首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Kenney JW  Raybuck JD  Gould TJ 《Hippocampus》2012,22(8):1681-1690
Nicotine administration alters various forms of hippocampus-dependent learning and memory. Increasing work has found that the dorsal and ventral hippocampus differentially contribute to multiple behaviors. Thus, the present study examined whether the effects of nicotine in the dorsal and ventral hippocampus have distinct influences on contextual fear learning in male C57BL/6J mice. Direct infusion of nicotine into the dorsal hippocampus resulted in an enhancement of contextual fear learning, whereas nicotine infused into the ventral hippocampus resulted in deficits. Nicotine infusions into the ventral hippocampus did not alter hippocampus-independent cued fear conditioning or time spent in the open arm of the elevated plus maze, a measure of anxiety, suggesting that the effects are due to alterations in contextual learning and not other general processes. Finally, results from using direct infusions of MLA, a low-affinity α7 nicotinic acetylcholine receptor (nAChR) antagonist, in conjunction with systemic nicotine, provide evidence that α7-nAChRs in the ventral hippocampus mediate the detrimental effect of ventral hippocampal nicotine on contextual fear learning. These results suggest that with systemic nicotine administration, competition exists between the dorsal and ventral hippocampus for behavioral control over contextual learning.  相似文献   

2.
Elevated beta-amyloid is thought to trigger the onset of Alzheimer's disease. Alzheimer's disease is marked by progressive loss of cognitive function, an early symptom of which is episodic memory deficits. Impairment of episodic memory is linked to hippocampal pathology. We investigated the signal transduction consequences of exposure to nanomolar to low micromolar concentrations of aggregate forms of beta-amyloid in the hippocampus. We found that, in addition to activation of ERK MAPK and its downstream target ribosomal S6 kinase in hippocampal slice cultures following acute exposure to oligomeric beta-amyloid(1-42), ERK activation also requires phosphoinositide-3 kinase activity. These effects were contingent on the alpha7 subtype of nicotinic acetylcholine receptor. Hippocampal slice cultures treated acutely with oligomeric beta-amyloid(1-42) did not exhibit JNK MAPK activation; however, chronic exposure to oligomers or high molecular weight aggregates of beta-amyloid(1-42) led to JNK MAPK activation coincident with ERK MAPK down-regulation. In contrast to the effects of acute application of oligomeric beta-amyloid(1-42), nicotine activated ERK MAPK via alpha7 nicotinic acetylcholine receptors utilizing protein kinase A as an intermediate. In conclusion, we found that both the physical state and duration of exposure to beta-amyloid are determinants of MAPK recruitment in hippocampus. We also found that nicotine and beta-amyloid activate ERK MAPK via alpha7 nicotinic acetylcholine receptors but use distinct intermediate kinases. These data indicate the existence of differential coupling of alpha7 to downstream targets depending on the type of ligand that leads to receptor activation.  相似文献   

3.
The present study examined the effect of a low-dose of nicotine; below that one expects to be achieved from a single cigarette, on brain regional heterogeneity and sensitivity of catecholaminergic responses. 1 μM nicotine was infused into six brain areas via a microdialysis probe: the dorsal and ventral hippocampus, the medial temporal and prefrontal cortex, the basolateral amygdala, and the ventral tegmental area (VTA). The nicotine concentration in the brain tissue near the probe site was approximately 0.1 μM. Nicotine-induced increases and decreases could be noted in dopamine (DA), norepinephrine (NE), and serotonin (5HT) levels. In particular, DA and 5HT decreased in both hippocampal areas, while NE increased in the dorsal and decreased in the ventral hippocampus. In the cortical areas, DA and NE increased and 5HT was not significantly altered. In the amygdala all three neurotransmitters increased and in the VTA, all three decreased. Many of the nicotine-induced changes in neurotransmitter concentrations were reversed in the presence of atropine. Where nicotine induced decreases in DA and 5HT in the VTA, increases were observed in the presence of atropine. A similar reversal was seen with NE in the VTA and ventral hippocampus. In contrast, the increases in DA observed in the cortex and amygdala and the increases in NE observed in the cortex, amygdala and dorsal hippocampus were inhibited by the presence of atropine. 5HT was also significantly decreased in the amygdala and both cortical areas in the presence of atropine, where nicotine alone had no significant effect. We conclude, that at low doses, nicotine significantly alters the release of DA, NE, and 5HT – in some areas increasing, in others decreasing endogenous neurotransmitter levels. This data, in conjunction with previous experiments, indicates that the effects of nicotine are regionally heterogeneous and arise from both direct and indirect actions on various receptors and neurotransmitter systems and nicotine’s effects at low doses differ from that at higher doses. The changes in effects in the presence of atropine suggest that muscarinic acetylcholine receptors play a major role in nicotine’s actions on neurotransmitter systems.  相似文献   

