首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl parathion (MP), an organophosphate widely applied in agriculture and aquaculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The antioxidant roles of selenium (Se) were evaluated in Brycon cephalus exposed to 2 mg L(-1) of Folisuper 600 BR (MP commercial formulation - MPc, 600 g L(-1)) for 96 h. Catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) levels in the gills, white muscle and liver were evaluated in fish fed on diets containing 0 or 1.5 mg Se kg(-1) for 8 weeks. In fish treated with a Se-free diet, the MPc exposure increased SOD and CAT activities in all tissues. However, the GPx activity decreased in white muscle and gills whereas no alterations were observed in the liver. MPc also increased GST activity in all tissues with a concurrent decrease in GSH levels. LPO values increased in white muscle and gills and did not change in liver after MPc exposure. A Se-supplemented diet reversed these findings, preventing increases in LPO levels and concurrent decreases in GPx activity in gills and white muscle. Similarly, GSH levels were maintained in all tissue after MPc exposure. These results suggest that dietary Se supplementation protects cells against MPc-induced oxidative stress.  相似文献   

2.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

3.
The aim of the present work was to evaluate the effect of the water soluble fraction of hydrocarbons (WSF) on the antioxidant status of the freshwater prawn Macrobrachium borellii. First, seasonal variations were studied in a non-polluted area. Hepatopancreas and gills showed season-related fluctuations in catalase (CAT), glutathione-S-transferase (GST) activities and in lipid peroxidation levels (LPO), but not in superoxide dismutase (SOD). Then, adults were exposed semi-statically to sublethal doses for 7days. CAT, SOD, GST, and glutathione peroxidase (GPx) activities and LPO, reduced glutathione (GSH) and protein oxidation (PO) levels were determined. Exposed individuals showed significant increases in CAT, SOD, and GST activities in hepatopancreas and CAT activity in gills. GPx activity did not vary in either tissues. While LPO levels increased, GSH levels decreased significantly in hepatopancreas of exposed animals, but PO levels showed no variation. Induction of SOD was also assessed by Real-time PCR mRNA expression in hepatopancreas. The non-enzymatic antioxidant activity was also tested; ABTS 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) was higher in hemolymph of treated-prawns compared to controls, but ferric reducing activity of plasma assay (FRAP) values did not change. Taken together, the present results indicated that the antioxidant defenses of M. borellii, mainly in hepatopancreas, were significantly affected by aquatic hydrocarbon contamination, regardless of the season.  相似文献   

4.
Methyl parathion (MP) is an organophosphorus insecticide used worldwide in agriculture and aquaculture due to its high activity against a broad spectrum of insect pests. The effect of a single exposure to 2 mg L(- 1) of a commercial formulation of MP (MPc: Folisuper 600(R), MP 600 g L(- 1)) on catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) of the liver, white muscle and gills of Brycon cephalus was evaluated after 96 h of treatment. MPc exposure resulted in a significant induction of SOD, CAT and GST activity in all tissues. However, the GPx activity decreased significantly in white muscle and gills, whereas no alterations were observed in hepatic GPx activity. MPc also induced a significant increase in LPO values in the white muscle and gills, while hepatic LPO levels did not show any significant alteration. The current data suggest that MPc has oxidative-stress-inducing potential in fish, and that gills and white muscle are the most sensitive organs of B. cephalus, with poor antioxidant potentials. The various parameters studied in this investigation can also be used as biomarkers of exposure to MPc.  相似文献   

