首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to examine the use of the continuous wavelet transform (CWT) on surface electromyographic (sEMG) signals acquired from the lower extremity muscles during gait in children with typical development (TD) and cerebral palsy (CP). This was done to explore the possibility of developing a quantitative assessment scale of motor function based on time-frequency information. An initial study was conducted on retrospective gait data from three children, matched in gender and in anthropometric variables but with differing levels of walking ability. EMG data were extracted from five lower extremity muscles to assess the degrees of differentiation. The data were processed using the CWT to derive an average scalogram, from which the instantaneous mean frequency (IMNF) was calculated. Principal component analysis was used to assess the differences between the curves. Preliminary results indicated that for select lower extremity muscles, there was a significant deviation in the IMNF curves in the child with CP as compared to the child with TD. Furthermore, as motor impairment increased, total percent explained variance to the TD curves decreased. This suggests that it might be possible to derive a physiologically based quantitative index for assessing motor function and for assessing clinical treatments in CP using the wavelet analysis.  相似文献   

2.
Poor control of postural muscles is a primary impairment in cerebral palsy (CP), yet core trunk and hip muscle activity has not been thoroughly investigated. Frequency analysis of electromyographic (EMG) signals provides insight about the intensity and pattern of muscle activation, correlates with functional measures in CP, and is sensitive to change after intervention. The objective of this study was to investigate differences in trunk and hip muscle activation frequency in children with CP compared to children with similar amounts of walking experience and typical development (TD). EMG data from 31 children (15 with CP, 16 with TD) were recorded from 16 trunk and hip muscles bilaterally. A time–frequency pattern was generated using the continuous wavelet transform and instantaneous mean frequency (IMNF) was calculated at each interval of the gait cycle. Functional principal component analysis (PCA) revealed that IMNF was significantly higher in the CP group throughout the gait cycle for all muscles. Additionally, stride-to-stride variability was higher in the CP group. This evidence demonstrated altered patterns of trunk and hip muscle activation in CP, including increased rates of motor unit firing, increased number of recruited motor units, and/or decreased synchrony of motor units. These altered muscle activation patterns likely contribute to muscle fatigue and decreased biomechanical efficiency in children with CP.  相似文献   

3.
The evaluation of surface electromyography (sEMG) is commonly performed in children with cerebral palsy (CP) and reliable interpretation necessitates knowledge of the variability in age-matched, typically developing (TD) children. Variance ratio was calculated for inter-trial sEMG linear envelope (LE) and the Instantaneous Mean Frequency (IMNF) variability in the lower limb muscle in TD children, in three different age groups during slow, comfortable speed, and fast walking. Significantly greater variability was found in the 7–9 group compared to the 13–16 years. Variability during both slow and fast walking was significantly greater compared to comfortable speed walking and was profound in the 7–9 year age group. Variability of the IMNF was significantly greater than LE in the Tibialis-Anterior, Biceps-Femoris (BF), Vastus-Lateralis (VL), and Rectus-Femoris (RF). Clinical implications are that children under 10 years are more variable than older children when walking either slower or faster than self-selected walking speed. This suggests that muscle activation patterns in gait mature at a later stage of childhood than do kinematic gait patterns. Greater precaution, therefore, is needed when comparing sEMG patterns of less than 10 years of age patient and TD children.  相似文献   

4.
Cerebral palsy (CP) is a neurological disorder that results in life-long mobility impairments. Musculoskeletal models used to investigate mobility deficits for children with CP often lack subject-specific characteristics such as altered muscle strength, despite a high prevalence of muscle weakness in this population. We hypothesized that incorporating subject-specific strength scaling within musculoskeletal models of children with CP would improve accuracy of muscle excitation predictions in walking simulations. Ten children (13.5 ± 3.3 years; GMFCS level II) with spastic CP participated in a gait analysis session where lower-limb kinematics, ground reaction forces, and bilateral electromyography (EMG) of five lower-limb muscles were collected. Isometric strength was measured for each child using handheld dynamometry. Three musculoskeletal models were generated for each child including a ‘Default’ model with the generic musculoskeletal model’s muscle strength, a ‘Uniform’ model with muscle strength scaled allometrically, and a ‘Custom’ model with muscle strength scaled based on handheld dynamometry strength measures. Muscle-driven gait simulations were generated using each model for each child. Simulation accuracy was evaluated by comparing predicted muscle excitations and measured EMG signals, both in the duration of muscle activity and the root-mean-square difference (RMSD) between signals. Improved agreement with EMG were found in both the ‘Custom’ and ‘Uniform’ models compared to the ‘Default’ model indicated by improvement in RMSD summed across all muscles, as well as RMSD and duration of activity for individual muscles. Incorporating strength scaling into musculoskeletal models can improve the accuracy of walking simulations for children with CP.  相似文献   

