首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
A thermotolerant yeast strain named Kluyveromyces marxianus IMB4 was used in a simultaneous saccharification and fermentation (SSF) process using Kanlow switchgrass as a feedstock. Switchgrass was pretreated using hydrothermolysis at 200 degrees C for 10 min. After pretreatment, insoluble solids were separated from the liquid prehydrolyzate by filtration and washed with deionized water to remove soluble sugars and inhibitors. Insoluble solids were then hydrolyzed using a commercial cellulase preparation and the released glucose was fermented to ethanol by K. marxianus IMB4 in an SSF process. SSF temperature was 37, 41, or 45 degrees C and pH was 4.8 or 5.5. SSF was conducted for 7 days. Results were compared with a control of Saccharomyces cerevisiae D(5)A at 37 degrees C and pH 4.8. Fermentation by IMB4 at 45 and 41 degrees C ceased after 3 and 4 days, respectively, when a pH 4.8 citrate buffer was used. Fermentation continued for all 7 days using IMB4 at 37 degrees C and the control. When pH 5.5 citrate buffer was used, fermentation ceased after 96 h using IMB4 at 45 degrees C, and ethanol yield was greater than when pH 4.8 citrate buffer was used (78% theoretical). Ethanol yield using IMB4 at 45 degrees C, pH 5.5 was greater than the control after 48, 72, and 96 h (P < 0.05).  相似文献   

2.
The notion of a (socio‐) metabolic transition has been used to describe fundamental changes in socioeconomic energy and material use during industrialization. During the last century, Japan developed from a largely agrarian economy to one of the world's leading industrial nations. It is one of the few industrial countries that has experienced prolonged dematerialization and recently has adopted a rigorous resource policy. This article investigates changes in Japan's metabolism during industrialization on the basis of a material flow account for the period from 1878 to 2005. It presents annual data for material extraction, trade, and domestic consumption by major material group and explores the relations among population growth, economic development, and material (and energy) use. During the observed period, the size of Japan's metabolism grew by a factor of 40, and the share of mineral and fossil materials in domestic material consumption (DMC) grew to more than 90%. Much of the growth in the Japanese metabolism was based on imported materials and occurred in only 20 years after World War II (WWII), when Japan rapidly built up large stocks of built infrastructure, developed heavy industry, and adopted patterns of mass production and consumption. The surge in material use came to an abrupt halt with the first oil crisis, however. Material use stabilized, and the economy eventually began to dematerialize. Although gross domestic product (GDP) grew much faster than material use, improvements in material intensity are a relatively recent phenomenon. Japan emerges as a role model for the metabolic transition but is also exceptional in many ways.  相似文献   

3.
Increased demand for water and energy and growing recognition of environmental issues motivate awareness of how these resources are used in industry. Industrial tomato processing consumes substantial quantities of both water and energy. To understand how these resources are used in tomato processing and what opportunities exist for improving efficiency, a water energy nexus (WEN) assessment was conducted that accounted for the various ways energy becomes embedded in water during processing by motors, pumps, fans, and boilers. The WEN assessment was conducted at an industrial tomato processing facility that processed 265 metric tonnes of fruit per hour to develop a map of water and associated energy use at each processing step. A total of 1.29 billion kilograms (kg) of water were used for the processing season, with 870 million kg routed to flumes. The analysis identified the thermal energy used to generate steam for the various heat exchangers and evaporators used during processing as the greatest source of embedded energy in process water (778,000 gigajoules per season). The electrical energy embedded in the process water totaled 4.4 million kilowatt‐hours per season, over 80% of which was attributed to pumping. Moreover, the data were used to identify opportunities to improve efficiency by adjusting water loads on equipment and developing strategies for water and energy conservation and recovery. The baseline water and energy use data provided by the WEN assessment can enable additional modeling to assess resource efficiency measures and the life cycle impact of processed tomato products.  相似文献   

