首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for determination of serum triglycerides (Tgs) using lipase, glycerol kinase, glycerol-3-phosphate oxidase and peroxidase co-immobilized onto alkylamine glass beads (pore diameter 55 nm) through glutaraldehyde coupling was developed and evaluated. The minimum detection limit of the method was 0.54 mM. The analytical recovery of added triolein in the serum was 97.55 +/- 1.5% (mean +/- S.D.). The mean value of serum Tgs, determined by the present method showed a good correlation (r = 0.984) with the Bayer's kit method, employing free enzymes. The within and between batch coefficients of variation (CV) were < 2.25% and < 1.35% respectively. No significant loss of activity was observed, when co-immobilized enzymes were reused for about 200 times and stored at 4 degrees C in distilled water. The cost of Tg determination for 200 serum samples was less, as compared with Bayer's kit method.  相似文献   

2.
Glucose oxidase (GOD) from Aspergillus niger and horseradish peroxidase (POD) were co-immobilized onto arylamine glass beads affixed on a plastic strip with a conjugation yield of 28.2 mg/g and 43% retention of their initial specific activity. The coimmobilized enzymes showed maximum activity at pH 7.5 when incubated at 37 degrees C for 15 min. A simple, specific and sensitive method for discrete analysis of the serum glucose was developed employing this strip. The minimum detection limit of the method was 5 mg/dl. Within and between assay coefficient of variations for the serum were <5.6% and <10.6% (n = 6) respondely. A good correlation (r = 0.943) was found between the glucose values obtained by the enzyme colorimetric method employing free GOD and POD and the present method. The strip lost 50% of its initial activity after its 150 regular uses for a period of one month, when stored in reaction buffer at 4 degrees C. The method is cost-effective than the enzymic colorimetric method, as the enzyme strip is reusable.  相似文献   

3.
An immobilized enzyme system has been developed and employed to determine the concentration of sialic acid (N-acetylneuraminic acid) in human serum and urine. Two enzyme pairs, neuramindiase-Neu-5-Ac lyase and pyruvate oxidase-peroxidase, have been respectively co-immobilized onto 1,12-aminododecane-agarose with glutaraldehyde. The relative specific activity of the co-immobilized neuraminidase and Neu-5-Ac lyase were 60% and 78%, and those of pyruvate oxidase and peroxidase were 50% and 95% of the corresponding soluble enzymes, respectively. The optimal reaction pH at 37 degrees C for each of the co-immobilized enzymes was about one pH unit higher than that of the corresponding soluble enzyme. The optimal reaction temperature of each enzyme was increased as a result of immobilization. The thermal stability at 45 degrees C of the immobilized neuraminidase, Neu-5-Ac lyase, pyruvate oxidase, and peroxidase were increased 80-, 83-, 115-, and 147-fold, respectively. Km and Vm of each immobilized and co-immobilized enzyme have also been determined. The system provided a convenient and rapid method to determine the concentration of total sialic acid without pretreatment of the sample. The results correlated satisfactorily with those obtained by using a soluble enzyme system. The co-immobilized enzymes were stable for at least 1 year of 500 tests when used repeatedly. The system is thus a reproducible and reliable novel assay method for sialic acid in the serum or urine sample.  相似文献   

4.
A method for co-immobilizing lipase from porcine pancreas, glycerol kinase (GK) from Cellulomonas spp., glycerol-3-phosphate oxidase (GPO) from Aerococcus viridans and peroxidase from horseradish onto zirconia-coated alkylamine glass beads through glutaraldehyde coupling has been described. The co-immobilized enzymes retained 71.4% of initial specific activity with a conjugation yield of 43.6 mg/g support. The optimum pH and Km for triolein increased, while Vmax was decreased slightly, but incubation temperature for maximum activity remained unaltered after co-immobilization. The co-immobilized enzymes showed increased thermal and storage stabilities in cold, compared to their native form. Among the various metal salts tested, only CuSO4 caused inhibition of both free and co-immobilized enzymes. The co-immobilized enzymes showed better suitability over mixture of individually immobilized enzymes in determination of serum triglyceride.  相似文献   