5.
为研究维生素C多聚磷酸酯对小鼠肝脏脂质过氧化物和抗氧化物酶的影响 ,我们设置了 4个实验组 ,采用 2 4只小鼠 ,饵料中 35 %维生素C多聚磷酸酯的添加量依次为 0、 5 0 0、 2 5 0 0和 5 0 0 0mg/kg ,喂食 4周后取其肝脏 ,用硫代巴比妥酸分光光度测脂质过氧化物的含量 ,用亚硝酸盐形成法测定超氧化物歧化酶的活性 ,用分光光度法测过氧化氢酶和谷胱甘肽过氧化物酶的活性。结果表明 ,维生素C多聚磷酸酯对小鼠肝脏脂质过氧化物没有明显影响 ,但随着维生素C多聚磷酸酯添加量的增加 ,脂质过氧化物有减少的趋势。维生素C多聚磷酸酯添加量为 2 5 0 0和 5 0 0 0mg/kg的两组 ,其超氧化物歧化酶的活性明显高于对照组和维生素C多聚磷酸酯添加量为 5 0 0mg/kg组 ;过氧化氢酶的活性明显高于对照组。维生素C多聚磷酸酯添加量为5 0 0 0mg/kg组 ,其谷胱甘肽过氧化物酶的活性明显高于其它三组。表明高剂量的维生素C多聚磷酸酯能促进小鼠抗氧化物酶的活性 ,但促进不同抗氧化物酶活性所需的维生素C多聚磷酸酯的量不同  相似文献   

6.
In type-1 diabetes mellitus (T1DM) with diabetic nephropathy (DN), accumulation of abnormal proteins in the kidney and other tissues may derive from constitutive alterations of intracellular protein recognition, assembly, and turnover. We characterized the proteins involved in these functions in cultured skin fibroblasts from long-term T1DM patients with [DN+] or without [DN-] nephropathy but similar metabolic control, and from matched healthy subjects. 2-D gel electrophoresis and MS-MALDI analysis were employed. The [DN+] T1DM patients, compared with the two other groups, exhibited increased abundance of a high-molecular weight isoform of protein disulphide-isomerase A3 and a decrease of two low-molecular weight isoforms. They also had increased levels of heat shock protein (HSP) 60 kDa isoform #A4, of HSP71 kDa isoform #A30, and of HSP27 kDa isoform #6, whereas the HSP27 kDa isoforms #A90 and #A71 were decreased. Cathepsin beta-2 (#40), the cation-independent mannose 6-phosphate receptor binding protein 1 (CIMPR) (#A27), and annexin 2 (#A9) were also decreased in the [DN+] T1DM patients, whereas the RNA-binding protein regulatory subunity (#38) and the translationally-controlled tumor protein (TCTP) (#A45) were increased. These changes of chaperone-like proteins in fibroblasts may highlight those of the kidney and be patho-physiologically related to the development of nephropathy in T1DM.  相似文献   

7.
Excessive generation of reactive oxygen species (ROS) can induce oxidative damage to vital cellular molecules and structures including DNA, lipids, proteins, and membranes. Recently, melatonin has attracted attention because of their free radical scavenging and antioxidant properties. The aim of this study was to evaluate the possible protective role of melatonin against atrazine-induced oxidative stress in rat erythrocytes in vivo. Adult male albino rats of Wistar strain were randomly divided into four groups. Control group received isotonic saline; melatonin (10 mg/kg bw/day) group; atrazine (300 mg/kg of bw/day) group; atrazine + melatonin group. Oral administration of atrazine and melatonin was given daily for 21 days. Oxidative stress was assessed by determining the glutathione (GSH) and malondialdehyde (MDA) level, and alteration in antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), and glucose-6-phosphate dehydrogenase (G-6-PD) in the erythrocytes of normal and experimental animals. A significant increase in the MDA levels and decrease in the GSH was observed in the atrazine treated animals (P < 0.05). Also, significant increase in the activities of SOD, CAT, GPx, and GST were observed in atrazine treated group compared to controls (P < 0.05). Moreover, significant decrease in protein, total lipids, cholesterol, and phospholipid content in erythrocyte membrane were demonstrated in atrazine treated rats. Administration of atrazine significantly inhibits the activities of G-6-PD and membrane ATPases such as Na(+)/K(+)-ATPase, Mg(2+)-ATPase, and Ca(2+)-ATPase (P < 0.05). Scanning electron microscopic (SEM) examination of erythrocytes revealed morphological alterations in the erythrocytes of atrazine treated rats. Furthermore, supplementation of melatonin significantly modulates the atrazine-induced changes in LPO level, total lipids, total ATPases, GSH, and antioxidant enzymes in erythrocytes. In conclusion, the increase in oxidative stress markers and the concomitant alterations in antioxidant defense system indicate the role of oxidative stress in erythrocytes of atrazine-induced damage. Moreover, melatonin shows a protective role against atrazine-induced oxidative damage in rat erythrocytes.  相似文献   

