首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats   总被引:13,自引:0,他引:13  
Forty-eight bread wheat (Triticum aestivum L.) released cultivars and elite advanced lines were evaluated for their ability to produce embryogenic callus using three different media. Basal N6 medium supplemented with dicamba (E1), MS medium containing 2,4-D (E3) or MS medium containing 2,4-D plus different amino acids (E5) were used for callus initiation and maintenance. Plant regeneration was achieved on basal MS medium with indole-3-acetic acid (IAA) and 6-benzylamino purine (BAP) and rooting on MS with 1-naphthaleneacetic acid (NAA). Percentage regeneration varied widely with both genotype and initiation medium, with values ranging from 2% to 94%. The number of plantlets produced per embryo ranged from 6 to 42. Thirteen genotypes showed at least 50% regeneration after culture on E5 medium; 3 genotypes after culture on E3 initiation medium and 1 after initiation on E1. After four subcultures, over a 16-week period, 41 genotypes (85%) lost their ability to regenerate plants while the remaining 7 lines (15%) retained plant regeneration potential but at reduced levels. E3 medium was found to be the best for maintaining regeneration potential after four subcultures.  相似文献   

2.
Many attempts on optimization of sorghum [Sorghum bicolor (L.) Moench] tissue culture induction media have been made, but the culture system remains with some bottlenecks compared to that of other crops. This study aimed at assessing the suitability of various induction media to produce embryogenic callus (yellow and friable) with high induction rates and reduced phenolic exudation. The six culture medium modifications: 3 based on Murashige and Skoog (MS) medium and one each based on Chu N6, Gamborg B5 and 190-2 media respectively were applied in the culture of mature embryos from 10 sorghum genotypes. Although there was a genotype influence on the attainment of a yellow callus, friability of the callus was determined to be dependent on the culture medium and not the genotype. Half strength MS medium with 0.2 mg/l 2,4-D with 2.8 g/l Gelrite® as the gelling agent modified with 1.0 g/l KH2PO4, 1.0 g/l L-proline, 1.0 g/l L-asparagine and 0.16 mg/l CuSO4·5H2O (type E) was found to be the most effective resulting in about 60% yellow coloured callus induction with 25% friability. Addition of CuSO4·5H2O, KH2PO4, L-proline and L-asparagine significantly reduced the phenolic production. Half strength MS medium was observed to contribute to quality callus production when compared to full strength MS media modified with the compounds. The half strength MS medium was also observed to suppress phenolic production. Medium 190-2 produced the highest regeneration frequency (40%) among the 3-regeneration media tested. The results provide information on a suitable sorghum callus induction medium necessary for embryogenesis.  相似文献   

3.
Summary A plant regeneration system applicable to 17 cowpea genotypes was developed. Cotyledons were initiated on 1/3 MS medium containing 15 to 35 mg N6-benzyladenine (BA) per 1 (66.6 to 155.3 μM) for 5 to 15 d. For shoot regeneration, the explants were transferred to a medium containing 1 mg BA per 1 (4.4 μM). Within 1 wk, shoot formation was visible at the proximal end of the cotyledons. Regeneration percentages (1% to 11%) and the numbers of shoots (4 to 12 per explant) were significantly influenced by genotype. Culture duration and BA concentration in the initiation stage significantly affected regeneration capacity. Explants initiated on media containing 15 mg BA per 1 for 5 d resulted in the highest percentage of explants capable of regeneration. Conversely, the highest number of shoots was obtained from explants initiated on media supplemented with 35 mg BA per 1. Whole plants were obtained on a plant growth regulator-free medium. To our knowledge, this is the first report of plant regeneration from U.S. commercial cowpea cultivars and breeding lines. This system is adaptable to diverse cowpea genotypes and will facilitate cowpea genetic transformation. Published with the approval of the Director of the Arkansas Agricultural Experiment Station.  相似文献   