5.
The co-immobilization of Aspergillus niger glucose oxidase (GOD) with bovine liver catalase (CAT) onto florisil (magnesium silicate-based porous carrier) was investigated to improve the catalytic efficiency of GOD against H2O2 inactivation. The effect of the amount of bound CAT on the GOD activity was also studied for 12 different initial combinations of GOD and CAT, using simultaneous and sequential coupling. The sequentially co-immobilized GOD-CAT showed a higher efficiency than the simultaneously co-immobilized GOD-CAT in terms of the GOD activity and economic costs. The highest activity was shown by the sequentially co-immobilized GOD-CAT when the initial amounts of GOD and CAT were 10 mg and 5 mg per gram of carrier. The optimum pH, buffer concentration, and temperature for GOD activity for the same co-immobilized GOD-CAT sample were then determined as pH 6.5, 50 mM, and 30 degrees C, respectively. When compared with the individually immobilized GOD, the catalytic activity of the co-immobilized GOD-CAT was 70% higher, plus the reusability was more than two-fold. The storage stability of the co-immobilized GOD-CAT was also found to be higher than that of the free form at both 5 degrees C and 25 degrees C. The increased GOD activity and reusability resulting from the co-immobilization process may have been due to CAT protecting GOD from inactivation by H2O2 and supplying additional O2 to the reaction system.  相似文献   

6.
分别采用海藻酸钠、明胶和壳聚糖为载体,并以戊二醛为交联剂,通过包埋-交联和吸附-交联两种耦合固定化方法制备固定化锰过氧化物酶。探讨了酶的不同固定化条件和固定化酶的部分性能。与游离酶相比,制备的3种固定化酶最适反应pH分别由7·0降低到5·0、5·0和3·0,最适反应温度分别由35℃升高到75℃、55℃和75℃。3种固定化酶的耐热性都显著提高,其中用壳聚糖制成的固定化酶在pH2·2~11的宽范围内表现出很好的酸碱耐受性。30℃连续测定6~9次酶活力,重复使用的3种固定化酶显示出良好的稳定性。将固定化酶应用在偶氮染料的脱色中,用明胶制成的固定化酶在静置和摇床条件下,以及用海藻酸钠制成的固定化酶在摇床条件下,均表现出与游离酶相近的脱色能力,并且在重复进行的摇床实验中,脱色能力未降低,反应前后的酶活力均没有损失。  相似文献   

7.
Freeze denaturation of enzymes and its prevention with additives   总被引:3,自引:0,他引:3  
Freeze inactivation of LDH, MDH, ADH, G-6-PDH, and PK and its prevention with additives such as sodium glutamate and albumin were studied. LDH, MDH, ADH, G-6-PDH, and PK, each lost their activity during frozen storage at -20 degrees C. The speed of the inactivation differed in each. The stability of the enzymes increased with the increase of the enzyme concentration. Sodium glutamate and albumin prevented the freeze inactivation. While the activity of the LDH solution frozen without additives was almost lost during a day of frozen storage, those frozen with either glutamate (0.2 M) or albumin (0.1%) added decreased less quickly. The residual activity after 1 day was 50% the initial prefreeze value for the former and 10% for the latter, respectively. Combined use of glutamate and albumin prevented the inactivation the best and maintained the initial activity almost completely over 6 weeks. The enzymes tested lost some part of their activity when their solutions were diluted by the media. This inactivation was prevented to a significant extent by the addition of sodium glutamate and/or albumin to the diluting media.  相似文献   

8.
We have developed a method for histochemical demonstration of a wide range of enzymes in freeze-dried, resin-embedded tissue. Freeze-dried tissue specimens were embedded without fixation at low temperature (4 degrees C or -20 degrees C) in glycol methacrylate resin or LR Gold resin. Enzyme activity was optimally preserved by embedding the freeze-dried tissue in glycol methacrylate resin. All enzymes studied (oxidoreductases, esterases, peptidases, and phosphatases), except for glucose-6-phosphatase, were readily demonstrated. The enzymes displayed high activity and were accurately localized without diffusion when tissue sections were incubated in aqueous media, addition of colloid stabilizers to the incubating media not being required. Freeze-drying combined with low-temperature resin embedding permits the demonstration of a wide range of enzymes with accurate enzyme localization, high enzyme activity, and excellent tissue morphology.  相似文献   

