首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics of intermolecular interaction between reduced cytochrome c (Cyt c) protein and solvent during the protein-refolding process is studied by monitoring the time dependence of apparent diffusion coefficient (D) using the pulsed-laser-induced transient grating technique. The refolding was triggered by photoinduced reduction of unfolded Fe(III) Cyt c in 3.5 M guanidine hydrochloride (GdnHCl) solution and the change in the diffusion coefficient was monitored in time domain. The relationship between D and the protein conformations under equilibrium condition were investigated at various GdnHCl concentrations using a photolabeling reagent. The time dependence of the observed transient grating signal was analyzed using these data and two models: a continuous change model of the intermolecular interaction and a two-state model. It was found that the TG signals in various time ranges can be consistently reproduced well by the two-state model. The dynamics of D is expressed well by a single exponential function with a rate constant of 22 +/- 7 s(-1) in a whole time range. The folding process of Cyt c is discussed based on these observations.  相似文献   

2.
Equilibrium and kinetic folding studies of horse cytochrome c in the reduced state have been carried out under strictly anaerobic conditions at neutral pH, 10 degrees C, in the entire range of aqueous solubility of guanidinium hydrochloride (GdnHCl). Equilibrium unfolding transitions observed by Soret heme absorbance, excitation energy transfer from the lone tryptophan residue to the ferrous heme, and far-UV circular dichroism (CD) are all biphasic and superimposable, implying no accumulation of structural intermediates. The thermodynamic parameters obtained by two-state analysis of these transitions yielded DeltaG(H2O)=18.8(+/-1.45) kcal mol(-1), and C(m)=5.1(+/-0.15) M GdnHCl, indicating unusual stability of reduced cytochrome c. These results have been used in conjunction with the redox potential of native cytochrome c and the known stability of oxidized cytochrome c to estimate a value of -164 mV as the redox potential of the unfolded protein. Stopped-flow kinetics of folding and unfolding have been recorded by Soret heme absorbance, and tryptophan fluorescence as observables. The refolding kinetics are monophasic in the transition region, but become biphasic as moderate to strongly native-like conditions are approached. There also is a burst folding reaction unobservable in the stopped-flow time window. Analyses of the two observable rates and their amplitudes indicate that the faster of the two rates corresponds to apparent two-state folding (U<-->N) of 80-90 % of unfolded molecules with a time constant in the range 190-550 micros estimated by linear extrapolation and model calculations. The remaining 10-20 % of the population folds to an off-pathway intermediate, I, which is required to unfold first to the initial unfolded state, U, in order to refold correctly to the native state, N (I<-->U<-->N). The slower of the two observable rates, which has a positive slope in the linear functional dependence on the denaturant concentration indicating that an unfolding process under native-like conditions indeed exists, originates from the unfolding of I to U, which rate-limits the overall folding of these 10-20 % of molecules. Both fast and slow rates are independent of protein concentration and pH of the refolding milieu, suggesting that the off-pathway intermediate is not a protein aggregate or trapped by heme misligation. The nature or type of unfolded-state heme ligation does not interfere with refolding. Equilibrium pH titration of the unfolded state yielded coupled ionization of the two non-native histidine ligands, H26 and H33, with a pK(a) value of 5.85. A substantial fraction of the unfolded population persists as the six-coordinate form even at low pH, suggesting ligation of the two methionine residues, M65 and M80. These results have been used along with the known ligand-binding properties of unfolded cytochrome c to propose a model for heme ligation dynamics. In contrast to refolding kinetics, the unfolding kinetics of reduced cytochrome c recorded by observation of Soret absorbance and tryptophan fluorescence are all slow, simple, and single-exponential. In the presence of 6.8 M GdnHCl, the unfolding time constant is approximately 300(+/-125) ms. There is no burst unfolding reaction. Simulations of the observed folding-unfolding kinetics by numerical solutions of the rate equations corresponding to the three-state I<-->U<-->N scheme have yielded the microscopic rate constants.  相似文献   

