinant LG4, LG5, and LG4-5 modules were generated using a mammalian expression system. The LG4 and LG4-5 modules were highly active for cell binding, whereas the LG5 module alone showed only weak binding. Heparin inhibited cell binding to the LG4-5 module, whereas no inhibition was observed with EDTA or antibodies against the integrin beta(1) subunit. These results suggest that the LG4-5 module interacts with a cell surface receptor containing heparan sulfate but not with integrins. Solid-phase assays and surface plasmon resonance measurements demonstrated strong binding of the LG4 and LG4-5 modules to heparin with K(D) values in the nanomolar range, whereas a 16-fold lower value was determined for the LG5 module. Treatment with glycosidases demonstrated that N-linked carbohydrates on the LG5 module are complex-type oligosaccharides. The LG4-5 module, devoid of N-linked carbohydrates, exhibited similar binding kinetics toward heparin. Furthermore, cell binding was unaffected by removal of N-linked glycosylation. To localize active sites on the LG4 module, various synthetic peptides were used to compete with binding of the tandem module to heparin and cells. Peptide F4 (AGQWHRVSVRWG) inhibited binding, whereas a scrambled peptide of F4 failed to compete binding. Alanine replacements demonstrated that one arginine residue within F4 was important for cell and heparin binding. Our results suggest a critical role of the LG4 module for heparan sulfate-containing receptor binding within the laminin alpha5 chain.  相似文献   

11.
Integrins and syndecans mediate cell adhesion to extracellular matrix and their synergistic cooperation is implicated in cell adhesion processes. We previously identified two active peptides, AG73 and EF1, from the laminin α1 chain LG4 module, that promote cell attachment through syndecan- and α2β1 integrin-binding, respectively. Here, we examined time-dependent cell attachment on the mixed peptides AG73/EF1. The AG73/EF1 promoted stronger and more rapid cell attachment, spreading, FAK phosphorylation that reached a maximum at 20 min than that on AG73 (40 min) or EF1 (90 min) supplied singly. Thus, the syndecan- and α2β1 integrin-binding peptides synergistically affect cells and accelerate cell adhesion.  相似文献   

12.
Laminin-2 promotes basement membrane assembly and peripheral myelinogenesis; however, a receptor-binding motif within laminin-2 and the downstream signaling pathways for motif-mediated cell adhesion have not been fully established. The human laminin-2 α2 chain cDNAs cloned from human keratinocytes and fibroblasts correspond to the laminin α2 chain variant sequence from the human brain. Individually expressed recombinant large globular (LG) 1 protein promotes cell adhesion and has heparin binding activities. Studies with synthetic peptides delineate the DLTIDDSYWYRI motif (Ln2-P3) within the LG1 as a major site for both heparin and cell binding. Cell adhesion to LG1 and Ln2-P3 is inhibited by treatment of heparitinase I and chondroitinase ABC. Syndecan-1 from PC12 cells binds to LG1 and Ln2-P3 and colocalizes with both molecules. Suppression of syndecan-1 with RNA interference inhibits cell adhesion to LG1 and Ln2-P3. The binding of syndecan-1 with LG1 and Ln2-P3 induces the recruitment of protein kinase Cδ (PKCδ) into the membrane and stimulates its tyrosine phosphorylation. A decrease in PKCδ activity significantly reduces cell adhesion to LG1 and Ln2-P3. Taken together, these results indicate that the Ln2-P3 motif and LG1 domain, containing the motif, within the human laminin-2 α2 chain are major ligands for syndecan-1, which mediates cell adhesion through the PKCδ signaling pathway.  相似文献   

13.
《FEBS letters》1996,396(1):37-42
The laminin α1 chain carboxyl-terminal globular domain (G domain) contains multiple biological activities. Recently, we identified five cell binding sequences from the G domain by screening with overlapping 12-mer peptides encompassing the entire domain. The structures of these five sequences in the α1 chain are conserved in the corresponding regions of the different laminin α chains. Here we characterize the adhesion activities of the corresponding peptide segments from both the mouse laminin α2 chain and Drosophila laminin α chain using peptide-coated plastic plates and peptide-conjugated Sepharose beads. Using several cell lines, the laminin α2 chain peptides showed cell attachment and/or spreading activities with cell type specificities. Cell spreading on MG-10 was inhibited by integrin antibodies. Four of the Drosophila laminin peptides showed cell attachment activities. These results suggest that biologically active regions in the G domain are conserved in the laminin α1 and α2 chains, and that these regions in laminin play an important role in cell surface receptor interactions.  相似文献   