9.
The extremely halophilic archaeon, Halorhabdus utahensis, isolated from the Great Salt Lake, Utah, produced beta-xylanase and beta-xylosidase activities. Both enzymes were active over a broad NaCl range from near zero to 30% NaCl when tested with culture broth. A broad NaCl optimum was observed for beta-xylanase activity between 5% and 15% NaCl, while beta-xylosidase activity was highest at 5% NaCl. Almost half of the maximum activities remained at 27%-30% NaCl for both enzyme activities. When dialyzed culture supernatant and culture broth were employed for determination of beta-xylanase and beta-xylosidase stabilities, approximately 55% and 83% of the initial beta-xylanase and beta-xylosidase activities, respectively, remained after 24 h incubation at 20% NaCl. The enzymes were also shown to be slightly thermophilic; beta-xylanase activity exhibiting two optima at 55 degrees and 70 degrees C, while beta-xylosidase activity was optimal at 65 degrees C. SDS-PAGE and zymogram techniques revealed the presence of two xylan-degrading proteins of approximately 45 and 67 kDa in culture supernatants. To our knowledge, this paper is the first report on hemicellulose-degrading enzymes produced by an extremely halophilic archaeon.  相似文献   

10.
《Process Biochemistry》2010,45(10):1645-1651
Dextransucrase from Leuconostoc mesenteroides and dextranase from Penicillium lilacinum were co-immobilized and used to produce isomaltooligosaccharides from sucrose. The enzymes were co-immobilized by encapsulating soluble dextransucrase and dextranase covalently attached to Eupergit C in alginate (beads, fibers, and capsules). The alginate capsule co-immobilization was done in the presence of soluble starch and resulted in a high immobilization yield (71%), and the enzymes retained their activities during 20 repeated batch reactions and for a month in storage at 4 °C. The presence of starch was essential for the stability of dextransucrase in alginate capsules. Furthermore, it is important that the dextranase be pre-immobilized prior to alginate capsule co-immobilization to prevent dextranase leakage and inactivation of dextransucrase. The co-immobilized enzymes formed oligosaccharides from sucrose, which can be used as prebiotics. In addition, the oligosaccharides that were produced after the addition of sucrose reacted with the alginate fiber-encapsulted dextransucrase, thus increasing the amount of prebiotics. Co-immobilization in alginate fiber and beads also resulted in high yields (70 and 64%), but enzymatic activities decreased by 74 and 99%, respectively, after a month in storage at 4 °C. The newly developed alginate capsule method for co-immobilization of dextransucrase and dextranase is simple yet effective and has the potential for industrial-scale production of isomaltooligosaccharides.  相似文献   

11.
The stability of interleukin 6 (IL-6), its soluble receptor (sIL-6R), IL-10 and CC16 or uteroglobin (an endogenous cytokine inhibitor) in human serum was examined using an accelerated stability testing protocol according to the Arrhenius equation. Further, the effect of time delay between blood sampling and sample processing, clotting temperature and repeated freeze-thaw cycles on serum levels of these proteins were determined. Paired serum samples were stored at 4 degrees C, 20 degrees C, 30 degrees C and 40 degrees C for 1 to 21 days. We found that IL-6 and CC16 concentrations did not change at 4 degrees C, 20 degrees C and 30 degrees C. Interleukin-6 concentrations significantly declined after 11 days at 40 degrees C. The concentrations of sIL-6R and IL-10 did not change at 4 degrees C but significantly decreased at 20 degrees C (after 21 and 14 days respectively), 30 degrees C and 40 degrees C (after 1 day at both temperatures for both cytokines). Arrhenius-plots indicated that sIL-6R and IL-10 are stable for at least several years at -20 degrees C and -70 degrees C, respectively. Since their relative stability, no Arrhenius-plot could be calculated for IL-6 and CC16. The concentrations of the proteins examined were not significantly altered by repeated freeze-thaw cycles, nor by extended clotting times at 4 degrees C or 20 degrees C. We conclude that serum samples for the determination of IL-6, sIL-6R and CC16 can be stored at -20 degrees C for several years, but for IL-10 determinations, storage at -70 degrees C is recommended.  相似文献   