4.
This article characterizes the societal metabolism of the Colombian economy, identifying the main factors of natural resources use, overuse, or exhaustion. The environmental sustainability of a country depends to a large extent on the size of the economy compared to the available resource base. Material flow indicators provide an assessment of size or scale of economies. Direct material flow indicators are used to analyze the ecological dimension of economic activity in the period 1970–2007. Some resource extraction conflicts are briefly described in the light of material flow analysis. Foreign and domestic demand promotes increasing extraction and export of domestic natural resources. This is sometimes related to an irreversible deterioration of the local environment. The concept of “ecologically unequal exchange” with the rest of the world is analyzed in this context. Colombia has a large and growing negative physical trade balance, whereas per capita use of materials is still about half of the industrial countries’ average.  相似文献   

5.
In Norway, the boreal forest offers a considerable resource base, and emerging technologies may soon make it commercially viable to convert these resources into low‐carbon biofuels. Decision makers are required to make informed decisions about the environmental implications of wood biofuels today that will affect the medium‐ and long‐term development of a wood‐based biofuels industry in Norway. We first assess the national forest‐derived resource base for use in biofuel production. A set of biomass conversion technologies is then chosen and evaluated for scenarios addressing biofuel production and consumption by select industry sectors. We then apply an environmentally extended, mixed‐unit, two‐region input?output model to quantify the global warming mitigation and fossil fuel displacement potentials of two biofuel production and consumption scenarios in Norway up to 2050. We find that a growing resource base, when used to produce advanced biofuels, results in cumulative global warming mitigation potentials of between 58 and 83 megatonnes of carbon dioxide equivalents avoided (Mt‐CO2‐eq.‐avoided) in Norway, depending on the biofuel scenario. In recent years, however, the domestic pulp and paper industry—due to increasing exposure to international competition, capacity reductions, and increasing production costs—has been in decline. In the face of a declining domestic pulp and paper industry, imported pulp and paper products are required to maintain the demand for these goods and thus the greenhouse gas (GHG) emissions of the exporting region embodied in Norway's pulp and paper imports reduce the systemwide benefit in terms of avoided greenhouse gas emissions by 27%.  相似文献   

6.
This article assesses the impact of economic integration on Tanzania's sociometabolic profile for the years 1970–2011, which witnessed an opening and further integration of Tanzania's economy through increased trade and foreign investment, through a time‐series economy‐wide material flows analysis (EW‐MFA). The EW‐MFA results show that contrary to the trade patterns of many developing countries, increased economic integration has resulted in Tanzania becoming a net importer of resources across all material categories when measured by the physical trade balance indicator. Additionally, the article discusses the conceptual and empirical challenges of measuring ecologically unequal exchange with EW‐MFAs for developing countries whose export profiles are dominated by lightweight, high‐value precious stones and metals. It also assesses the degree to which the Tanzanian economy has undergone dematerialization over the past 40 years of economic integration.  相似文献   

7.
The United States is not only the world's largest economy, but it is also one of the world's largest consumers of natural resources. The country, which is inhabited by some 5% of the world's population, uses roughly one‐fifth of the global primary energy supply and 15% of all extracted materials. This article explores long‐term trends and patterns of material use in the United States. Based on a material flow account (MFA) that is fully consistent with current standards of economy‐wide MFAs and covers domestic extraction, imports, and exports of materials for a 135‐year period, we investigated the evolution of the U.S. industrial metabolism. This process was characterized by an 18‐fold increase in material consumption, a multiplication of material use per capita, and a shift from renewable biomass toward mineral and fossil resources. In spite of considerable improvements in material intensity, no dematerialization has happened so far; in contrast to other high‐income countries, material use has not stabilized since the 1970s, but has continued to grow. This article compares patterns and trends of material use in the United States with those in Japan and the United Kingdom and discusses the factors underlying the disproportionately high level of U.S. per capita resource consumption.  相似文献   