8.
1,2-dimethylhydrazine (DMH) is a colon carcinogen which undergoes oxidative metabolism in the liver. We have investigated the modulatory effect of fenugreek seeds (a spice) on colon tumor incidence as well as hepatic lipid peroxidation (LPO) and antioxidant status during DMH-induced colon carcinogenesis in male Wistar rats. In DMH treated rats, 100% colon tumor incidence was accompanied by enhanced LPO and a decrease in reduced glutathione (GSH) content as well as a fall in glutathione peroxidase (GPx), glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) activities. Inclusion of fenugreek seed powder in the diet of DMH treated rats reduced the colon tumor incidence to 16.6%, decreased the LPO and increased the activities of GPx, GST, SOD and CAT in the liver. We report that fenugreek modulates DMH-induced hepatic oxidative stressduring colon cancer  相似文献   

9.
Succinic acid monoethyl ester (EMS) was recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. In the present study the effect of EMS and metformin on erythrocyte membrane bound enzymes and antioxidants activity in plasma and erythrocytes of streptozotocin-nicotinamide induced type 2 diabeteic model was investigated. Succinic acid monoethyl ester was administered intraperitonially for 30 days to control and diabetic rats. The effect of EMS on glucose, insulin, hemoglobin, glycosylated hemoglobin, TBARS, hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (Gpx), glutathione-S-transferase (GST), vitamins C and E, reduced glutathione (GSH) and membrane bound enzymes were studied. The effect of EMS was compared with metformin, a reference drug. The levels of glucose, glycosylated hemoglobin, TBARS, hyderoperoxide, and vitamin E were increased significantly whereas the level of insulin and hemoglobin, as well as antioxidants (SOD, CAT, Gpx, GST, vitamin C and GSH) membrane bound total ATPase, Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase were decreased significantly in streptozotocin-nicotinamide diabetic rats. Administration of EMS to diabetic rats showed a decrease in the levels of glucose, glycosylated hemoglobin, lipid peroxidation markers and vitamin E. In addition the levels of insulin, hemoglobin, enzymic antioxidants, vitamin C, and GSH and the activities of membrane bound enzymes also were increased in EMS and metformin treated diabetic rats. The present study indicates that the EMS possesses a significant beneficial effect on erythrocyte membrane bound enzymes and antioxidants defense system in addition to its antidiabetic effect.  相似文献   

10.
Thirty-two barrows (Duroc x Landrace x Yorkshire) were randomly divided into four groups, each of which included eight pigs. The groups received the same basal diet supplemented with 0, 100, 250 and 400mg/kg fluoride, respectively. The malondialdehyde (MDA) and glutathione (GSH) levels, antioxidant enzymes activities and zinc/copper superoxide dismutase (Cu/Zn SOD) mRNA content in the liver were determined to evaluate the fluoride hepatic intoxication. Results showed the increased lipid peroxides (LPO) level and the reduced GSH content, along with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px). Moreover, the level of hepatic Cu/Zn SOD mRNA was also significantly reduced. We suggest the mechanism of fluoride injuring the liver as follows: fluoride causes a decrease in Cu/Zn SOD mRNA and the reduced activities of antioxidant enzymes, leads to the declined ability of scavenging free radicals with excessive production of LPO, which seriously damages the hepatic structure and function.  相似文献   