12.
A monosodium glutamate (MSG) biosensor made by co-immobilized L-glutamate oxidase (L-GLOD) and L-glutamate dehydrogenase (L-GLDH) as the bio-component based on substrate recycling for highly sensitive MSG or L-glutamate determination, has been developed. Regeneration of MSG by substrate recycling provided an amplification of the sensor response. Higher signal amplification was found in the presence of ammonium ion. The sensor was standardized to determine MSG in the range of 0.02-3.0 mg/L. Linearity was obtained from 0.02 to 1.2 mg/L in presence of ammonium ion (10 mM) and NADPH (reduced nicotinamide adenine dinucleotide phosphate) (2 mM), but in absence of L-GLDH, the detection limit of MSG is confined to 0.1 mg/L. The apparent Km for MSG with L-GLOD-L-GLDH coupled reaction was 0.4451 mM but 1.9222 mM when only L-GLOD was immobilized. Cross linking with glutaraldehyde in the presence of bovine serum albumin (BSA) as a spacer molecule has been used for the method of immobilization. The response time of the sensor was 2 min. The optimum pH and temperature of the biosensor has been determined as 7+/-2 and 25+/-2 degrees C, respectively. The enzyme immobilized on the membrane was used for over 50 measurements. The standard error of the sample measurement was 4-5%. The activity of the enzyme-immobilized membrane was tested over a period of 60 days.  相似文献   

13.
Adenosine is an important signaling molecule for many cellular events. Adenosine deaminase (ADA) is a key enzyme for the control of extra- and intra-cellular levels of adenosine. Activity of ADA was detected in hemolymph of B. glabrata and its optimum assay conditions were determined experimentally. The pH variation from 6.2 to 7.8 caused no significant change in ADA activity. Using adenosine as a substrate, the apparent Km at pH 6.8 was 734 micromols.L(-1). Highest activity was found at 37 degrees C. Standard assay conditions were established as being 15 minutes of incubation time, 0.4 microL of pure hemolymph per assay, pH 6.8, and 37 degrees C. This enzyme showed activities of 834 +/- 67 micromol.min(-1).L(-1) (25 degrees C) and 2029 +/- 74 micromol.min(-1).L(-1) (37 degrees C), exceeding those in healthy human serum by 40 and 100 times, respectively. Higher incubation temperature caused a decrease in activity of 20% at 43 degres C or 70% at 50 degrees C for 15 minutes. The ADA lost from 26% to 78% of its activity when hemolymph was pre-incubated at 50 degrees C for 2 or 15 minutes, respectively. Since the ADA from hemolymph presented high levels, it can be concluded that in healthy and fed animals, adenosine is maintained at low concentrations. In addition, the small variation in activity over the 6.2 to 7.8 range of pH suggests that adenosine is maintained at low levels in hemolymph even under adverse conditions, in which the pH is altered.  相似文献   

14.
Enzyme activity was determined in cultures of Pleurotus ostreatus and Trametes versicolor with cellulose as a sole C source and high C/N ratio. The fungi were able to grow and produce laccase and Mn-peroxidase (MnP) at 5-35 degrees C, the highest production being recorded at 25-30 degrees C in P. ostreatus and at 35 degrees C in T. versicolor. Production of both enzymes at 10 degrees C accounted only for 4-20% of the maximum value. Temperature optima for enzyme activity were 50 and 55 degrees C for P. ostreatus and T. versicolor laccases, respectively, and 60 degrees C for MnP. Temperatures causing 50% loss of activity after 24 h were 32 and 47 degrees C for laccases and 36 and 30 degrees C for MnP from P. ostreatus and T. versicolor, respectively.  相似文献   