3.
Molecular diffusion process after the photo-induced electron injection to ferric cytochrome c (Fe(III) cyt c) in guanidine hydrochloride (GdnHCl) 3.5 M buffer solution is studied by the time-resolved transient grating technique. Circular dichroism studies have revealed that Fe(III) cyt c is unfolded under this condition but the reduced form, Fe(II) cyt c, is folded. Hence, this pulsed laser-induced reduction should initiate the folding process of cyt c. The observed transient grating signal shows prominent features, which have never been observed before. Based on several characteristic points, we concluded that the apparent diffusion coefficient (D) of Fe(II) cyt c after the reduction is time dependent, which must be associated with the protein folding dynamics. This time-dependent apparent D should reflect either the continuous time development of the hydrodynamic radius or population change of the unfolded and folded states during the folding dynamics. This is the first observation of the time-dependent apparent D during any chemical reaction, and this time-dependent measurement of D should be a unique and powerful way to study the protein folding kinetics from a viewpoint of the protein's shape or the protein-water intermolecular interaction.  相似文献   

4.
5.
Refolding of the SH3 domain of PI3 kinase from the guanidine hydrochloride (GdnHCl)-unfolded state has been probed with millisecond (stopped flow) and sub-millisecond (continuous flow) measurements of the change in fluorescence, circular dichroism, ANS fluorescence and three-site fluorescence resonance energy transfer (FRET) efficiency. Fluorescence measurements are unable to detect structural changes preceding the rate-limiting step of folding, whereas measurements of changes in ANS fluorescence and FRET efficiency indicate that polypeptide chain collapse precedes the major structural transition. The initial chain collapse reaction is complete within 150 μs. The collapsed form at this time possesses hydrophobic clusters to which ANS binds. Each of the three measured intra-molecular distances has contracted to an extent predicted by the dependence of the FRET signal in completely unfolded protein on denaturant concentration, indicating that contraction is non-specific. The extent of contraction of each intra-molecular distance in the collapsed product of sub-millisecond folding increases continuously with a decrease in [GdnHCl]. The gradual contraction is continuous with the gradual contraction seen in completely unfolded protein, and its dependence on [GdnHCl] is not indicative of an all-or-none collapse reaction. The dependence of the extent of contraction on [GdnHCl] was similar for the three distances, indicating that chain collapse occurs in a synchronous manner across different segments of the polypeptide chain. The sub-millisecond measurements of folding in GdnHCl were unable to determine whether hydrophobic cluster formation, probed by ANS fluorescence measurement, precedes chain contraction probed by FRET. To determine whether hydrogen bonding plays a role in initial chain collapse, folding was initiated by dilution of the urea-unfolded state. The extent of contraction of at least one intra-molecular distance in the collapsed product of sub-millisecond folding in urea is similar to that seen in GdnHCl, and the initial contraction in urea too appears to be gradual.  相似文献   

6.
It is generally held that random-coil polypeptide chains undergo a barrier-less continuous collapse when the solvent conditions are changed to favor the fully folded native conformation. We test this hypothesis by probing intramolecular distance distributions during folding in one of the paradigms of folding reactions, that of cytochrome c. The Trp59-to-heme distance was probed by time-resolved Förster resonance energy transfer in the microsecond time range of refolding. Contrary to expectation, a state with a Trp59–heme distance close to that of the guanidinium hydrochloride (GdnHCl) denatured state is present after ~ 27 μs of folding. A concomitant decrease in the population of this state and an increase in the population of a compact high-FRET (Förster resonance energy transfer) state (efficiency > 90%) show that the collapse is barrier limited. Small-angle X-ray scattering (SAXS) measurements over a similar time range show that the radius of gyration under native favoring conditions is comparable to that of the GdnHCl denatured unfolded state. An independent comprehensive global thermodynamic analysis reveals that marginally stable partially folded structures are also present in the nominally unfolded GdnHCl denatured state. These observations suggest that specifically collapsed intermediate structures with low stability in rapid equilibrium with the unfolded state may contribute to the apparent chain contraction observed in previous fluorescence studies using steady-state detection. In the absence of significant dynamic averaging of marginally stable partially folded states and with the use of probes sensitive to distance distributions, barrier-limited chain contraction is observed upon transfer of the GdnHCl denatured state ensemble to native-like conditions.  相似文献   