11.
The extent of brain injury during reperfusion appears to depend on the experimental pattern of ischemia/reperfusion. The goals of this study were: first, to identify the rate of free radicals generation and the antioxidant activity during ischemia and reperfusion by means of biochemical measurement of lipid peroxidation (LPO) and both enzymatic (superoxid dismutase - SOD, catalase - CAT, glutathion peroxidase - GPx) and non-enzymatic antioxidants activity (glutathione - GSH); and second, to try to find out how the pattern of reperfusion may influence the balance between free radical production and clearance. Wistar male rats were subject of four-vessel occlusion model (Pulsinelly & Brierley) cerebral blood flow being controlled by means of two atraumatic arterial microclamps placed on carotid arteries. The level of free radicals and the antioxidant activity were measured in ischemic rat brain tissue homogenate using spectrophotometrical techniques. All groups subjected to ischemia shown an increase of LPO and a reduction of the activity of enzymatic antioxidative systems (CAT, GPx, SOD) and non-enzymatic systems (GSH). For both groups subjected to ischemia and reperfusion, results shown an important increase of LPO but less significant than the levels found in the group with ischemia only. Statistically relevant differences (p<0.01) between continuous reperfusion and fragmented reperfusion were observed concerning the LPO, CAT, SOD and GSH levels, oxidative aggresion during fragmented reperfusion being more important.  相似文献   

12.
The antiulcerogenic effect of diffractaic acid (DA) isolated from Usnea longissima, a lichen species, on indomethacin (IND)-induced gastric lesions was investigated in rats. Administration of 25, 50, 100 and 200 mg/kg doses of DA and ranitidine (RAN) (50 mg/kg dose) reduced the gastric lesions by 43.5%, 52.9%, 91.4%, 96.7% and 72.7%, respectively. It is known that oxidative stress leads to tissue injury in organisms. Thus, in all treated groups of rats, the in vivo activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and the levels of reduced glutathione (GSH) and lipid peroxidation (LPO) were evaluated. IND caused oxidative stress, which resulted in LPO in tissues, by decreasing the levels of GPx, SOD and GSH as compared to healthy rats. In contrast to IND, the administration of DA and RAN showed a significant decrease in LPO level and an increase in tissue SOD, GPx and GSH levels. However, while CAT activity was significantly increased by the administration of IND, the administration of DA and RAN decreased CAT activity. The administration of IND also increased the myeloperoxidase (MPx) activity, which shows neutrophil infiltration into the gastric mucosal tissues. In contrast to IND, the administration of DA and RAN decreased MPx activity. The changes in activities of gastric mucosal nitric oxide synthases (NOS) throughout the development of gastric mucosal damage induced by IND were also studied. A decrease in constitutive NOS (cNOS) activity and an increase in inducible NOS (iNOS) activity were determined in gastric damaged tissues induced by IND. The administration of DA (100 mg/kg dose) and RAN reversed the activities of iNOS and cNOS. These results suggest that the gastroprotective effect of DA can be attributed to its enhancing effects on antioxidant defense systems as well as reducing effects of neutrophil infiltration.  相似文献   

13.
In this study, we have investigated the effect of the nutritive phytochemicals, indole-3-carbinol (I3C) and its metabolite, 3, 3′- diindolylmethane (DIM) on oxidative stress developed in type 2 diabetes mellitus (T2DM). This work was carried out in the genetically modified mouse (C57BL/6J mice) that closely simulated the metabolic abnormalities of the human disease after the administration of high fat diet (HFD). Glucose, insulin, hemoglobin (Hb), glycated hemoglobin (HbA1c), thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), conjugated dienes (CD), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), vitamin C, vitamin E, and reduced glutathione (GSH) levels were monitored in all the groups. Treatments positively modulate the glucose, insulin, and Hb and HbA1c levels in HFD mice. TBARS, LOOH, and CD were decreased in treatment groups when compared to the HFD group. Treatments increase SOD, CAT, GPx levels (erythrocyte, liver, kidney, and heart) and vitamin C, vitamin E, and GSH levels (plasma, liver, kidney, and heart) in diabetic mice. From the study, it was clear that the antioxidant-scavenging action were accelerated in mice treated with DIM than the I3C treatment group which was comparable with the standard drug metformin.  相似文献   