4.
Forty-four flax genotypes with a diverse genetic background were evaluated for anther culture response using a standard anther culture protocol in order to determine the feasibility to initiate a routine haploid production system in applied breeding programs. A strong genotype effect on callus induction and shoot regeneration in anther culture was found in this study. A number of genotypes, including two low cadmium content lines 96-11785 and 96-11826, a high oil content line 96-22109 and a high linolenic acid content line M 4919 were identified as highly responsive. The impact of the findings in this study on flax breeding was discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
A protocol was established for callus induction and plant regeneration of Albizia julibrissin Durazz., a multipurpose tree. Calli were induced on hypocotyl explants excised from 10- to 14-d-old in vitro seedlings cultured on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) alone or in combination with 6-benzylaminopurine (BA) or 6-furfurylaminopurine (kinetin). The highest frequency of organogenic callus (82.2?±?3.6%) was obtained on MS medium with 10.8 μM NAA and 4.4 μM BA. Calli were then cultured on MS medium with BA or zeatin, singly or in combination, for shoot regeneration. Calli cultured on MS medium with 13.2 μM BA and 4.6 μM zeatin produced the highest frequency of adventitious shoot regeneration (75.3?±?6.3%). Maximum rooting of shoots (73.3?±?5%) was achieved using half-strength MS medium with 4.9 μM indole-3-butyric acid. The genetic fidelity of 12 plants acclimatized to the greenhouse was assessed based on analyses of start codon targeted (SCoT) polymorphism and inter-retrotransposon amplified polymorphism (IRAP). The 14 SCoT and 7 IRAP adapted primers produced 71 and 34 scoreable fragments, of which 33 (46%) and 12 (35%) were polymorphic, respectively. The in vitro-raised plants exhibited 0.129–0.438 genetic distance from the mother plant and 0.000–0.788 distance from one another according to the SCoT and IRAP analyses. Although the culture method described here may not be suitable for clonal propagation of elite genotypes, it can be used for conservation of this plant.  相似文献   

6.
Protoplasts from a total of thirty-six genotypes of Brassica species – B. napus, B. campestris (syn. B. rapa), B. juncea, and three distant relatives, Orychophragmus violaceus, Isatis indigotica and Xinjiang wild rape – were analysed for shoot regeneration using a feeder culture system. With the exception of B. campestris and Xinjiang wild rape, some genotypes of all the species could regenerate plants with high efficiency (above 20% of isolated calli initiating shoots). Several genotypes with high regeneration ability were elite breeding lines. Culture conditions as well as genotype had a significant impact on shoot regeneration frequency. In particular, silver nitrate added to the regeneration medium at doses of 6 and 30 μM improved shoot regeneration frequency to 25.4% and 52.2% of isolated calli, respectively, compared to 7.3% percent shoot regeneration without silver nitrate in seven responsive genotypes. Addition of silver nitrate to the regeneration medium also induced shoot regeneration in non-responsive genotypes. Intact plants could be obtained within three months from protoplast isolation in the regenerative genotypes using the current culture system. Advantages of mesophyll protoplasts as compared to protoplasts isolated from hypocotyls for genetic manipulation in Brassica species are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Multiple shoots were produced from nodal explants of cassava (Manihot esculenta Crantz) by a two-step procedure: a 6- to 8-day exposure to 0.11–0.22 µM thidiazuron (TDZ) in liquid Murashige and Skoog (MS) medium followed by culture on agar-solidified MS medium supplemented with 2.2 µM 6-benzyladenine (BA) and 1.6 M gibberellic acid (GA3). TDZ caused the nodal explants to expand and this expansion (growth) continued during culture with BA and GA3. From this expanded explant, clusters of buds and fasciated stems developed continuously and these gave rise to shoots. The shoot proliferation process was open-ended, yielding an average of 31.5 shoots per nodal explant after 10 weeks of culture with genotype CG 1–56. A positive response was also obtained from seven other genotypes evaluated with this protocol.Abbreviations BA 6-benzyladenine - BM basal medium - DPU 1,3-diphenylurea - GA3 gibberellie acid - 2iP isopentenyladenine - MSM multiple shoot medium - NAA 1-naphthaleneacetic acid - PGR plant growth regulator - TDZ thidiazuron - Z zeatin  相似文献   