7.
The kinetics of actin unfolding induced by guanidine hydrochloride has been studied. On the basis of obtained experimental data a new kinetic pathway of actin unfolding was proposed. We have shown that the transition from native to inactivated actin induced by guanidine hydrochloride (GdnHCl) passes through essential unfolding of the protein. This means that inactivated actin should be considered as the off-pathway species rather than an intermediate conformation between native and completely unfolded states of actin, as has been assumed earlier. The rate constants of the transitions that give rise to the inactivated actin were determined. At 1.0-2.0 M GdnHCl the value of the rate constant of the transition from native to essentially unfolded actin exceeds that of the following step of inactivated actin formation. It leads to the accumulation of essentially unfolded macromolecules early in the unfolding process, which in turn causes the minimum in the time dependencies of tryptophan fluorescence intensity, parameter A, characterizing the intrinsic fluorescence spectrum position, and tryptophan fluorescence anisotropy.  相似文献   

8.
Human tumor necrosis factor-alpha (TNF-alpha) is a trimeric protein consisting primarily of beta-sheet. GdnHCl-induced unfolding of TNF-alpha was investigated at room temperature by circular dichroism (CD) and size exclusion chromatography. The secondary and tertiary structure of TNF-alpha persisted up to 0.9N GdnHCl regardless of incubation time, but, in the range of 1.2 N to 2.1 N GdnHCl, there was loss of tertiary structure accompanied by the formation of an alpha-helix, as revealed by far- and near-UV CD spectra. The structural changes occurred gradually in 1.2 and 2.1 N GdnHCl, but were rapid in 1.5 and 1.8 N GdnHCl. The GdnHCl-induced state of TNF-alpha is an unfolded, alpha-helical aggregate of about 130 monomers, as shown by size exclusion chromatography. We suggest the most likely pathway for the transition from beta-sheet to alpha-helix.  相似文献   

9.
Pascher T 《Biochemistry》2001,40(19):5812-5820
Utilizing the stability difference between the ferro and ferri forms of horse heart cytochrome c (cyt c), folding of reduced cyt c was triggered by laser-induced reduction of unfolded oxidized cyt c. Measurements were made of the kinetics of the main folding phase (1 ms-10 s) in which collapsed reduced cyt c transforms to the native conformation. The folding rates were studied extensively as a function of temperature (5-75 degrees C) and guanidine hydrochloride (GdnHCl) concentration (1.6-4.9 M). At constant [GdnHCl], the Arrhenius plot of the folding rate constant (k) is nonlinear. At temperatures above 40 degrees C, the decrease in protein stability counteracts the expected increase in folding rate. Introducing free energy (DeltaG), derived from protein stability data, into the Eyring and Arrhenius equations leads to: ln k = ln(k(b)T/h) + DeltaS()/R - DeltaH()/RT - theta(m)DeltaG/RT = ln A - E(a)/RT - theta(m)DeltaG/RT, where theta(m) is the ratio between the denaturant dependence of the folding rate and the stability. By using this equation at constant DeltaG [or constant equilibrium constant (K)], linear Arrhenius plots are obtained. For the main folding phase of reduced cyt c, a positive DeltaS() is obtained indicating that the transition state is less ordered than the reactant. A model is proposed in which reduced cyt c first collapses into a compact intermediate, which needs to expand to reach the transition state of the rate-limiting folding reaction.  相似文献   