5.
The use of exoskeletons as an aid for people with musculoskeletal disorder is the subject to an increasing interest in the research community. These devices are expected to meet the specific needs of users, such as children with cerebral palsy (CP) who are considered a significant population in pediatric rehabilitation. Although these exoskeletons should be designed to ease the movement of people with physical shortcoming, their design is generally based on data obtained from healthy adults, which leads to oversized components that are inadequate to the targeted users. Consequently, the objective of this study is to custom-size the lower limb exoskeleton actuators based on dynamic modeling of the human body for children with CP on the basis of hip, knee, and ankle joint kinematics and dynamics of human body during gait. For this purpose, a multibody modeling of the human body of 3 typically developed children (TD) and 3 children with CP is used. The results show significant differences in gait patterns especially in knee and ankle with respectively 0.39 and ?0.33 (Nm/kg) maximum torque differences between TD children and children with CP. This study provides the recommendations to support the design of actuators to normalize the movement of children with CP.  相似文献   

6.
Children with cerebral palsy (CP) expend more energy to walk compared to typically-developing peers. One of the most prevalent gait patterns among children with CP, crouch gait, is often singled out as especially exhausting. The dynamics of crouch gait increase external flexion moments and the demand on extensor muscles. This elevated demand is thought to dramatically increase energy expenditure. However, the impact of crouch severity on energy expenditure has not been investigated among children with CP. We evaluated oxygen consumption and gait kinematics for 573 children with bilateral CP. The average net nondimensional oxygen consumption during gait of the children with CP (0.18 ± 0.06) was 2.9 times that of speed-matched typically-developing peers. Crouch severity was only modestly related to oxygen consumption, with measures of knee flexion angle during gait explaining only 5–20% of the variability in oxygen consumption. While knee moment and muscle activity were moderately to strongly correlated with crouch severity (r2 = 0.13–0.73), these variables were only weakly correlated with oxygen consumption (r2 = 0.02–0.04). Thus, although the dynamics of crouch gait increased muscle demand, these effects did not directly result in elevated energy expenditure. In clinical gait analysis, assumptions about an individual’s energy expenditure should not be based upon kinematics or kinetics alone. Identifying patient-specific factors that contribute to increased energy expenditure may provide new pathways to improve gait for children with CP.  相似文献   

7.
The effectiveness of the plantarflexor muscle group to generate desired plantarflexion moments is modulated by the geometry of the Achilles tendon moment arm (ATMA). Children with cerebral palsy (CP) frequently have reduced plantarflexion function, which is commonly attributed to impaired muscle structure and function, however little attention has been paid to the potential contribution of ATMA geometry. The use of musculoskeletal modelling for the simulation of gait and understanding of gait mechanics, rely on accuracy of ATMA estimates. This study aimed to compare 3D in-vivo estimates of ATMA of adults, children with CP and typically developing (TD) children, as well as compare 3D in-vivo estimates to linearly scaled musculoskeletal model estimates. MRI scans for eight children with CP, 11 TD children and nine healthy adults were used to estimate in-vivo 3D ATMA using a validated method. A lower limb musculoskeletal model was linearly scaled to individual tibia length to provide a scaled ATMA estimate. Normalised in-vivo 3D ATMA for children with CP was 17.2% ± 2.0 tibia length, which was significantly larger than for TD children (15.2% ± 1.2, p = 0.013) and adults (12.5% ± 0.8, p < 0.001). Scaled ATMA estimates from musculoskeletal models significantly underestimated in-vivo estimates for all groups, by up to 34.7%. The results of this study show children with CP have larger normalised 3D ATMA compared to their TD counterparts, which may have implications in understanding reduced plantarflexor function and the efficacy of surgical interventions whose aim is to modify the musculoskeletal geometry of this muscle group.  相似文献   