14.
We studied the induction of protease activity by the laminin alpha1-derived peptide AG73 in cells from adenoid cystic carcinoma (CAC2) and myoepithelioma (M1), respectively a malignant and a benign salivary gland tumors. Laminin alpha1 chain and MMP9 were immunolocalized in adenoid cystic carcinoma and myoepithelioma in vivo and in vitro. Cells grown inside AG73-enriched laminin-111 exhibited large spaces in the extracellular matrix, suggestive of remodeling. The broad spectrum MMP inhibitor GM6001 decreased spaces induced by AG73 in CAC2 and M1 cells. This result strongly suggests that AG73-mediated matrix remodeling involves matrix metalloproteinases. CAC2 and M1 cells cultured on AG73 showed a dose-dependent increase of MMP9 secretion, as detected by zymography. Furthermore, siRNA silencing of MMP9 decreased remodeling in 3D cultures. We searched for AG73 receptors regulating MMP9 activity in our cell lines. CAC2 and M1 cells grown on AG73 exhibited colocalization of syndecan-1 and beta1 integrin. siRNA knockdown of syndecan-1 expression in these cells resulted in decreased adhesion to AG73 and reduced protease and remodeling activity. We investigated syndecan-1 co-receptors in both cell lines. Silencing beta1 integrin inhibited adhesion to AG73, matrix remodeling and protease activity. Double-knockdown experiments were carried out to further explore syndecan-1 and beta1 integrin cooperation. CAC2 cells transfected with both syndecan-1 and beta1 integrin siRNA oligos showed significant decrease in adhesion to AG73. Simultaneous silencing of receptors also induced a decrease in protease activity. Our results suggest that syndecan-1 and beta1 integrin signaling downstream of AG73 regulate adhesion and MMP production by CAC2 and M1 cells.  相似文献   

15.
The biological activities of the laminin α2 chain LG4–5 module result from interactions with cell surface receptors, such as heparan sulfate proteoglycans and α-dystroglycan. In this study, heparin and α-dystroglycan binding sequences were identified using 42 overlapping synthetic peptides from the LG4–5 module and using recombinant LG4–5 protein (rec-α2LG4–5). Physiological activities of the active peptides were also examined in explants of submandibular glands. Heparin binding screens showed that the A2G78 peptide (GLLFYMARINHA) bound to heparin and prevented its binding to rec-α2LG4–5. Furthermore, alanine substitution of the arginine residue in the A2G78 site on rec-α2LG4–5 decreased heparin binding activity. When α-dystroglycan binding of the peptides was screened, two peptides, A2G78 and A2G80 (VQLRNGFPYFSY), bound α-dystroglycan. A2G78 and A2G80 also inhibited α-dystroglycan binding of rec-α2LG4–5. A2G78 and A2G80 specifically inhibited end bud formation of submandibular glands in culture. These results suggest that the A2G78 and A2G80 sites play functional roles as heparan sulfate- and α-dystroglycan-binding sites in the module. These peptides are useful for elucidating molecular mechanisms of heparan sulfate- and/or α-dystroglycan-mediated biological functions of the laminin α2 chain.  相似文献   

16.
The laminin alpha3 chain LG4 module (alpha3LG4 module) has cell adhesion, heparin binding, migration, and neurite outgrowth activities. The LG4 module consists of a 14-stranded beta-sheet (A-N) sandwich structure. Previously, we identified the A3G756 sequence (KNSFMALYLSKGRLVFALG in the human laminin alpha3 chain 1411-1429) as a biologically active site in the alpha3LG4 module. The A3G756 sequence is located on the E and F strands based on a crystal structure-based sequence alignment. The Lys1421 and Arg1423 residues, critical amino acids for the biological activity of A3G756, are located on the E-F connecting loop region as a KGR sequence. In this study, we focused on the KGR sequence and investigated the structural requirements of the E-F connecting loop region in the alpha3LG4 module. We synthesized three linear peptides containing the KGR sequence at the middle and the N and C termini and also prepared three cyclic analogues corresponding to the linear peptides. cyclo-hEF3A (CLYLSKGRLVFAC), which is a cyclic peptide containing the KGR sequence at the middle, showed the strongest inhibitory effect on both the heparin binding and the cell attachment to the recombinant alpha3LG4 module protein. The cyclo-hEF3A peptide was more active for syndecan-4 binding and neurite outgrowth than the linear form. Furthermore, we found that the structure of cyclo-hEF3A is similar to that of the connecting E-F loop region in human laminin alpha3LG4 module by structural analysis using molecular dynamics simulations. These results suggest that the loop structure of the E-F connecting region of the alpha3LG4 module is important for its biological activities. The cyclo-hEF3A peptide may be useful for the development of therapeutic reagents especially for wound healing and nerve regeneration.  相似文献   