8.
This article is the first of a two-part series that describes and compares the essential features of nine existing "physical economy" approaches for quantifying the material demands of the human economy upon the natural environment. A range of material flow analysis (MFA) and related techniques is assessed and compared in terms of several major dimensions. These include the system boundary identification for material flow sources, extents, and the key socioinstitutional entities containing relevant driving forces, as well as the nature and detailing of system components and flow interconnections, and the comprehensiveness and types of flows and materials covered.
Shared conceptual themes of a new wave of physical economy approaches are described with a brief overview of the potential applications of this broad family of methodologies. The evolving and somewhat controversial nature of the characteristics and role that define MFA is examined. This review suggests the need to specify whether MFA is a general metabolic flow measurement procedure that can be applied from micro to macrolevels of economic activity, or a more specific methodology aimed primarily at economy-wide analyses that "map" the material relations between society and nature. Some alternative options for classifying MFA are introduced for discussion before a more detailed comparative summary of the key methodological features of each approach in the second part of this two-part article.
The review is presented (1) as a reference and resource for the increasing number of policy makers and practitioners involved in industrial ecology and the evaluation of the material basis of economies and the formulation of eco-efficiency strategies, and (2) to provoke discussion and ongoing dialogue to clarify the many existing areas of discordance in environmental accounting related to material flows, and help consolidate the methodological basis and application of MFA.  相似文献   

9.
城市建筑代谢研究方法及其展望   总被引:2,自引:0,他引:2  
建筑代谢是当前城市代谢研究领域中的一个新兴热点问题,其研究着重关注建筑系统中物质能量流动可能对周围环境产生的压力及其有害影响。本文在阐明城市建筑代谢内涵的基础上,综述了国内外建筑代谢研究方法的进展情况,分析了目前城市建筑代谢研究方法的适用范围及其特点,指出了城市建筑代谢研究方法在未来应从以下几个方面发展:开发跨城市边界的代谢研究方法;注重建筑代谢中非物质性代谢流研究;制定适合乡土建筑地域特点的代谢研究方法;综合物质量和价值量的建筑代谢研究,全面认识和评价建筑的可持续性。  相似文献   

10.
Modeling pathways toward sustainable production and consumption requires improved spatio-temporal and material coverage of end-use product stocks. Momentarily, studies on inflow-driven, dynamic material flow analysis (dMFA) extrapolate scarce information on material end-use shares (i.e., ratios that split economy-wide material consumption to different end-use products) for single countries and years across longer time periods and global regions. Therefore, in part 1 of this work, we reviewed five methods to derive material end-use shares which use industry shipment data in physical units and monetary input–output tables (MIOTs). Herein, we comparatively apply these methods to the United States, drawing on detailed national data, as well as the multi-regional input–output model EXIOBASE3. To better match MIOT and dMFA system definitions, we propose the end-use transfer method, which re-routes specific intermediate outputs to final demand in MIOTs. In closing, we conclude on 12 points for improved end-use shares. We find mixed results regarding the fit between end-use shares derived from industry shipments and MIOTs: for detailed national data, we find good fit for some materials (e.g., aluminum), while others deviate strongly (e.g., steel). In many cases, the temporal trend of MIOT-derived end-use shares roughly agrees with industry shipments. For EXIOBASE3, we find good fit for some countries and materials, but substantial mismatches for others. Despite mixed results, combining MIOT-based end-use shares with industry shipments and auxiliary country-level data could enable improved temporal, geographical, and end-use resolution. However, the scarcity, documentation, and quality of input data are key limitations for more accurate and detailed end-use shares. This article met the requirements for a gold-gold data openness badge described at http://jie.click/badges .   相似文献   

11.
Feed in tariffs (FiTs) and renewable heat incentives (RHIs) are driving a rapid expansion in anaerobic digestion (AD) coupled with combined heat and power (CHP) plants in the UK. Farm models were combined with consequential life cycle assessment (CLCA) to assess the net environmental balance of representative biogas, biofuel and biomass scenarios on a large arable farm, capturing crop rotation and digestate nutrient cycling effects. All bioenergy options led to avoided fossil resource depletion. Global warming potential (GWP) balances ranged from ?1732 kg CO2e Mg?1 dry matter (DM) for pig slurry AD feedstock after accounting for avoided slurry storage to +2251 kg CO2e Mg?1 DM for oilseed rape biodiesel feedstock after attributing indirect land use change (iLUC) to displaced food production. Maize monoculture for AD led to net GWP increases via iLUC, but optimized integration of maize into an arable rotation resulted in negligible food crop displacement and iLUC. However, even under best‐case assumptions such as full use of heat output from AD‐CHP, crop–biogas achieved low GWP reductions per hectare compared with Miscanthus heating pellets under default estimates of iLUC. Ecosystem services (ES) assessment highlighted soil and water quality risks for maize cultivation. All bioenergy crop options led to net increases in eutrophication after displaced food production was accounted for. The environmental balance of AD is sensitive to design and management factors such as digestate storage and application techniques, which are not well regulated in the UK. Currently, FiT payments are not dependent on compliance with sustainability criteria. We conclude that CLCA and ES effects should be integrated into sustainability criteria for FiTs and RHIs, to direct public money towards resource‐efficient renewable energy options that achieve genuine climate protection without degrading soil, air or water quality.  相似文献   