8.
Neuro-musculoskeletal modelling can provide insight into the aberrant muscle function during walking in those suffering cerebral palsy (CP). However, such modelling employs optimization to estimate muscle activation that may not account for disturbed motor control and muscle weakness in CP. This study evaluated different forms of neuro-musculoskeletal model personalization and optimization to estimate musculotendon forces during gait of nine children with CP (GMFCS I-II) and nine typically developing (TD) children. Data collection included 3D-kinematics, ground reaction forces, and electromyography (EMG) of eight lower limb muscles. Four different optimization methods estimated muscle activation and musculotendon forces of a scaled-generic musculoskeletal model for each child walking, i.e. (i) static optimization that minimized summed-excitation squared; (ii) static optimization with maximum isometric muscle forces scaled to body mass; (iii) an EMG-assisted approach using optimization to minimize summed-excitation squared while reducing tracking errors of experimental EMG-linear envelopes and joint moments; and (iv) EMG-assisted with musculotendon model parameters first personalized by calibration. Both static optimization approaches showed a relatively low model performance compared to EMG envelopes. EMG-assisted approaches performed much better, especially in CP, with only a minor mismatch in joint moments. Calibration did not affect model performance significantly, however it did affect musculotendon forces, especially in CP. A model more consistent with experimental measures is more likely to yield more physiologically representative results. Therefore, this study highlights the importance of calibrated EMG-assisted modelling when estimating musculotendon forces in TD children and even more so in children with CP.  相似文献   

9.
PurposeThe purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ).MethodsFifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping.ResultsThe peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001).ConclusionThis study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior neuromuscular activation (dominant hamstrings medialis activity) during the preparatory and initial contact phase and an increased lateral neuromuscular activation (dominant vastus lateralis activity) during the peak loading phase.  相似文献   

10.
The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients.  相似文献   

11.
Upper body movements during walking provide information about balance control and gait stability. Typically developing (TD) children normally present a progressive decrease of accelerations from the pelvis to the head, whereas children with cerebral palsy (CP) exhibit a general increase of upper body accelerations. However, the literature describing how they are transmitted from the pelvis to the head is lacking. This study proposes a multilevel motion sensor approach to characterize upper body accelerations and how they propagate from pelvis to head in children with CP, comparing with their TD peers. Two age- and gender-matched groups of 20 children performed a 10m walking test at self-selected speed while wearing three magneto-inertial sensors located at pelvis, sternum, and head levels. The root mean square value of the accelerations at each level was computed in a local anatomical frame and its variation from lower to upper levels was described using attenuation coefficients. Between-group differences were assessed performing an ANCOVA, while the mutual dependence between acceleration components and the relationship between biomechanical parameters and typical clinical scores were investigated using Regression Analysis and Spearman’s Correlation, respectively (α = 0.05). New insights were obtained on how the CP group managed the transmission of accelerations through the upper body. Despite a significant reduction of the acceleration from pelvis to sternum, children with CP do not compensate for large accelerations, which are greater than in TD children. Furthermore, those with CP showed negative sternum-to-head attenuations, in agreement with the documented rigidity of the head-trunk system observed in this population. In addition, the estimated parameters proved to correlate with the scores used in daily clinical practice. The proposed multilevel approach was fruitful in highlighting CP-TD gait differences, supported the in-field quantitative gait assessment in children with CP and might prove beneficial to designing innovative intervention protocols based on pelvis stabilization.  相似文献   