8.
An improved procedure has been developed for high frequency androgenesis in indica × Basmati rice hybrids using a liquid culture medium. Anthers from fourteen genotypes comprising of indica × Basmati rice F1 hybrids, F2 plants and the parental rice cultivars, were floated in liquid RZM, N6M, and Heh5M media. Anther culture frequencies (percentage of anthers forming calluses) in most of the genotypes were significantly higher in RZM medium (16–75%) compared to those obtained in N6M (7–29%) and Heh5M (7–41%) media. Agarose (1.0% w/v)-solidified MSR1 medium containing 3.0% (w/v) maltose, 1 mg l−1 kinetin, 1 mg l−1 6-benzyladenine (BA) and 0.5 mg l−1α-naphthalene acetic acid (NAA) induced green shoot regeneration at high frequencies compared to the medium (MSR2) lacking BA. In all the genotypes, microspore calluses initiated in RZM medium regenerated green shoots with over tenfold higher frequencies compared to the calluses initiated in other two media. High plant regeneration frequencies (up to 270 green plants/1000 anthers) were obtained from microspore-derived calluses of some of the F1 hybrids (Gobind × Basmati 370, Gobind × Taraori Basmati) and F2 plants (Gobind × Basmati 370, Gobind × Taraori Basmati, HKR86-3 × Taraori Basmati) as compared to their actual parents. Cytological analysis of the root tips of the progeny seedlings of the microspore-derived plants revealed haploids at a frequency of about 50%; 22% of the microspore- derived plants had > 5% spikelet fertility and were diploid. Use of RZM liquid and MSR1 media, respectively for anther culture and plant regeneration resulted in several fold increase in the recovery of green plants from recalcitrant indica × Basmati rice F1 hybrids/F2 plants which were comparable to those reported for japonica rice varieties/hybrids leading to the improved feasibility of using doubled haploids in genetic, breeding and mapping research with indica rice. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

10.
Adventitious shoot regeneration from immature embryos of sorghum   总被引:1,自引:0,他引:1  
Eleven genotypes of sorghum were examined for their response in tissue culture, and the tissue culture system was optimized. The cultures were initiated from immature embryos taken approximately two weeks after flowering. The response of immature embryos varied with the genotype. `C. Kafir' and `PE932 025' showed the highest frequency of callus induction and regenerable callus formation under appropriate culture conditions. Regeneration occurred at high frequencies when cytokinins (kinetin or 6-benzyladenine) had been added in the callus induction medium, followed by regeneration medium devoid of growth regulators. The addition of proline and polyvinylpyrrolidone also enhanced shoot formation, but the addition of cytokinins to regeneration media did not improve shoot formation. On the revised culture medium, plants were regenerated from up to 100% of sorghum immature embryos.  相似文献   

11.
A protocol for obtaining regenerated fertile plants from mesophyll protoplasts of four ecotypes (Col C24, Per-1, Bur-0, Landsberg erecta) and two marker lines (M4 and M10) of Ardbidopsis thaliana is described. The different lines showed plating efficiencies between 1.0 and 3.9% using Nitsch medium or this medium supplemented with coconut water. For the differentiation of callus into normal shoots a single shoot regeneration medium was applicable to all ecotypes, but depending on the line other regeneration media showed to be more suitable. The results indicated that the protoplast culture procedure is applicable, with minor modifications, to all tested genotypes but the most suitable shoot regeneration medium should be established for each A. thaliana line.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzyl-aminopurine - IAA indole-3-acetic acid - IPA isopentenyladenine - IPAR isopentenyladenosine - MES 2-[N Morpholino]ethanesulfonic acid - MS Murashige and Skoog - NAA naphthaleneacetic acid  相似文献   

12.
Efficient regeneration via somatic embryogenesis (SE) would be a valuable system for the micropropagation and genetic transformation of sugar beet. This study evaluated the effects of basic culture media (MS and PGo), plant growth regulators, sugars and the starting plant material on somatic embryogenesis in nine sugar beet breeding lines. Somatic embryos were induced from seedlings of several genotypes via an intervening callus phase on PGo medium containing N6-benzylaminopurine (BAP). Calli were mainly induced from cotyledons. Maltose was more effective for the induction of somatic embryogenesis than was sucrose. There were significant differences between genotypes. HB 526 and SDM 3, which produced embryogenic calli at frequencies of 25–50%, performed better than SDM 2, 8, 9 and 11. The embryogenic calli and embryos produced by this method were multiplied by repeated subculture. Histological analysis of embryogenic callus cultures indicated that somatic embryos were derived from single- or a small number of cells. 2,4-dichlorophenoxyacetic acid (2,4-D) was ineffective for the induction of somatic embryogenesis from seedlings but induced direct somatic embryogenesis from immature zygotic embryos (IEs). Somatic embryos were mainly initiated from hypocotyls derived from the cultured IEs in line HB 526. Rapid and efficient regeneration of plants via somatic embryogenesis may provide a system for studying the molecular mechanism of SE and a route for the genetic transformation of sugar beet.  相似文献   