4.
Nicotine is the principle addictive agent delivered via cigarette smoking. The addictive activity of nicotine is due to potent interactions with nicotinic acetylcholine receptors (nAChRs) on neurons in the reinforcement and reward circuits of the brain. Beyond its addictive actions, nicotine is thought to have positive effects on performance in working memory and short-term attention-related tasks. The brain areas involved in such behaviors are part of an extensive cortico-limbic network that includes relays between prefrontal cortex (PFC) and cingulate cortex (CC), hippocampus, amygdala, ventral tegmental area (VTA) and the nucleus accumbens (nAcc). Nicotine activates a broad array of nAChRs subtypes that can be targeted to pre- as well as peri- and post-synaptic locations in these areas. Thereby, nicotine not only excites different types of neurons, but it also perturbs baseline neuronal communication, alters synaptic properties and modulates synaptic plasticity.In this review we focus on recent findings on nicotinic modulation of cortical circuits and their targets fields, which show that acute and transient activation of nicotinic receptors in cortico-limbic circuits triggers a series of events that affects cognitive performance in a long lasting manner. Understanding how nicotine induces long-term changes in synapses and alters plasticity in the cortico-limbic circuits is essential to determining how these areas interact in decoding fundamental aspects of cognition and reward.  相似文献   

5.
Nicotine consumed upon smoking affects numerous physiological processes through nicotinic acetylcholine receptors, which mediate cholinergic regulation by the neuronal and endogenous acetylcholine. Consequently, nicotinic receptors are expressed in many non-excitable tissues including the blood. In spite of the documented effect of nicotine on hematopoiesis, little is known about the expression and role of nicotinic receptors in the course of blood cell differentiation. The aim of the present study was to investigate whether and how nicotinic receptors are involved in the development of myeloid and erythroid cells within the bone marrow. The presence of nicotinic receptors containing alpha4(beta2) and alpha7 subunits in the bone marrow cells of C57Bl/6 mice was shown by the binding of [125I]-alpha-bungarotoxin or [3H]-Epibatidine and by flow cytometry with subunit-specific antibodies or fluorescein-labeled alpha-cobratoxin. Both TER119+ (erythroid) and CD16+CD43med (myeloid) progenitor cells bound more alpha4-specific antibodies than their mature forms, while the binding of alpha-cobratoxin and alpha7-specific antibodies was also high in mature cells. According to morphological analysis, either the absence of alpha7-containing nicotinic receptors in knockout mice or their desensitization in mice chronically treated with nicotine decreased the number of myeloid and erythroid progenitors and junior cells. In contrast, the absence of beta2-containing receptors favored myelocyte generation and erythroid cell maturation. It is concluded that the development of both myeloid and erythroid cell lineages is regulated by endogenous cholinergic ligands and can be affected by nicotine through alpha7- and alpha4beta2-containing nicotinic receptors, which play different roles in the course of the cell maturation.  相似文献   

6.
The activation of cholinergic pathways by nicotine elicits various physiological and pharmacological effects in mammals. For example, the stimulation of nicotinic acetylcholine receptors (nAChRs) leads to an antinociceptive effect. However, it remains to be elucidated which subtypes of nAChR are involved in the antinociceptive effect of nicotine on nerve injury-induced allodynia and the underlying cascades of the nAChR-mediated antiallodynic effect. In this study, we attempted to characterize the actions of nicotine at the spinal level against mechanical allodynia in an animal model of neuropathic pain, tibial nerve transection (TNT) in rats. It was found that the intrathecal injection of nicotine, RJR-2403, a selective alpha4beta2 nAChR agonist, and choline, a selective alpha7 nAChR agonist, produced an antinociceptive effect on the TNT-induced allodynia. The actions of nicotine were almost completely suppressed by pretreatment with mecamylamine, a non-selective nicotinic antagonist, or dihydro-beta-erythroidine, a selective alpha4beta2 nAChR antagonist, and partially reversed by pretreatment with methyllycaconitine, a selective alpha7 nAChR antagonist. Furthermore, pretreatment with strychnine, a glycine receptor antagonist, blocked the antinociception induced by nicotine, RJR-2403, and choline. On the other hand, the GABAA antagonist bicuculline did not reverse the antiallodynic effect of nicotine. Together, these results indicate that the alpha4beta2 and alpha7 nAChR system, by enhancing the activities of glycinergic neurons at the spinal level, exerts a suppressive effect on the nociceptive transduction in neuropathic pain.  相似文献   