12.
Ultrasound imaging (USI) of muscle thickness offers different insights into musculoskeletal function than kinematics, kinetics, and surface electromyography (sEMG), however it is unknown how USI-derived measures correlate to traditional measures during walking. The purpose of this study was to compare USI-derived gluteus maximus (GMAX) and medius (GMED) thickness measures to tri-planar hip kinematics and kinetics, and GMED thickness to sEMG amplitude. Fourteen females walked on a treadmill at 1.34 m/s. GMAX and GMED thickness, hip tri-planar kinematics, kinetics, and GMED sEMG were simultaneously recorded. USI-derived thickness measures were compared to other biomechanical outcomes using cross-correlation analyses, computed at each 1% (11-ms) of the gait cycle with lag times from −20% to 20%. GMED and GMAX thickness measures were most strongly correlated with hip extension and abduction angles at 150–220-ms lags (cross-correlation coefficients [CCF]: −0.34; −0.83). GMED thickness was most correlated to abduction and external rotation moments simultaneously (CCF: −0.28; −0.47). GMAX thickness and flexion moments were most strongly correlated at a 66-ms lag (CCF: 0.33). GMED sEMG amplitude was most strongly correlated to muscle thickness at a 99-ms lag (CCF: 0.39). These results elucidate the unique information provided from USI-derived measures of gluteal muscle thickness during walking.  相似文献   

13.
The surface electromyographic (sEMG) signal that originates in the muscle is inevitably contaminated by various noise signals or artifacts that originate at the skin-electrode interface, in the electronics that amplifies the signals, and in external sources. Modern technology is substantially immune to some of these noises, but not to the baseline noise and the movement artifact noise. These noise sources have frequency spectra that contaminate the low-frequency part of the sEMG frequency spectrum. There are many factors which must be taken into consideration when determining the appropriate filter specifications to remove these artifacts; they include the muscle tested and type of contraction, the sensor configuration, and specific noise source. The band-pass determination is always a compromise between (a) reducing noise and artifact contamination, and (b) preserving the desired information from the sEMG signal. This study was designed to investigate the effects of mechanical perturbations and noise that are typically encountered during sEMG recordings in clinical and related applications. The analysis established the relationship between the attenuation rates of the movement artifact and the sEMG signal as a function of the filter band pass. When this relationship is combined with other considerations related to the informational content of the signal, the signal distortion of filters, and the kinds of artifacts evaluated in this study, a Butterworth filter with a corner frequency of 20 Hz and a slope of 12 dB/oct is recommended for general use. The results of this study are relevant to biomechanical and clinical applications where the measurements of body dynamics and kinematics may include artifact sources.  相似文献   

14.
This study compared the intensity, co-activity and frequency content of the electromyography (EMG) signals recorded bilaterally from six muscles of the upper limbs in children with spastic hemiparetic cerebral palsy (SHCP) and typically developing (TD) children during a bilateral movement. It was found that children with SHCP executed the bimanual circular movement with higher intensities of mean neuromuscular activity in both arms compared to TD children. Furthermore, the movement was performed with longer phases of concentric and eccentric activity in children with SHCP, indicating more co-activation, especially in the more impaired arm. The EMG signals yielded a higher mean power frequency in all the muscles of the more impaired arm and the wrist and elbow flexors of the less impaired arm, which was interpreted as a relatively higher contribution of type II muscle fibres compared to TD children. These observations suggest that in children with SHCP bimanual coordination requires higher neuromuscular activation in the muscles of both arms. Furthermore, SHCP also seems to involve structural changes to the muscle properties, which differ between arms.  相似文献   