14.
The purpose of this study was to determine the effect of urinary tract infection (UTI) on antioxidant systems and lipid peroxidation (LPO) levels during pregnancy. We also investigated if these antioxidant systems and LPO levels differed in each trimester. One hundred forty-three nonpregnant women, as a control group, and 77 pregnant women were included in the study. Urine cultures were performed according to standard techniques. Catalase (CAT), superoxide dismutase (SOD), and LPO levels were measured using a spectrophotometer. UTI was observed in 14 of 77 pregnant women and the isolated microorganisms were Escherichia coli, Klebsiella pneumoniae, and Staphylococcus saprophyticus. CAT, SOD, and LPO levels were increased in pregnant women compared with nonpregnant women (P<.01). CAT, SOD activities, and LPO levels were increased from the first trimester to the third trimester in pregnancy without UTI. However, CAT and SOD activities were decreased, LPO levels were increased from the first trimester to the third trimester in pregnancy with UTI (P<.01). Pregnancy causes oxidative stress and also UTI during pregnancy may aggravate oxidative stress.  相似文献   

15.
Chronic lymphocytic leukemia (CLL) is a neoplastic disease susceptible to antioxidant enzyme alterations and oxidative stress. We have examined the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the oxidized/reduced glutathione (GSSG/GSH) ratio together with the levels of malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lymphocytes of CLL patients and compared them with those of normal subjects of the same age. SOD and CAT activity decreased in CLL lymphocytes while GPx activity increased. GSH content of CLL lymphocytes also increased, and GSSG concentration remained constant. Thus, a reduced GSSG/GSH ratio was obtained. The oxidation product MDA, and the damaged DNA base 8-oxo-dG were also increased in CLL. The observed changes in enzyme activities, GSSG/GSH ratio, and MDA were significantly enhanced as the duration of the disease increased in years. The results support a predominant oxidative stress status in CLL lymphocytes and emphasize the role of the examined parameters as markers of the disease evolution.  相似文献   

16.
Pineal glands secrets melatonin and various proteins and peptides which has many physiological functions. In keeping with this view, present experiment was conducted to know the effect of buffalo (Bubalus bubalis) pineal proteins (PP) at different dose level on fluoride-induced changes in plasma biochemicals and blood antioxidants enzymes in female rats. For this, we took 30 adult female Wistar rats (133–145 g body weights, BW) and divided into five groups (control, group I; 150 ppm fluoride (F), group II; F+ 50 µg pineal proteins, group III; F+ 100 µg PP, group IV; F+ 200 µg PP, group V). We administered fluoride (150 ppm, drinking water) and F+ pineal proteins at 50, 100, and 200 µg/kg BW, i.p. daily for 21 days. Blood samples were collected at the end of the experiments to estimate plasma glucose, proteins, F, lipid peroxidation (LPO), alkaline phosphatase (ALP), and acetyl cholinesterase (AChE) activity. Red blood cells (RBCs) were separated for analysis of LPO, AChE, catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR) in different groups of animals. Total plasma glucose and protein level did not significantly change in F-treated rats. Plasma ALP and F level were significantly (p?<?0.05) high in group II as compared with control and groups III, IV, and V. Administration of PP at different dose level significantly (p?<?0.05) reduced the F concentration and ALP activity. Plasma and RBCs AChE activity was significantly (p?<?0.05) reduced in F-treated animals as compared with control rats and significantly (p?<?0.05) elevated on exogenous administration of PP (groups III and IV). Plasma and RBCs LPO level was significantly (p?<?0.05) high in F-alone-treated rats, and PP caused significant (p?<?0.05) reduction of LPO in groups IV and V. However, PP treatment in group IV brought better amelioration of F-induced high LPO than in groups III and V. At no dose level, PP-ameliorated F-induced depression of RBCs GSH, CAT, GR, and GPx level. Interestingly, SOD activity was elevated in dose-dependent manner at different dose level of PP in groups III, IV, and V than control and F-administered rats. These findings clearly indicate the beneficial effects of buffalo pineal proteins on fluoride-induced adverse changes in certain plasma biochemical and blood antioxidant systems of rats. It further indicates that PP has dose-dependent ameliorative function against F-induced adverse effects in plasma and blood.  相似文献   