12.
A hybrid approach combining life cycle assessment and input‐output analysis was used to demonstrate the economic and environmental benefits of current and future improvements in agricultural and industrial technologies for ethanol production in Brazilian biorefineries. In this article, three main scenarios were evaluated: first‐generation ethanol production with the average current technology; the improved current technology; and the integration of improved first‐ and second‐generation ethanol production. For the improved first‐generation scenario, a US$1 million increase in ethanol demand can give rise to US$2.5 million of total economic activity in the Brazilian economy when direct and indirect purchases of inputs are considered. This value is slightly higher than the economic activity (US$1.8 million) for an energy equivalent amount of gasoline. The integration of first‐ and second‐generation technologies significantly reduces the total greenhouse gas emissions of ethanol production: 14.6 versus 86.4 grams of carbon dioxide equivalent per megajoule (g CO2‐eq/MJ) for gasoline. Moreover, emissions of ethanol can be negative (–10.5 g CO2‐eq/MJ) when the system boundary is expanded to account for surplus bioelectricity by displacement of natural gas thermal electricity generation considering electricity produced in first‐generation optimized biorefineries.  相似文献   

13.
The sustainable production and supply of raw materials (“nonenergy raw materials”) and primary energy carriers (“energy raw materials”) is a core element of many policies. The natural resource base for their production and supply, and the access thereto, are limited. Moreover, raw material supply is high on environmental and social impact agendas as well. A broad, quantitative framework that supports decision makers is recommended so as to make use of raw materials and primary energy carriers more sustainably. First, this article proposes a holistic classification of raw materials and primary energy carriers. This is an essential prerequisite for developing an integrated sustainability assessment framework (ISAF). Indeed, frequently, only a subset of raw materials and primary energy carriers are considered in terms of their source, sector, or final application. Here, 85 raw materials and 30 primary energy carriers overall are identified and grouped into seven and five subgroups, respectively. Next, this article proposes a quantitative ISAF for the production and supply of raw materials and primary energy carriers, covering all the sustainability pillars. With the goal of comprehensiveness, the proposed ISAF integrates sustainability issues that have been covered and modeled in quite different quantitative frameworks: ecosystem services; classical life cycle assessment (LCA); social LCA; resource criticality assessment; and particular international concerns (e.g., conflict minerals assessment). The resulting four areas of concerns (i.e., environmental, technical, economic, and social/societal) are grouped into ten specific sustainability concerns. Finally, these concerns are quantified through 15 indicators, enabling the quantitative sustainability assessment of the production and supply of raw materials and primary energy carriers.  相似文献   

14.
Cooling water systems (CWS) are one of the main energy and water using operations in industry. Existing CWS in operation provide high improvement potentials in environmental and economic performance through optimized operation and system control. Industry often fails to realize these potentials, given that the efficiency measures as well as their technical, economic, and ecological impact are mostly unknown because of the lack of appropriate approaches. This article presents a holistic approach to the systematic identification and assessment of efficiency measures that support industry in improving the operation and system control of large‐scale CWS consisting of one or multiple cooling towers, heat exchangers, and pumps. Based on material flow analysis coupled with process modeling, a material and energy flow model of CWS is developed. The model enables the investigation of different adjustments in operation of CWS in order to identify and assess specific efficiency measures. The approach is applied to a CWS of a real manufacturing facility. The results show, first, high validity of the approach as compared to a real system. Second, the effectiveness of the approach, given that the model allows fast and simple identification and assessment of efficiency measures that save up to 16% energy and 24% water in the presented case study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号