15.
Kinematic and kinetic changes following anterior cruciate ligament (ACL) rupture and reconstruction (ACLR) have been fundamental to the understanding of mechanical disrupted load as it contributes to the development of posttraumatic osteoarthritis. These analyses overlook the potential contribution of muscle activity as it relates to the joint loading environment. Males and females classified as non-copers present with unique knee kinematics and kinetics after ACL injury. The purpose of this study was to perform sex-specific analyses in these individuals to explore muscle activity timing during gait after ACL rupture. Thirty-nine participants (12 females, 27 males) were enrolled. Muscle activity during gait was evaluated before and after pre-operative physical therapy, and six months after ACLR. Surface electromyography data were evaluated to determine timing (e.g., the time the muscle activity begins (‘On’) and ends (‘Off’)) for seven muscles: vastus lateralis and medialis (VL, VM), lateral and medial hamstrings (LH, MH), lateral and medial gastrocnemius (LG, MG), and soleus (SOL). General linear models with generalized estimating equations detected the effects of limb and time for muscle activity timing. Males presented with more limb asymmetries before and after pre-operative PT in the VL On (p < 0.001) and Off (p = 0.007), VM On and Off (p < 0.001), and MH off (p < 0.001), but all limb differences resolved by six months post ACLR. Changes in muscle activity in males were pervasive over time in both limbs. Females presented with no interlimb differences pre-operatively, and only involved limb VL off (p = 0.027) and VM off (p = 0.003) and the LH off in both limbs (p < 0.038) changed over time. Our data indicate that inter-limb differences in muscle activity across time points and changes in muscle activity timing over the course of physical therapy were sex specific. Males presented with more inter-limb differences in muscle activity across time points, and females presented with fewer asymmetries before and after pre-operative physical therapy. These data support that sex-specific adaptations should be taken into consideration when assessing biomechanical changes after ACLR.  相似文献   

16.
This study investigated the effect of prolonged load carriage on lower limb muscle activity displayed by female recreational hikers. Electromyography (EMG) signals from vastus lateralis (VL), biceps femoris (BF), semitendinosus (ST), tibialis anterior (TA) and gastrocnemius (GM) were recorded for fifteen female hikers carrying four loads (0%, 20%, 30% and 40% body weight (BW)) over 8 km. Muscle burst duration, muscle burst onset relative to initial contact and integrated EMG signals (iEMG) were calculated to evaluate muscle activity, whereas the shift in mean power frequency (MPF) was used to evaluate muscle fatigue. Increased walking distance significantly decreased the MPF of TA; decreased the iEMG for VL, ST and GM; and shortened VL muscle burst duration. Furthermore, carrying 20–40% BW loads significantly increased VL and GM iEMG and increased BF muscle burst duration, whereas a 40% BW load caused a later VL muscle burst onset. The differences observed in muscle activity with increased load mass seem to be adjustments aimed at maintaining balance and attenuating the increased loads placed on the lower limbs during gait. Based on the changes in muscle activity, a backpack load limit of 30% BW may reduce the risk of lower limb injury for female hikers during prolonged walking.  相似文献   

17.
This study describes a novel pediatric upper limb motion index (PULMI) for children with cerebral palsy (CP). The PULMI is based on three-dimensional kinematics and provides quantitative information about upper limb motion during the Reach & Grasp Cycle. We also report key temporal-spatial parameters for children with spastic, dyskinetic, and ataxic CP. Participants included 30 typically-developing (TD) children (age=10.9±4.1 years) and 25 children with CP and upper limb involvement (age=12.3±3.7 years), Manual Ability Classification System (MACS) levels I-IV. The PULMI is calculated from the root-mean-square difference for eight kinematic variables between each child with CP and the average TD values, and scaled such that the TD PULMI is 100±10. The PULMI was significantly lower among children with CP compared to TD children (Wilcoxon Z=-5.06, p<.0001). PULMI scores were significantly lower among children with dyskinetic CP compared to spastic CP (Z=-2.47, p<.0135). There was a strong negative correlation between PULMI and MACS among children with CP (Spearman's rho=-.78, p<.0001). Temporal-spatial values were significantly different between CP and TD children: movement time (Z=4.06, p<.0001), index of curvature during reach (Z=3.68, p=.0002), number of movement units (Z=3.72, p=.0002), angular velocity of elbow extension during reach (Z=-3.96, p<.0001), and transport(1):reach peak velocities (Z=-2.48, p=.0129). A logistic regression of four temporal-spatial parameters, the Pediatric Upper Limb Temporal-Spatial Equation (PULTSE), correctly predicted 19/22 movement disorder subtypes (spastic versus dyskinetic CP). The PULMI, PULTSE, and key temporal-spatial parameters of the Reach & Grasp Cycle offer a quantitative approach to analyzing upper limb function in children with CP.  相似文献   