17.
The induction of defense systems against metal exposure was investigated in 48 wild-growing fruiting bodies of the king bolete (Boletus edulis) from two areas polluted with several transition metals from smelters, as well as five reference areas. To determine the degree of metal exposure, cadmium (Cd), zinc (Zn), and copper (Cu) were determined in caps of fruiting bodies by atomic absorption spectrophotometry (AAS), whereas mercury (Hg) was determined by cold vapor atomic fluorescence spectrometry (CVAFS). Caps were analyzed further with respect to relative activities of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), as well as concentrations of total glutathione (GSHTOT = GSH + GSSG) and relative concentrations of heat shock protein 70 kDa (HSP70). The results showed that concentrations of the four metals, as well as SOD, CAT and HSP70, were significantly elevated in the exposed group (Mann-Whitney, P < or = 0.001). In contrast, GSHTOT was significantly lowered in the exposed group (P < or = 0.05). Significant positive correlations were established between concentrations of Cd, Zn, Hg, or Cu and activities of SOD (Spearman's P < or = 0.01 for the association between SOD and Cd, P < or = 0.001 for all other metal exposure parameters), CAT (P < or = 0.001 for all exposure parameters), or expression of HSP70 (P < or = 0.001 for all exposure parameters). Significant negative correlations were found between total GSH and Cd (P < or = 0.001), Zn (P < or = 0.001), or Hg (P < or = 0.05). We conclude that antioxidant enzymes are induced in wild-growing B. edulis exposed to environmentally relevant concentrations of potentially toxic transition metals; whereas the net consumption of GSH that occurs with increasing metal exposure may reflect GSH consumption by mechanisms of metal detoxification. Finally, the induction of HSP70 suggests that the antioxidant response and the mechanisms in which GSH is consumed are insufficient for protection against the harmful effects of severe metal stress.  相似文献   

18.
A wide number of pesticides, including highly persistent organochlorine compounds, such as lindane (γ-Hexachlorocyclohexane), have deteriorative effect on fauna and flora by inducing oxidative stress. Lindane induces cell damage by producing free radicals and reactive oxygen species. Quercetin, a dietary flavonoid, is ubiquitous in fruits and vegetables and plays an important role in human health by virtue of its antioxidant function. In this study the flavonoid quercetin was used to investigate its antioxidative effect against lindane induced oxidative stress in rats. The level of lipid peroxidation, reduced glutathione (GSH) were analysed in addition to the antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione-s-transferase (GST) activities in the liver and kidney tissue. Levels of hepatic marker enzymes in serum like Aspartate transaminase (AST), Alanine transaminase (ALT), Alkaline phosphatase (ALP) and Lactate dehydrogenase (LDH) and renal markers like serum creatinine and serum urea were estimated. Administration of Lindane induced histopathological alterations and increased levels of serum hepatic and renal markers and malondialdehyde (MDA) with a significant decrease in GSH content and CAT, SOD, GPx and GST activities. Cotreatment of quercetin along with lindane significantly decreased the lindane induced alteration in histology, serum hepatic and renal markers and MDA and also improved the cellular antioxidant status. The results show that Quercetin ameliorates Lindane induced oxidative stress in liver and kidney. The quercetin exhibited chemopreventive effect when administered along with lindane.  相似文献   