7.
Age-related changes in the mammalian dorsal hippocampus are associated with diminished expression of neuronal nicotinic acetylcholine receptors (nAChR), which is particularly severe in pathologies such as those associated with dementias, including Alzheimer's disease. Because the mouse is a useful model for age-related decline in nAChR expression in the basal forebrain and limbic system, we used immunohistochemistry to examine the influence of long-term (12-month) oral administration of nicotine and/or the cyclooxygenase-2 (COX-2) preferring non-steroidal anti-inflammatory drug (NSAID) NS398 on nAChR alpha4, alpha5, alpha7, and beta4 expression in the C57BL/6 mouse. Inhibitory neurons of the dorsal hippocampus that express nAChRs also constitutively express COX-2 and the peroxisome proliferator-antagonist receptor subtype gamma-2 (PPAR gamma2) which is also a target of NS398. Administration of NS398 correlated with retention of nAChR alpha4 and to a lesser extent nAChR beta4, but not nAChR alpha5 or alpha7, but nicotine exhibited no similar effect. Nicotine and NS398 co-administration abolished the NS398-related effect on nAChR alpha4 retention. These results provide evidence that the interaction during aging between oral administration of nicotine and NSAIDs are not straightforward and could even be antagonistic when combined.  相似文献   

8.
Nicotinic receptors containing alpha7 subunits are widely distributed in the central nervous system and are thought to be involved in a number of functions. However, it has been difficult to study alpha7-containing receptors in vivo because of a paucity of selective agonists. A new spirooxazolidinone compound, AR-R17779, was recently described as potent agonist at alpha7 receptors, but electrophysiological studies at other types of nicotinic receptors have not been carried out. We characterized the activity of AR-R17779 at alpha7, alpha4beta2, alpha3beta4, alpha3beta2, alpha3beta2alpha5 receptors expressed in Xenopus oocytes. In addition, since there is significant homology between nicotinic alpha7 and serotonin 5HT(3) receptors, the activity of AR-R17779 at expressed 5HT(3a) receptors was also examined. Finally, actions of tropisetron and ondansetron, two 5HT(3) antagonists, were explored. AR-R17779 was found to activate alpha7 receptors, but had no activity at other types of nicotinic receptors, and also had no activity at 5HT(3a) receptors. Tropisetron activated, while ondansetron acted as an antagonist, at alpha7 nicotinic receptors. The two 5HT(3) antagonists also acted as antagonists at alpha4beta2 and alpha3beta4 nicotinic receptors. Thus, AR-R17779 was confirmed to be a selective nicotinic alpha7 receptor agonist and to be without activity at 5HT(3) receptors. In contrast, the actions of tropisetron and ondansetron on nicotinic receptors were complex.  相似文献   

9.
Patients with schizophrenia exhibit deficits in a range of cognitive functions, particularly working and episodic memory, which are thought to be core features of the disorder. Memory dysfunction in schizophrenia is familial and thus a promising endophenotype for genetic studies. Both human and animal studies suggest a role for the neural nicotinic acid receptor family in cognition and specifically the alpha7-receptor subunit in schizophrenia and its endophenotypes. Consequently, we tested mice lacking the alpha7 subunit of the neural nicotinic receptor (B6.129S7-Chrna7(tm1Bay)/J) in the delayed matching-to-place (DMP) task of the Morris water maze, a measure of working/episodic memory akin to human episodic memory. We report that a minor impairment in alpha7 knockout mice was observed in the DMP task, with knockout mice taking longer to find the hidden platform than their wildtype controls. This suggests a role for the alpha7 subunit in working/episodic memory and a potential role for the alpha7 neural nicotinic receptor gene (CHRNA7) in schizophrenia and its endophenotypes.  相似文献   