18.
The objective of the study was to determine whether children with cerebral palsy (CP) have abnormal bilateral masseter and temporal muscle activation during mastication. The muscular activity of 32 children aged between 7 and 13 years was assessed during the task of non-habitual mastication by means of surface electromyograms. During non-habitual mastication, the amplitude of all assessed muscles in the inactive period and the amplitude of the Right Masseter and Left Temporal muscles in the active period of children with CP was greater (p < 0.05) in relation to the group of children with Typical Development (TD). Considering each muscle individually, only the duration of the active period of Right Masseter and Right Temporal muscles in children with CP was lower (p < 0.05) than in the TD children. Considering the four analyzed muscles, the duration of time of general active period, when at least one muscle should be activated, was higher in children with CP (p < 0.05) than in children with TD showing greater time variation in inactivation (p < 0.05). The higher muscle activity during the phases of the masticatory cycle, with longer duration of the active period and with greater variability between the muscles to inhibit this activity show greater difficulty in coordinating the muscles of mastication in children with CP compared to children with TD.  相似文献   

19.
The purpose of this study was to characterize the effect of speed and influence of individual muscles on hamstring stretch, loading, and work during the swing phase of sprinting. We measured three-dimensional kinematics and electromyography (EMG) activities of 19 athletes sprinting on a treadmill at speeds ranging from 80% to 100% of maximum speed. We then generated muscle-actuated forward dynamic simulations of swing and double float phases of the sprinting gait cycle. Simulated lower extremity joint angles and model predicted excitations were similar to measured quantities. Swing phase simulations were used to characterize the effects of speed on the peak stretch, maximum force, and negative work of the biceps femoris long head (BF), the most often injured hamstring muscle. Perturbations of the double float simulations were used to assess the influence of individual muscles on BF stretch.

Peak hamstring musculotendon stretch occurred at 90% of the gait cycle (late swing) and was independent of speed. Peak hamstring force and negative musculotendon work increased significantly with speed (p<0.05). Muscles in the lumbo-pelvic region had greater influence on hamstring stretch than muscles acting about the knee and ankle. In particular, the hip flexors were found to induce substantial hamstring stretch in the opposite limb, with that influence increasing with running speed. We conclude that hamstring strain injury during sprinting may be related to the performance of large amounts of negative work over repeated strides and/or resulting from a perturbation in pelvic muscle coordination that induces excessive hamstring stretch in a single stride.  相似文献   


20.
Lower limb (LL) muscle morphology and growth are altered in children with cerebral palsy (CP). Muscle alterations differ with age and with severity of motor impairment, classified according to the gross motor classification system (GMFCS). Muscle alterations differ also with orthopedic intervention, frequently performed at the level of the shank muscles since an early age, such as the gastrocnemius. The aim was to investigate the alterations of treatment-naïve pelvis and thigh muscle lengths and volumes in children with GMFCS levels I and II, of varying ages.17 children with CP (GMFCS I: N = 9, II: N = 8, age: 11.7 ± 4 years), age-matched to 17 typically developing (TD) children, underwent MRI of the LL. Three-dimensional reconstructions of the muscles were performed bilaterally. Muscle volumes and lengths were calculated in 3D and compared between groups. Linear regression between muscle volumes and age were computed.Adductor-brevis and gracilis lengths, as well as rectus-femoris volume, were decreased in GMFCS I compared to TD (p < 0.05). Almost all the reconstructed muscle volumes and lengths were found to be altered in GMFCS II compared to TD and GMFCS I. All muscle volumes showed significant increase with age in TD and GMFCS I (R2 range: 0.3–0.9, p < 0.05). Rectus-femoris, hamstrings and adductor-longus showed reduced increase in the muscle volume with age in GMFCS II when compared to TD and GMFCS I.Alterations of treatment-naïve pelvis and thigh muscle volumes and lengths, as well as muscle growth, seem to increase with the severity of motor impairment in ambulant children with CP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号