13.
Microspore division was monitored in three triticale (× Triticosecale Wittmack) genotypes over 21 d of in vitro anther culture, on two media differing in their 2,4-dichlorophenoxyacetic acid content. After low temperature (4 °C) pre-treatment for two weeks, all the microspores were still alive, but they began to die from day one of culture. Both genotype and culture medium affected the number of microspores that aborted over time (82 – 97 % by day 21), the number of microspores that underwent the first symmetrical division (> 82 % over all), the number of microspores that attained four or more nuclei, and the number of divisions per 100 alive microspores after 21 d of culture.  相似文献   

14.
Somatic embryo (embryoid) formation from immature-embryo-derived calli was quantified in replicated experiments involving 10Triticum aestivum L. genotypes. Several published media formulations, which had previously been optimized for wheat tissue culture, were tested for each genotype. Embryos from each plant were randomly assigned to each medium. Percentage precocious germination of immature embryos and mean percentage scutellar callus per explant were recorded. Embryoids per callus were determined by microscopic examination at 28 and 56 days. There were highly significant differences among genotypes, media, and individual plants from which explants were taken. A medium based on double the Murashige and Skoog (MS) inorganic salt concentration was significantly better than other media. Inclusion of all MS vitamins appeared essential for optimal response. Two genotypes were tested in a second experiment where both 3,6-dichloro-o-anisic acid (9.05 M) and 6-furfurylaminopurine (0.46 M) were substituted for 2,4-dichlorophenoxyacetic acid (4.52 M) in either double or normal MS medium. This substitution significantly increased embryoid formation at 28 days. Additions of either 6-furfurylaminopurine or coconut water increased precocious germination of both embryo explants and embryoids.This study was supported in part by NASA-Ames Cooperative Agreement No. NCC2-139. Contribution of the Utah Agricultural Experiment Station, Utah State University, Logan, UT, Journal Paper No. 3358.  相似文献   

15.
A range of tissue culture conditions were tested to improve embryo culture frequency, and to develop an efficient plant regeneration system for triticale. Immature embryos (14–21 days post-anthesis) from two triticale genotypes (Hx87-139 and Tahara) were cultured on a commonly used Murashige and Skoog (MS) and on Lazzeri's (L1) basal medium with varied carbon sources, and two different plant growth regulators; 2,4-Dichlorophenoxyacetic acid (2,4-D) and 3,6-Dichloro-2-methoxybenzoic acid (dicamba). Although embryos could be cultured on both media types, L1 based medium was better than MS basal salts for callus induction and somatic embryogenesis, with plant regeneration frequencies up to 11 fold greater on L1 media types. In the presence of dicamba, callus induction was more rapid, that resulted in subsequent regeneration of up to 2 fold more plantlets than from callus induced on medium containing 2,4-D. Maltose appeared to be a superior carbon source during differentiation of callus. Genotype Tahara showed a better regenerative response than Hx87-138, with up to 23 normal, fertile plants being produced from a single embryo when cultured on L1MDic medium, containing maltose (5%) and dicamba (20 mg l–1). Applications of this tissue culture procedure in triticale improvement through genetic engineering are also discussed.  相似文献   

16.
The response to different in vitro methods for use in potato breeding has been evaluated in 11 genotypes of 5 Solanum species, S. etuberosum, S. lycopersicoides, S. maglia, S. rickii, and S. tuberosum. Callus induction and growth, and shoot regeneration were strongly influenced by the genotype, explant source, and medium utilized. Furthermore, considerable differences among the 11 genotypes were found both in plating efficiency and shoot regeneration from protoplast culture. Some interesting correlations were found between different tissue culture responses, suggesting linkage and/or pleiotropic effect of genes. The potential application to potato breeding of the in vitro techniques analyzed is discussed.Abbreviations BA 6-benzylaminopurine - GA3 gibberellic acid - NAA naphthaleneacetic acid - MS Murashige & Skoog (1962) - 2,4-d dichlorophenoxyacetic acid  相似文献   

17.
Tissue culture is one of the tools necessary for genetic engineering and many other breeding programs. Moreover, selection of high regenerating rice varieties is a pre-requisite for success in rice biotechnology. In this report we established a reproducible plant regeneration system through somatic embryogenesis. The explants used for regeneration were embryogenic calli derived from mature seeds cultured on callus induction media. For callus induction mature seeds were cultured on MS medium containing 30 g/l sucrose combined with 560 mg/l proline and 1.5-3.5 mg/l 2,4-D and 0.5-1.5 mg/l Kin. For plant regeneration, embryogenic calli were transferred to MS medium containing 30 g/l sucrose, supplemented with 1.0-3.0 mg/l BAP, 0.5-1.5 mg/l Kin and 0.5-1.5 mg/l NAA. The highest frequency of callus induction (44.4%) was observed on the MS medium supplemented with 2.5 mg/l 2,4-D, 0.5 mg/l Kin, 560 mg/l proline and 30 g/l sucrose. The highest frequency of shoot regeneration (42.5%) was observed on the MS medium supplemented with 2.0 mg/l BAP, 0.5 mg/l NAA and 0.5 mg/l Kin. The plantlets were hardened and transferred to soil in earthen pots. The developed method was highly reproducible. The in vitro developed plants showed normal growth and flowering under glasshouse conditions.  相似文献   