10.
Recent evidence suggests that in addition to alpha4beta2 and alpha3-containing nicotinic receptors, alpha6-containing receptors are present in midbrain dopaminergic neurons and involved in the nicotine reward pathway. Using heterologous expression, we found that alpha6beta2, like alpha3beta2 and alpha4beta2 receptors, formed high affinity epibatidine binding complexes that are pentameric, trafficked to the cell surface, and produced acetylcholine-evoked currents. Chronic nicotine exposure up-regulated alpha6beta2 receptors with differences in up-regulation time course and concentration dependence compared with alpha4beta2 receptors, the predominant high affinity nicotine binding site in brain. The alpha6beta2 receptor up-regulation required higher nicotine concentrations than for alpha4beta2 but lower than for alpha3beta2 receptors. The alpha6beta2 up-regulation occurred 10-fold faster than for alpha4beta2 and slightly faster than for alpha3beta2. Our data suggest that nicotinic receptor up-regulation is subtype-specific such that alpha6-containing receptors up-regulate in response to transient, high nicotine exposures, whereas sustained, low nicotine exposures up-regulate alpha4beta2 receptors.  相似文献   

11.
Neurosteroids are a subclass of steroids that can be synthesized in the central nervous system independently of peripheral sources. Several neurosteroids influence cognitive functions. Indeed, in senescent animals we have previously demonstrated a significant correlation between the cerebral concentration of pregnenolone sulfate (PREG-S) and cognitive performance. Indeed, rats with memory impairments exhibited low PREG-S concentrations compared to animals with correct memory performance. Furthermore, these memory deficits can be reversed by intracerebral infusions of PREG-S. Neurotransmitter systems modulated by this neurosteroid were unknown until our recent report of an enhancement of acetylcholine (ACh) release in basolateral amygdala, cortex, and hippocampus induced by central administrations of PREG-S. Central ACh neurotransmission is involved in the regulation of memory processes and is affected in normal aging and in human neurodegenerative pathologies like Alzheimer's disease. ACh neurotransmission is also involved in the modulation of sleep-wakefulness cycle and relationships between paradoxical sleep and memory are well documented in the literature. PREG-S infused at the level of ACh cell bodies induces a dramatic increase of paradoxical sleep in young animals. Cognitive dysfunctions, particularly those observed in Alzheimer's disease, have also been related to alterations of cerebral plasticity. Among these mechanisms, neurogenesis has been recently studied. Preliminary data suggest that PREG-S central infusions dramatically increase neurogenesis. Taken together these data suggest that PREG-S can influence cognitive processes, particularly in senescent subjects, through a modulation of ACh neurotransmission associated with paradoxical sleep modifications; furthermore our recent data suggest a role for neurosteroids in the modulation of hippocampal neurogenesis.  相似文献   

12.
Nicotinic acetylcholine receptors play important roles in numerous cognitive processes as well as in several debilitating central nervous system (CNS) disorders. In order to fully elucidate the diverse roles of nicotinic acetylcholine receptors in CNS function and dysfunction, a detailed knowledge of their cellular and subcellular localizations is essential. To date, methods to precisely localize nicotinic acetylcholine receptors in the CNS have predominantly relied on the use of anti-receptor subunit antibodies. Although data obtained by immunohistology and immunoblotting are generally in accordance with ligand binding studies, some discrepancies remain, in particular with electrophysiological findings. In this context, nicotinic acetylcholine receptor subunit-deficient mice should be ideal tools for testing the specificity of subunit-directed antibodies. Here, we used standard protocols for immunohistochemistry and western blotting to examine the antibodies raised against the alpha3-, alpha4-, alpha7-, beta2-, and beta4-nicotinic acetylcholine receptor subunits on brain tissues of the respective knock-out mice. Unexpectedly, for each of the antibodies tested, immunoreactivity was the same in wild-type and knock-out mice. These data imply that, under commonly used conditions, these antibodies are not suited for immunolocalization. Thus, particular caution should be exerted with regards to the experimental approach used to visualize nicotinic acetylcholine receptors in the brain.  相似文献   