15.
Phalaenopsis orchids are among the most valuable potted flowering crops commercially produced throughout the world because of their long flower life and ease of crop scheduling to meet specific market dates. During commercial production, Phalaenopsis are usually grown at an air temperature > or =28 degrees C to inhibit flower initiation, and a cooler night than day temperature regimen (e.g. 25/20 degrees C day/night) is used to induce flowering. However, the specific effect of day and night temperature on flower initiation has not been well described, and the reported requirement for a diurnal temperature fluctuation to elicit flowering is unclear. Two Phalaenopsis clones were grown in glass greenhouse compartments with constant temperature set points of 14, 17, 20, 23, 26, or 29 degrees C and fluctuating day/night (12 h/12 h) temperatures of 20/14, 23/17, 26/14, 26/20, 29/17, or 29/23 degrees C. The photoperiod was 12 h, and the maximum irradiance was controlled to < or =150 micromol m(-2) s(-1). After 20 weeks, > or =80% of plants of both clones had a visible inflorescence when grown at constant 14, 17, 20, or 23 degrees C and at fluctuating day/night temperatures of 20/14 degrees C or 23/17 degrees C. None of the plants were reproductive within 20 weeks when grown at a constant 29 degrees C or at 29/17 degrees C or 29/23 degrees C day/night temperature regimens. The number of inflorescences per plant and the number of flower buds on the first inflorescence were greatest when the average daily temperature was 14 degrees C or 17 degrees C. These results indicate that a day/night fluctuation in temperature is not required for inflorescence initiation in these two Phalaenopsis clones. Furthermore, the inhibition of flowering when the day temperature was 29 degrees C and the night temperature was 17 degrees C or 23 degrees C suggests that a warm day temperature inhibits flower initiation in Phalaenopsis.  相似文献   

16.
To improve the thermostability and catalytic activity of Aspergillus niger xylanase A (AnxA), its N-terminus was substituted with the corresponding region of Thermomonospora fusca xylanase A (TfxA). The constructed hybrid xylanase, named ATx, was overexpressed in Pichia pastoris and secreted into the medium. After 96-h 0.25% methanol induction, the activity of the ATx in the culture supernatant reached its peak, 633 U/mg, which was 3.6 and 5.4 times as high as those of recombinant AnxA (reAnxA) and recombinant TfxA (reTfxA), respectively. Studies on enzymatic properties showed that the temperature and pH optimum of the ATx were 60 degrees C and 5.0, respectively. The ATx was more thermostable, when it was treated at 70 degrees C, pH 5.0, for 2 min, the residual activity was 72% which was higher than that of reAnxA and similar to that of reTfxA. The ATx was very stable over a broader pH range (3.0-10.0) and much less affected by acid/base conditions. After incubation at pH 3.0-10.0, 25 degrees C for 1 h, all the residual activities of the ATx were over 80%. These results revealed that the thermostability and catalytic activity of the AnxA were enhanced. The N-terminus of TfxA contributed to the observed thermostability of itself and the ATx, and to the high activity of the ATx. Replacement of N-terminus between mesophilic eukaryotic and thermostable prokaryotic enzymes may be a useful method for constructing the new and improved versions of biologically active enzymes.  相似文献   

17.
Glucose oxidase (GOD) and catalase (CAT) were simultaneously co-immobilized onto magnesium silicate (florisil) by covalent coupling. Glucose was added in immobilization mixture and hydrogen peroxide which is the substrate of CAT was produced in coupling mixture during immobilization time. Therefore, co-immobilization of GOD and CAT was carried out in presence of both their substrate: glucose and hydrogen peroxide, respectively. The effect of glucose concentration in immobilization mixture on activities of GOD and CAT of co-immobilized samples were investigated. Maximum GOD and CAT activities were determined for samples co-immobilized in presence of 15 and 20 mM glucose, respectively. Co-immobilization of GOD and CAT in presence of their substrates highly improved the activity and reusability of both enzymes.  相似文献   

18.
High strength slaughterhouse wastewater was treated in four 42 l anaerobic sequencing batch reactors (ASBRs) operated at 30 degrees C, 25 degrees C and 20 degrees C. The wastewater contained between 30% and 53% of its chemical oxygen demand (COD) as suspended solids (SS). The ASBRs could easily support volumetric organic loading rates (OLRs) of 4.93, 2.94 and 2.75 kg/m3/d (biomass OLRs of 0.44, 0.42 and 0.14 g/g volatile SS (VSS)/d) at 30 degrees C, 25 degrees C, and 20 degrees C, respectively. At all operating temperatures, the total COD (TCOD) and soluble COD (SCOD) were reduced by over 92%, while average SS removal varied between 80% and 96%. Over the experimental period, 90.8%, 88.7% and 84.2% of the COD removed was transformed into methane at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The decrease in the conversion of the COD removed into methane as operating temperature was lowered, may be partly explained by a lower degradation of influent SS as temperature was reduced. The reactors showed a high average methanogenic activity of 0.37, 0.34 and 0.12 g CH4-COD/gVSS/d (22.4, 12.7 and 11.8 l/d) at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The average methane content in the biogas increased from 74.7% to 78.2% as temperature was lowered from 30 degrees C to 20 degrees C.  相似文献   