10.
The structure and dynamics of equilibrium intermediate in the unfolding pathway of the human acidic fibroblast growth factor (hFGF-1) are investigated using a variety of biophysical techniques including multidimensional NMR spectroscopy. Guanidinium hydrochloride (GdnHCl)-induced unfolding of hFGF-1 proceeds with the accumulation of a stable intermediate state. The transition from the intermediate state to the unfolded state(s) is cooperative without the accumulation of additional intermediate(s). The intermediate state induced maximally in 0.96 m GdnHCl is found to be obligatory in the folding/unfolding pathway of hFGF-1. Most of the native tertiary structure interactions are preserved in the intermediate state. (1)H-(15)N chemical shift perturbation data suggest that the residues in the C-terminal segment including those located in the beta-strands IX, X, and XI undergo the most discernible structural change(s) in the intermediate state in 0.96 m GdnHCl. hFGF-1 in the intermediate state (0.96 m GdnHCl) does not bind to its ligand, sucrose octasulfate. Limited proteolytic digestion experiments and hydrogen-deuterium exchange monitored by (15)N heteronuclear single quantum coherence (HSQC) spectra show that the conformational flexibility of the protein in the intermediate state is significantly higher than in the native conformation. (15)N spin relaxation experiments show that many residues located in beta-strands IX, X, and XI exhibit conformational motions in the micro- to millisecond time scale. Analysis of (15)N relaxation data in conjunction with the amide proton exchange kinetics suggests that residues in the beta-strands II, VIII, and XII possibly constitute the stability core of the protein in the near-native intermediate state.  相似文献   

11.
Bhuyan AK  Kumar R 《Biochemistry》2002,41(42):12821-12834
To determine the kinetic barrier in the folding of horse cytochrome c, a CO-liganded derivative of cytochrome c, called carbonmonoxycytochrome c, has been prepared by exploiting the thermodynamic reversibility of ferrocytochrome c unfolding induced by guanidinium hydrochloride (GdnHCl), pH 7. The CO binding properties of unfolded ferrocytochrome c, studied by 13C NMR and optical spectroscopy, are remarkably similar to those of native myoglobin and isolated chains of human hemoglobin. Equilibrium unfolding transitions of ferrocytochrome c in the presence and the absence of CO observed by both excitation energy transfer from the lone tryptophan to the ferrous heme and far-UV circular dichroism (CD) indicate no accumulation of structural intermediates to a detectable level. Values of thermodynamic parameters obtained by two-state analysis of fluorescence transitions are DeltaG(H2O) = 11.65(+/-1.13) kcal x mol(-1) and C(m) = 3.9(+/-0.1) M GdnHCl in the presence of CO, and DeltaG(H2O)=19.3(+/-0.5) kcal x mol(-1) and C(m) = 5.1(+/-0.1) M GdnHCl in the absence of CO, indicating destabilization of ferrocytochrome c by approximately 7.65 kcal x mol(-1) due to CO binding. The native states of ferrocytochrome c and carbonmonoxycytochrome c are nearly identical in terms of structure and conformation except for the Fe2+-M80 --> Fe2+-CO replacement. Folding and unfolding kinetics as a function of GdnHCl, studied by stopped-flow fluorescence, are significantly different for the two proteins. Both refold fast, but carbonmonoxycytochrome c refolds 2-fold faster (tau = 1092 micros at 10 degrees C) than ferrocytochrome c. Linear extrapolation of the folding rates to the ordinate of the chevron plot projects this value of tau to 407 micros. The unfolding rate of the former in water, estimated by extrapolation, is faster by more than 10 orders of magnitude. Significant differences are also observed in rate-denaturant gradients in the chevron. Formation and disruption of the Fe2+-M80 coordination contact clearly impose high-energy kinetic barriers to folding and unfolding of ferrocytochrome c. The unfolding barrier due to the Fe2+-M80 bond provides sufficient kinetic stability to the native state of ferrocytochrome c to perform its physiological function as an electron donor.  相似文献   