13.
Although nicotine is thought to be one of the major immunomodulatory components of cigarette smoking, how nicotine alters the host defense of the lung and, in particular, immune responses of alveolar macrophages, which are critical effector cells in the lung defense to infection, is poorly understood. Nicotinic acetylcholine receptors (nAChRs) are the receptor for nicotine and may be involved in the modulation of macrophage function by nicotine. In this study, therefore, nicotine-induced suppression of antimicrobial activity and cytokine responses of alveolar macrophages mediated by nAChRs to Legionella pneumophila, a causative agent for pneumonia, were examined. The murine MH-S alveolar macrophage cell line cells expressed the messages for alpha4 and beta2 subunits of nAChRs, but not alpha7 subunits, determined by RT-PCR. The nicotine treatment of MH-S alveolar macrophages after infection with L. pneumophila significantly enhanced the replication of bacteria in the macrophages and selectively down-regulated the production of IL-6, IL-12, and TNF-alpha, but not IL-10, induced by infection. These effects were completely blocked by a nonselective antagonist, d-tubocurarine, for nAChRs, but not by a selective antagonist, alpha-bungarotoxin, for alpha7-nAChRs. Furthermore, the stimulation of nAChRs with another agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, showed the same effects, which were blocked by the antagonist d-tubocurarine, on the bacterial replication and cytokine regulation with that of nicotine. Thus, the results revealed that nAChRs, the major exogenous ligands of which are nicotine, are involved in the regulation of macrophage immune function by nicotine and may contribute to the cigarette-induced risk factors for respiratory infections in smokers.  相似文献   

14.
A series of bis-nicotinium, bis-pyridinium, bis-picolinium, bis-quinolinium and bis-isoquinolinium compounds was evaluated for their binding affinity at nicotinic acetylcholine receptors (nAChRs) using rat brain membranes. N,N'-Decane-1,12-diyl-bis-nicotinium diiodide (bNDI) exhibited the highest affinity for [(3)H]nicotine binding sites (K(i)=330 nM), but did not inhibit [(3)H]methyllycaconitine binding (K(i) >100 microM), indicative of an interaction with alpha4beta2*, but not alpha7* receptor subtypes, respectively. Also, bNDI inhibited (IC(50)=3.76 microM) nicotine-evoked (86)Rb(+) efflux from rat thalamic synaptosomes, indicating antagonist activity at alpha4beta2* nAChRs. N,N'-Dodecane-1,12-diyl-bis-quinolinium dibromide (bQDDB) exhibited highest affinity for [(3)H]methyllycaconitine binding sites (K(i)=1.61 microM), but did not inhibit [(3)H]nicotine binding (K(i)>100 microM), demonstrating an interaction with alpha7*, but not alpha4beta2* nAChRs. Thus, variation of N-n-alkyl chain length together with structural modification of the azaaromatic quaternary ammonium moiety afforded selective antagonists for the alpha4beta2* nAChR subtype, as well as ligands with selectivity at alpha7* nAChRs.  相似文献   

15.
Microinjections (50 nl) of nicotine (0.01-10 microM) into the nucleus of the solitary tract (NTS) of adult, urethan-anesthetized, artificially ventilated, male Wistar rats, elicited decreases in blood pressure and heart rate. Prior microinjections of alpha-bungarotoxin (alpha-BT) and alpha-conotoxin ImI (specific toxins for nicotinic receptors containing alpha7 subunits) elicited a 20-38% reduction in nicotine responses. Similarly, prior microinjections of hexamethonium, mecamylamine, and alpha-conotoxin AuIB (specific blockers or toxin for nicotinic receptors containing alpha3beta4 subunits) elicited a 47-79% reduction in nicotine responses. Nicotine responses were completely blocked by prior sequential microinjections of alpha-BT and mecamylamine into the NTS. Complete blockade of excitatory amino acid receptors (EAARs) in the NTS did not attenuate the responses to nicotine. It was concluded that 1) the predominant type of nicotinic receptor in the NTS contains alpha3beta4 subunits, 2) a smaller proportion contains alpha7 subunits, 3) the presynaptic nicotinic receptors in the NTS do not contribute to nicotine-induced responses, and 4) EAARs in the NTS are not involved in mediating responses to nicotine.  相似文献   