17.
Laminins, a multifunctional protein family of extracellular matrix, interact with various types of integrin. Here, integrin-mediated cell adhesive peptides have been systematically screened in the laminin α4 and α5 chain G domain peptide library consisting of 211 peptides by both the peptide-coated plastic plates and peptide-conjugated Sepharose bead assays using human dermal fibroblasts. Thirteen peptides promoted cell spreading and the activity was specifically inhibited by EDTA. Cell attachment to 11 peptides was inhibited by anti-integrin β1 antibody. Additionally, cell attachment to the A5G81 (AGQWHRVSVRWG) and A5G84 (TWSQKALHHRVP) peptides was specifically inhibited by anti-integrin α3 and α6 antibodies. These results suggest that the A5G81 and A5G84 peptides promote integrin α3β1- and α6β1-mediated cell attachment. Further, most of the integrin-mediated cell adhesive peptides are located in the loop regions in the G domains, suggesting that structure is important for the integrin specific recognition. Integrin binding peptides are useful for understanding laminin functions and have a potential to use for biomaterials and drug development.  相似文献   

18.
The carboxy-terminal globular domain (G-domain) of the laminin alpha1 chain has been shown to promote heparin binding, cell adhesion, and neurite outgrowth. In this study, we defined the potential sequences originating from the G-domain of laminin alpha1 chain which possess these functional activities. A series of peptides were synthesized from the G-domain, termed LG peptides (LG-1 to LG-6) and were tested for their various biological activities. In the direct [3H] heparin binding assays, LG-6 (residues 2,335-2,348: KDFLSIELVRGRVK) mediated high levels of [3H]heparin binding, and this peptide also directly promoted cell adhesion and spreading, including B16F10, M2, HT1080, and PC12 cells. The peptide LG-6 also promoted the neurite outgrowth of PC12 cells, mouse granule cells, and chick telencephalic cells. An anti-peptide LG-6 antibody inhibited laminin-1 and peptide LG-6-mediated cell adhesion and neurite outgrowth. Furthermore, an anti-integrin alpha2 antibody also inhibited the cell adhesion activity. These results suggest that peptide LG-6 plays a functional role as a heparin binding site in the G-domain of the laminin alpha1 chain, and this sequence was thus concluded to play a crucial role in regulating cell adhesion and spreading and neurite out-growth which is related to integrin alpha2.  相似文献   

19.
Cell adhesive peptides have been widely applied for therapeutic drugs, drug delivery systems, and biomaterials. Previously, we identified various cell adhesive sequences in the G domains of four laminin α chains (α2-α5) by the systematic soluble peptide screening. We also identified five cell-binding sequences in the laminin α1 chain G domain using synthetic peptide-polystyrene beads. Here, we re-screened cell adhesive peptides in the laminin α1 chain G domain by the systematic soluble peptides screening. The 110 soluble peptides were evaluated for their cell adhesive activities using human fibrosarcoma HT1080 cells and human dermal fibroblasts. Fourteen peptides were newly identified as a cell adhesive. Additionally, four peptides (AG22: SSFHFDGSGYAM, AG42: TFDLLRNSYGVRK, AG76: HQNQMDYATLQLQ, AG86: LGGLPSHYRARNI) promoted integrin-mediated cell adhesion. Further, neurite outgrowth activity with rat pheochromocytoma PC12 cells was evaluated and two peptides (AG20: SIGLWNYIEREGK, AG26: SPNGLLFYLASNG) were newly identified for neurite outgrowth activity. These results suggested that the systematic soluble peptides screening approach is an accurate and powerful strategy for finding biologically active sequences. The active sequences newly identified here could be involved in the biological functions of this domain. The active peptides are useful for evaluating molecular mechanisms of laminin-receptor interactions and for developing cell adhesive biomaterials.  相似文献   

20.
We have probed for active sites in the B1 chain of laminin using synthetic peptides comprising certain regions of its amino acid sequence as deduced from cDNA clones. An antibody to a 19-mer from domain III inhibited attachment of HT-1080 and CHO cells to laminin, while the peptide itself was inactive. A nearby peptide (CDPGYIGSR) from domain III with homology to epidermal growth factor was synthesized and found to be one of the principle sites in laminin mediating cell attachment, migration, and receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号