19.
Commercial enzymes, creatininase (CA) from Pseudomonas sp, creatinase (CI) from Pseudomonas sp, sarcosine oxidase (SO) from Bacillus sp were co-immobilized onto iron oxide nanoparticles/chitosan-graft-polyaniline (Fe(3)O(4)-NPs/CHIT-g-PANI) composite film electrodeposited on surface of Pt electrode through glutaraldehyde coupling. Transmission electron microscopy (TEM) was used for characterization of Fe(3)O(4)-NPs. A creatinine biosensor was fabricated using Enzymes/Fe(3)O(4)-NPs/CHIT-g-PANI/Pt electrode as working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode. The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopic and electrochemical impedance spectroscopy (EIS). The biosensor exhibited an optimum response within 2s at pH 7.5 and 30 °C, when polarized at 0.4V vs Ag/AgCl. The electrocatalytic response showed a linear dependence on creatinine concentration ranging from 1 to 800 μM. The sensitivity of the biosensor was 3.9 μA μM(-1) cm(-2), with a detection limit of 1 μM (S/N=3). Apparent Michaelis-Menton (K(m)) value for creatinine was 0.17 mM. The biosensor showed only 10% loss in its initial response after 120 uses over 200 days, when stored at 4 °C. The biosensor measured creatinine in the serum of apparently healthy persons which correlated well with a standard colorimetric method (r=0.99).  相似文献   

20.
The activity of the enzymes of the oxidative non-phosphorylated pathway, glucose and gluconate dehydrogenases, were not significantly affected by changes in the assay temperature. Both enzymes demonstrated only a threefold difference in activity when compared at assay temperatures of 30 degrees C and 5 degrees C. In contrast, the enzymes involved in the direct phosphorylation and catabolism of glucose or its oxidation products, gluconate and 2-ketogluconate, exhibited a more pronounced response to decreasing assay temperatures. At least one enzyme in each pathway, involved in the direct phosphorylation and catabolism of glucose or 2-ketogluconate (2KG), demonstrated an eightfold decrease in activity with a decrease in assay temperature from 30 degrees C to 5 degrees C. A similar decrease in assay temperature resulted in a fivefold decrease in activity of the enzymes involved in the direct phosphorylation and catabolism of gluconate. The observed differential effect of temperature on the activity of the enzymes of glucose catabolism and on the accumulation of direct oxidation products during growth with glucose in P. fluorescens E-20 is discussed. Growth with glucose at 5 or 20 degrees C resulted in high induced levels of all glucose-catabolizing enzymes examined when compared with the levels of these same enzymes in pyruvate-grown cells. However, only low levels of glucose dehydrogenase were detected during growth at 30 degrees C with glucose, gluconate, or 2-KG. Similarly, only low levels of gluconate dehydrogenase were detected during growth with glucose at 30 degrees C, although a weak induction was observed during growth with gluconate or 2-KG at 30 degrees C. The levels of 2-KG kinase plus KPG reductase during growth at 30 degrees C were undetectable with glucose, weakly induced with gluconate, and fully induced with 2-KG. High induced levels of glucose dehydrogenase, gluconate dehydrogenase, and 2-KG kinase plus KPG reductase were present during growth at 20 degrees C with glucose or 2-KG. The low levels of glucose and gluconate dehydrogenases present at a growth temperature of 30 degrees C was not due to heat lability of the enzymes at this temperature. The low amounts of these two enzymes during growth with glucose at 30 degrees C probably prevented sufficient inducer(s) formation from glucose to allow induction of enzymes of 2-KG catabolism. The results demonstrated that temperature may regulate the pathways of glucose dissimilation by regulating, either directly or indirectly, the activity and synthesis of the enzymes involved in these pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号