16.
Nicotinic acetylcholine (ACh) receptors, such as alpha7, alpha3beta4 and alpha4beta2 receptors in the hippocampus, are suggested to modulate neurotransmitter release. 8-[2-(2-Pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) (100 nM), a linoleic acid derivative, potentiated responses of alpha7, alpha3beta4 and alpha4beta2 ACh receptors expressed in Xenopus oocytes that are blocked by 3-(1-[dimethylaminopropyl] indol-3-yl)-4-[indol-3-yl] maleimide (GF109203X), a selective inhibitor of protein kinase C (PKC), except for alpha3beta4 ACh receptors. DCP-LA enhanced the nicotine-triggered release of GABA from rat hippocampal slices in the presence of tetrodotoxin in a bell-shaped dose-dependent manner at concentrations ranging from 10 nM to 10 microM, although DCP-LA by itself had no effect on GABA release. The DCP-LA action was inhibited by GF109203X or alpha-bungarotoxin, an inhibitor of alpha7 ACh receptors, but not by mecamylamine or dihydro-beta-erithroidine, an inhibitor of alpha3beta4 and alpha4beta2 ACh receptors. A similar effect on GABA release was obtained with 12-O-tetradecanoylphorbol 13-acetate, a PKC activator. DCP-LA (100 nM) also enhanced GABA release triggered by choline, an agonist of alpha7 ACh receptors, but not 3-[2(s)-azetidinylmethoxy] pyridine, an agonist of alpha4beta2 ACh receptors. In addition, DCP-LA (100 nM) increased the rate of nicotine-triggered GABA(A) receptor-mediated miniature inhibitory post-synaptic currents, monitored from CA1 pyramidal neurons of rat hippocampal slices, and the effect was also inhibited by GF109203X or alpha-bungarotoxin but not by mecamylamine. Thus, the results of the present study indicate that DCP-LA stimulates GABA release by enhancing activity of pre-synaptic alpha7 ACh receptors present on the GABAergic terminals of interneurons that transmit to CA1 pyramidal neurons via a PKC pathway.  相似文献   

17.
Homochiral E and Z isomers of N-methylprolinal O-isopropyloxime and (1-methyl-2-pyrrolidinyl)methoxyimines were synthesized as candidate bioisosteres of nicotine and its isoxazolic analogue ABT 418. Two of them, namely (S)-2-isopropylideneaminooxymethyl- and (Z)-(S)-2-ethylideneaminooxymethyl-1-methylpyrrolidine, proved to bind at alpha4beta2 nicotinic acetylcholine receptor with submicromolar affinity and remarkable selectivity over alpha7 and muscarinic receptors thus supporting the hypothesized bioisosteric relationship between their methyloxyimino group and the aromatic heterocycles of the reference ligands.  相似文献   

18.
We have recently reported evidence that a very high affinity interaction between the beta-amyloid peptide Abeta(1-42) and the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) may be a precipitating event in the formation of amyloid plaques in Alzheimer's disease. In the present study, the kinetics for the binding of Abeta(1-42) to alpha7nAChR and alpha4beta2nAChR were determined using the subtype-selective nicotinic receptor ligands [(3)H]methyllycaconitine and [(3)H]cytisine. Synaptic membranes prepared from rat and guinea pig cerebral cortex and hippocampus were used as the source of receptors. Abeta(1-42) bound to the alpha7nAChR with exceptionally high affinity, as indicated by K(i) values of 4.1 and 5.0 pM for rat and guinea pig receptors, respectively. When compared with the alpha7nAChR, the affinity of Abeta(1-42) for the alpha4beta2nAChR was approximately 5,000-fold lower, as indicated by corresponding K(i) values of 30 and 23nM. The results of this study support the concept that an exceptionally high affinity interaction between Abeta(1-42) and alpha7nAChR could serve as a precipitating factor in the formation of amyloid plaques and thereby contribute to the selective degeneration of cholinergic neurons that originate in the basal forebrain and project to the cortex and hippocampus.  相似文献   

19.
《Journal of Physiology》1998,92(3-4):209-213
While trying to mimic the dose and time course of nicotine as it is obtained by a smoker, we found the following results. The initial arrival of even a low concentration of nicotine increased the firing rate of dopaminergic neurons from the ventral tegmental area (VTA) and increased the spontaneous vesicular release of GABA from hippocampal neurons. Longer exposure to nicotine caused variable, but dramatic, desensitization of nicotine receptors and diminished the effects of nicotine. The addictive properties of nicotine as well as its diverse effects on cognitive function could be mediated through differences in activation and desensitization of nicotinic receptors in various areas of the brain.  相似文献   

20.
In HEK293 cells stably expressing alpha4beta2 nAChRs, naltrexone, but not naloxone, blocked alpha4beta2 nAChRs via an open-channel blocking mechanism. In primary hippocampal cultures, naltrexone inhibited alpha7 nAChRs up-regulated by nicotine, and in organotypic hippocampal cultures naltrexone caused a time-dependent up-regulation of functional alpha7 nAChRs that was detected after removal of the drug. These results indicate that naltrexone could be used as a smoking cessation aid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号