12.
The relationship between pH-induced conformational changes in iso-2 cytochrome c from Saccharomyces cerevisiae and the guanidine hydrochloride induced unfolding transition has been investigated. Comparison of equilibrium unfolding transitions at acid, neutral, and alkaline pH shows that stability toward guanidine hydrochloride denaturation is decreased at low pH but increased at high pH. In the acid range the decrease in stability of the folded protein is correlated with changes in the visible spectrum, which indicate conversion to a high-spin heme state--probably involving the loss of heme ligands. The increase in stability at high pH is correlated with a pH-induced conformational change with an apparent pK near 8. As in the case of homologous cytochromes c, this transition involves the loss of the 695-nm absorbance band with only minor changes in other optical parameters. For the unfolded protein, optical spectroscopy and 1H NMR spectroscopy are consistent with a random coil unfolded state in which amino acid side chains serve as (low-spin) heme ligands at both neutral and alkaline pH. However, the paramagnetic region of the proton NMR spectrum of unfolded iso-2 cytochrome c indicates a change in the (low-spin) heme-ligand complex at high pH. Apparently, the folded and unfolded states of the (inactive) alkaline form differ from the corresponding states of the less stable native protein.  相似文献   

13.
Aghera N  Earanna N  Udgaonkar JB 《Biochemistry》2011,50(13):2434-2444
To improve our understanding of the contributions of different stabilizing interactions to protein stability, including that of residual structure in the unfolded state, the small sweet protein monellin has been studied in both its two variant forms, the naturally occurring double-chain variant (dcMN) and the artificially created single-chain variant (scMN). Equilibrium guanidine hydrochloride-induced unfolding studies at pH 7 show that the standard free energy of unfolding, ΔG°(U), of dcMN to unfolded chains A and B and its dependence on guanidine hydrochloride (GdnHCl) concentration are both independent of protein concentration, while the midpoint of unfolding has an exponential dependence on protein concentration. Hence, the unfolding of dcMN like that of scMN can be described as two-state unfolding. The free energy of dissociation, ΔG°(d), of the two free chains, A and B, from dcMN, as measured by equilibrium binding studies, is significantly lower than ΔG°(U), apparently because of the presence of residual structure in free chain B. The value of ΔG°(U), at the standard concentration of 1 M, is found to be ~5.5 kcal mol(-1) higher for dcMN than for scMN in the range from pH 4 to 9, over which unfolding appears to be two-state. Hence, dcMN appears to be more stable than scMN. It seems that unfolded scMN is stabilized by residual structure that is absent in unfolded dcMN and/or that native scMN is destabilized by strain that is relieved in native dcMN. The value of ΔG°(U) for both protein variants decreases with an increase in pH from 4 to 9, apparently because of the thermodynamic coupling of unfolding to the protonation of a buried carboxylate side chain whose pK(a) shifts from 4.5 in the unfolded state to 9 in the native state. Finally, it is shown that although the thermodynamic stabilities of dcMN and scMN are very different, their kinetic stabilities with respect to unfolding in GdnHCl are very similar.  相似文献   