18.
Selecting the explant genotypes is crucial step in in vitro culture and Agrobacterium-mediated transformation system due to its host range specificity. Immature embryos of five winter and three spring wheat (Triticum aestivum L) cultivars were evaluated for tissue culture response in three callus initiation media. MS medium containing 2,4-0 (2 mg ml-1) plus B5 vitamins (MSB5), MS medium containing 2,4-0 (1 mg ml-1) with no vitamins (MS1GC) or MS medium containing picloram (2.2 mg ml-1) and 2,4-0 (0.5 mg ml-1) plus MS vitamins (CM4C) were used for callus initiation. Percentage of callus induction varied widely with the genotype and initiation medium used, with values ranging from 5.7% to 100%. Embryogenic capacity of genotypes was evaluated by number of somatic embryos formed from cultured immature embryos. Bob White (spring) and NE92458 (winter) were equal and most embryogenic; Pronghorn and 2137 (both winter) were the poorest. CM4C medium was found to be the best medium for initiating embryogenic callus among three culture media tested. A standard regeneration procedure was used. The genotypes with the highest regeneration efficiencies were Bob White, Fielder and NE92458, (1.8, 1.4 and 1.6 plantslexplant, respectively).  相似文献   

19.
The aim of this study was to determine the effect of genotype and induction medium in anther culture of wheat (Triticum aestivum L.). Ten F1 winter wheat genotypes were tested in anther culture (AC) to compare the two most frequently applied induction media (W14mf and P4mf). Androgenesis was induced during the treatment of each tested genotypes and green plants were produced from them using both media. Based on statistical analysis, the genotypes significantly influenced (at the 0.001 probability level) the efficiency of AC (embryo-like structures (ELS), albinos, green plantlets and transplanted plantlets) and the media also had a significant effect on the number of ELS and albino plantlets. Both media can be used for AC in wheat doubled haploid (DH) plant production. The production of ELS and green plantlets was higher in P4mf medium (48.84 ELS/100 anthers, 4.82 green plantlets/100 anthers) than in W14mf medium (28.14 ELS/100 anthers, 4.59 green plantlets/100 anthers). However, the green plant regeneration efficiency of the microspore-derived structures was 16.9% when using W14mf medium, while this value was 9.6% in the case of ELS induced with P4mf medium. The application of W14mf medium thus proved to be time- and labour-saving medium in the large-scale production of DH wheat plants. In our experiments, 267 DH plants were produced for our winter wheat breeding program. The spontaneous rediploidization rate was 32.72%.  相似文献   

20.
Somatic embryo (embryoid) formation from immature-embryo-derived calli was quantified in replicated experiments involving 10 Triticum aestivum L. genotypes. Several published media formulations, which had previously been optimized for wheat tissue culture, were tested for each genotype. Embryos from each plant were randomly assigned to each medium. Percentage precocious germination of immature embryos and mean percentage scutellar callus per explant were recorded. Embryoids per callus were determined by microscopic examination at 28 and 56 days. There were highly significant differences among genotypes, media, and individual plants from which explants were taken. A medium based on double the Murashige and Skoog (MS) inorganic salt concentration was significantly better than other media. Inclusion of all MS vitamins appeared essential for optimal response. Two genotypes were tested in a second experiment where both 3,6-dichloro-o-anisic acid (9.05 M) and 6-furfurylaminopurine (0.46 M) were substituted for 2,4-dichlorophenoxyacetic acid (4.52 M) in either double or normal MS medium. This substitution significantly increased embryoid formation at 28 days. Additions of either 6-furfurylaminopurine or coconut water increased precocious germination of both embryo explants and embryoids.This study was supported in part by NASA-Ames Cooperative Agreement No. NCC2-139. Contribution of the Utah Agricultural Experiment Station, Utah State University, Logan, UT, Journal Paper No. 3358.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号