19.
Rodrigo R  Rivera G  Orellana M  Araya J  Bosco C 《Life sciences》2002,71(24):2881-2895
This study evaluated the antioxidant defense system of the rat kidney following chronic exposure to red wine rich in flavonols. Both ethanol and antioxidant non-alcoholic wine components, mainly polyphenols, could contribute to the antioxidant status of kidney. Adult rats were given separately, water, ethanol (12.5%), red wine or alcohol-free red wine. After ten weeks of treatment, blood samples were obtained to determine plasma antioxidant capacity (FRAP, ferric reducing ability of plasma), uric acid and ethanol levels. Kidney tissues (cortex and papilla) were separated to perform measurements of reduced glutathione (GSH), glutathione disulfide (GSSG), lipid peroxidation (malondialdehyde, MDA) and the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). The activity of (Na + K)-ATPase, a membrane-bound enzyme, was also assessed. Red wine in plasma, elevated the FRAP without changing the concentration of uric acid; in kidney, it diminished the MDA production and elevated the GSH/GSSG ratio and the activity of CAT and GSH-Px. The activity of SOD did not change. Despite the finding that renal (Na + K)-ATPase activity was upregulated by ethanol, it was not altered by either red wine or alcohol-free red wine. The effects on the antioxidant enzymes could be attributed to ethanol, but the increase in the FRAP and GSH/GSSG ratio is attributed to the non-alcoholic components of red wine. These data suggest that there is an enhancement of the antioxidant defense potential in kidney and plasma, after chronic red wine consumption. Both ethanol and the non-alcoholic antioxidant constituents of red wine could be responsible for these effects.  相似文献   

20.
Cadmium is a non-essential toxic metal used in industrial process, causes severe risk to human health. Selenium (Se) is an essential trace mineral of fundamental importance for human health. Selenium has antioxidant enzymes roles and is needed for the proper function of the immune system. In this study, the protective effects of selenium against cadmium intoxication in rats have been investigated by monitoring some selective cytokines (IL-1β, TNF α, IL-6, IL-10 and IFN-γ), antioxidant enzymes reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and lipid peroxidation malondialdehyde (MDA) as well as some selective biochemical markers of liver and kidney functions. Thirty-two rats were divided into four equal groups; the first group was used as a control. Groups 2–4 were treated with selenium (Se; 0.1 mg/kg BW), cadmium (Cd; 40 mg/L drinking water) and selenium plus cadmium, respectively. Rats were orally administered their relevant doses daily for 30 days. Blood samples were collected from heart puncture at the end of the experiment (30 days) for complete blood picture (CBC) and serum was separated to evaluate the different immunological parameters and biochemical parameters, as well as liver specimens for Cd and Se estimation. Rats in the Cd treated group have a significantly higher hepatic concentration of Cd than in other treated groups. Results revealed that cadmium significantly increased IL-1β, TNF α, IL-6 and IL-10, beside peripheral neutrophils count, while the IFN-γ and lymphocytes were decreased in rat sera. In addition, GSH level, CAT, SOD and GPx activities were significantly decreased while lipid peroxidation (MDA) was increased. Regarding, liver and renal markers, they were significantly increased in the activities of aminotransferases (AST, ALT), urea and creatinine, while total plasma proteins and albumin were significantly decreased. On the other hand, selenium treated group, showed significantly increased IFN-γ, GSH level, CAT, and GPx activities, as well as lymphocyte count while IL-10 was decreased. Selenium in combination with cadmium, significantly improved the elevation of serum IL-1β, IL-6, TNF α, IL-10 and malondialdehyde in addition to enhancing the antioxidant enzyme activities of GSH, CAT, GPx and SOD. Moreover, selenium has ameliorated the cadmium-induced liver and kidney damage by improving hepatic and renal markers. The results of this investigation demonstrated that selenium has the potential to countermeasure the immunosuppressive as well as hepatic and renal oxidative damage induced by cadmium in rats; selenium has shown promising effects against Cd toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号