14.
Sridevi K  Udgaonkar JB 《Biochemistry》2002,41(5):1568-1578
The folding and unfolding rates of the small protein, barstar, have been monitored using stopped-flow measurements of intrinsic tryptophan fluorescence at 25 degrees C, pH 8.5, and have been compared over a wide range of urea and guanidine hydrochloride (GdnHCl) concentrations. When the logarithms of the rates of folding from urea and from GdnHCl unfolded forms are extrapolated linearly with denaturant concentration, the same rate is obtained for folding in zero denaturant. Similar linear extrapolations of rates of unfolding in urea and GdnHCl yield, however, different unfolding rates in zero denaturant, indicating that such linear extrapolations are not valid. It has been difficult, for any protein, to determine unfolding rates under nativelike conditions in direct kinetic experiments. Using a novel strategy of coupling the reactivity of a buried cysteine residue with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) to the unfolding reaction of barstar, the global unfolding and refolding rates have now been determined in low denaturant concentrations. The logarithms of unfolding rates obtained at low urea and GdnHCl concentrations show a markedly nonlinear dependence on denaturant concentration and converge to the same unfolding rate in the absence of denaturant. It is shown that the native protein can sample the fully unfolded conformation even in the absence of denaturant. The observed nonlinear dependences of the logarithms of the refolding and unfolding rates observed for both denaturants are shown to be due to the presence of (un)folding intermediates and not due to movements in the position of the transition state with a change in denaturant concentration.  相似文献   

15.
The energetic parameters for the folding of small globular proteins can be very different if derived from guanidine hydrochloride (GdnHCl) or urea denaturation experiments. A study of the equilibrium and kinetics of the refolding of wild-type (wt) cytochrome c(551) (cyt c(551)) from Pseudomonas aeruginosa and of two site-directed mutants (E70Q and E70V) shows that the nonionic nature of urea reveals the role of a salt bridge between residues E70 and K10 on the transition state, which is otherwise completely masked in GdnHCl experiments. Mixed denaturant refolding experiments allow us to conclude that the masking effect of GdnHCl is complete at fairly low GdnHCl concentrations ( congruent with 0.1 M). The fact that potassium chloride is unable to reproduce this quenching effect, together with the results obtained on the mutants, suggests a specific binding of the Gdn(+) cation, which involves the E70-K10 ion pair in wt cyt c(551).We propose, therefore, a simple kinetic test to obtain a mechanistic interpretation of nonlinear dependences of DeltaG(w) on GdnHCl concentration on the basis of kinetic refolding experiments in the presence of both denaturants.  相似文献   

16.
Stability and dynamics of the porcine odorant-binding protein   总被引:1,自引:0,他引:1  
The denaturation process of porcine odorant-binding protein (pOBP) was studied by intrinsic fluorescence analysis and far- and near-UV circular dichroism measurements. Our results showed that a reversible one-step process described the denaturation by GdnHCl. The midpoint of the transition, that is, the point where the free energies of protein in the native and unfolded states are equal, corresponds to 2.3 M GdnHCl. The difference in free energy between native and unfolded states of pOBP is -5.95 kcal/mol in the absence of GdnHCl, indicating that the protein molecule is very stable to the denaturing action of GdnHCl. A 15% increase in fluorescence intensity accompanied by a 25% decrease of fluorescence decay lifetime recorded in the range of 0.0-1.4 M GdnHCl was explained by the destruction of the complex between Trp 16 and the positively charged atom NZ of Lys 120, localized over the center of the Trp 16 indole ring, with concurrent formation of complex between Trp 16 and bound water molecules also located in its close vicinity.  相似文献   

17.
Thermally induced transition curves of hen egg-white lysozyme were measured in the presence of several concentrations of dextran at pH 2.0 by near-UV and far-UV CD. The transition curves were fitted to a two-state model by a non-linear, least-squares method to obtain the transition temperature (T(m)), enthalpy change (deltaH(u)(T(m))), and free energy change (deltaG(u)(T)) of the unfolding transition. An increase in T(m) and almost constant deltaH(u)(T(m)) values were observed in the presence of added dextran at concentrations exceeding ca 100 g l(-1). In addition, dextran-induced conformational changes of fully unfolded protein were investigated by CD spectroscopy. Addition of high concentrations of dextran to solutions of acid-unfolded cytochrome c at pH 2.0 results in a shift of the CD spectrum from that characteristic of the fully unfolded polypeptide to that characteristic of the more compact, salt-induced molten globule state, a result suggesting that the molten globule-like state is stabilized relative to the fully unfolded form in crowded environments. Both observations are in qualitative accord with predictions of a previously proposed model for the effect of intermolecular excluded volume (macromolecular crowding) on protein stability and conformation.  相似文献   

18.
Kinetic and equilibrium studies of the folding and unfolding of the SH3 domain of the PI3 kinase, have been used to identify a folding intermediate that forms after the rate-limiting step on the folding pathway. Folding and unfolding, in urea as well as in guanidine hydrochloride (GdnHCl), were studied by monitoring changes in the intrinsic fluorescence or in the far-UV circular dichroism (CD) of the protein. The two probes yield non-coincident equilibrium transitions for unfolding in urea, indicating that an intermediate, I, exists in equilibrium with native (N) and unfolded (U) protein, during unfolding. Hence, the equilibrium unfolding data were analyzed according to a three-state N ↔ I ↔ U mechanism. An intermediate is observed also in kinetic unfolding studies, and its presence leads to the unfolding reaction in urea as well as in GdnHCl, occurring in two steps. The fast step is complete within the initial 11 ms of unfolding and manifests itself in a burst phase change in fluorescence. At high concentrations of GdnHCl, the entire change in fluorescence during unfolding occurs during the 11 ms burst phase. CD measurements indicate, however, that I retains N-like secondary structure. An analysis of the kinetic and thermodynamic data, according to a minimal three-state N ↔ I ↔ U mechanism, positions I after the rate-limiting transition state, TS1, of folding, on the reaction coordinate of folding in GdnHCl. Hence, I is not revealed when folding is commenced from U, regardless of the nature of the probe used to follow the folding reaction. Interrupted unfolding experiments, in which the protein is unfolded transiently in GdnHCl for various lengths of time before being refolded, showed that I refolds to N much faster than does U, confirms the analysis of the direct folding and unfolding experiments, that I is formed after the rate-limiting step of refolding in GdnHCl.  相似文献   

19.
B R Rami  J B Udgaonkar 《Biochemistry》2001,40(50):15267-15279
Equilibrium and kinetic characterization of the high pH-induced unfolding transition of the small protein barstar have been carried out in the pH range 7-12. A mutant form of barstar, containing a single tryptophan, Trp 53, completely buried in the core of the native protein, has been used. It is shown that the protein undergoes reversible unfolding above pH 10. The pH 12 form (the D form) appears to be as unfolded as the form unfolded by 6 M guanidine hydrochloride (GdnHCl) at pH 7 (the U form): both forms have similar fluorescence and far-UV circular dichroism (CD) signals and have similar sizes, as determined by dynamic light scattering and size-exclusion chromatography. No residual structure is detected in the D form: addition of GdnHCl does not alter its fluorescence and far-UV CD properties. The fluorescence signal of Trp 53 has been used to monitor folding and unfolding kinetics. The kinetics of folding of the D form in the pH range 7-11 are complex and are described by four exponential processes, as are the kinetics of unfolding of the native state (N state) in the pH range 10.5-12. Each kinetic phase of folding decreases in rate with increase in pH from 7 to 10.85, and each kinetic phase of unfolding decreases in rate with decrease in pH from 12 to 10.85. At pH 10.85, the folding and unfolding rates for any particular kinetic phase are identical and minimal. The two slowest phases of folding and unfolding have identical kinetics whether measured by Trp 53 fluorescence or by mean residue ellipticity at 222 nm. Direct determination of the increase in the N state with time of folding at pH 7 and of the D form with time of unfolding at pH 12, by means of double-jump assays, show that between 85 and 95% of protein molecules fold or unfold via fast pathways between the two forms. The remaining 5-15% of protein molecules appear to fold or unfold via slower pathways, on which at least two intermediates accumulate. The mechanism of folding from the high pH-denatured D form is remarkably similar to the mechanism of folding from the urea or GdnHCl-denatured U form.  相似文献   

20.
The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号