首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fourteen Quechua men chewed coca leaves as they were exposed to a mild cold stress of 15.5°C for two hours. When compared to their own responses in a similar exposure without coca, they showed lower finger and toe temperatures. This was attributed to a mild vasoconstriction induced by coca leaf chewing. During the second hour of cold, coca users also showed a more gradual decline in core temperature which could represent greater heat conservation.  相似文献   

2.
Physiological changes that increase plant performance during exposure to high temperatures may play an inverse role during exposure to low temperatures. The objective of this study was to test variations in photosystem II response to heat and cold stress in the leaves of a bromeliad with crassulacean acid metabolism submitted to high or low temperatures. Leaves were maintained under constant temperatures of 10 and 35°C and used to examine possible relationships among physiological responses to high and low temperatures and organic acid accumulation. We also tested if distinct parts of bromeliad leaves show differences in photosynthetic thermotolerance. The samples from leaves maintained at 35°C showed greater heat tolerance values, while those from leaves maintained at 10°C showed lower cold tolerance values. Our results identified a strong negative relationship between the organic acid accumulation and thermal tolerance of bromeliad leaves that largely explained the differences in thermal tolerance among groups. One of these differences occurred among regions of a single leaf, with the base showing critical heat values of up to 8°C higher than the top region, suggesting a possible partitioning of leaf response among its regions. Differences in thermal tolerance were also observed between sampling times, with higher values observed in the morning.  相似文献   

3.
Thermal resonses of Andean Indians were measured during several customary tasks associated with cold exposure in the highlands of southern Peru. These included surface temperature measurements of women while they washed clothing in the river and similar measurements of men while they constructed a diversion channel in the same river. A third test measured the effects of alcohol consumption on body temperatures during light activity. Women maintained slightly warmer hand than foot temperatures. Men maintained nearly equal hand and foot temperatures during the exposure period. Among male subjects the foot rewarmed at a faster rate than the hand. The results from the field studies compared favorably with results from earlier laboratory exposure tests. Comparisons between the river water exposure tests for males and females showed a consistent pattern where females maintained warmer hand and foot temperatures than males. These findings were in accord with previous laboratory studies among Quechua Indians and with the findings reported for other ethnic groups who experience natural cold stress. Alcohol ingestion appeared to have minimal effect in mitigating cold stress response during light activity. This finding was counter to earlier laboratory tests of resting subjects.  相似文献   

4.
Arabidopsis plants show an increase in freezing tolerance in response to exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In the present study, we evaluated the physiological and morphological responses of various Arabidopsis ecotypes to continuous growth under chilling (14°C) and cold (6°C) temperatures and evaluated their basal freezing tolerance levels. Seedlings of Arabidopsis plants were extremely sensitive to low growth temperatures: the hypocotyls and petioles were much longer and the angles of the second pair of true leaves were much greater in plants grown at 14°C than in those grown at 22°C, whereas just intermediate responses were observed under the cold temperature of 6°C. Flowering time was also markedly delayed at low growth temperatures and, interestingly, lower growth temperatures were accompanied by longer inflorescences. Other marked responses to low temperatures were changes in pigmentation, which appeared to be both ecotype specific and temperature dependent and resulted in various visual phenotypes such as chlorosis, necrosis or enhanced accumulation of anthocyanins. The observed decreases in chlorophyll contents and accumulation of anthocyanins were much more prominent in plants grown at 6°C than in those grown at 14°C. Among the various ecotypes tested, Mt‐0 plants markedly accumulated the highest levels of anthocyanins upon growth at 6°C. Freezing tolerance examination revealed that among 10 ecotypes tested, only C24 plants were significantly more sensitive to subzero temperatures. In conclusion, Arabidopsis ecotypes responded differentially to cold (6°C), chilling (14°C) and freezing temperatures, with specific ecotypes being more sensitive in particular traits to each low temperature.  相似文献   

5.
6.
The imperial bromeliad Alcantarea imperialis grows naturally on rocky outcrops (‘inselbergs’) in regions where daily temperatures vary from 5 to 40°C. As carbohydrate metabolism is altered in response to cold, it could lead to reprogramming of the metabolic machinery including the increase in levels of metabolites that function as osmolytes, compatible solutes, or energy sources in order to maintain plant homeostasis. The aim of this study was to evaluate the effects of different temperatures on plant growth and non-structural carbohydrates in plants of A. imperialis adapted to low temperature. Seedlings of A. imperialis were grown in vitro under a 12-h photoperiod with four different day/night temperature cycles: 5/5°C, 15/15°C, 15/30°C (dark/light) and 30/30°C. Plants were also cultivated at 26°C in ex vitro conditions for comparison. The results showed an inverse relationship between temperature and germination time and no differences in the percentage of germination. Plants maintained for 9 months at 15°C presented a reduced number of leaves and roots, and a dry mass four times lower than plants grown at 30°C. Sugar content was higher in plants grown at 15°C than at 30°C. However, the highest amount of total sugar was found in plants growing under warm day/cold night conditions. Myo-inositol, glucose, fructose and sucrose were found predominantly under high temperatures, while under low temperatures, sucrose was apparently replaced by trehalose, raffinose and stachyose. Starch content was highest in plants grown under high temperatures. The lowest starch content was detected under low temperatures, suggesting its conversion into soluble carbohydrates to protect the plants against cold. These results indicated that low temperature retarded growth of A. imperialis and increased sugar levels, mainly trehalose, thus suggesting that these sugar compounds could be involved in cold tolerance.  相似文献   

7.
Ten-week-old male Wistar rats (systolic blood pressure, 106–116 mmHg; body weight, 300–320 g) and spontaneously hypertensive rats (systolic blood pressure, 160–176 mmHg; body weight, 210.9–244.9 g) were used as healthy and hypertensive subjects to determine the effects of varying degrees of cold-air exposure in a climate chamber box. The three cold-air ranks were cold air I [minimum temperature (TMIN) 6.4 °C, ↓?T48 8.6 °C], cold air II (TMIN 3.8 °C, ↓?T48 11.2 °C), and cold air III (TMIN ?0.3 °C, ↓?T48 15.3 °C), as established from the cold-air data of Zhangye City, China. Each cold-air rank consisted of a temperature drop and a temperature increase with the same initial and terminal temperatures (15 °C). After cold-air exposure, the risk factors for cardiovascular disease (CVD) such as systolic blood pressure, whole blood viscosity (10/s and 150/s), plasma fibrinogen, and blood lipids of the rats were determined. The results indicated that the CVD risk factors of the healthy and hypertensive rats increased significantly with cold-air exposure intensities. The increase in systolic blood pressure was greater during temperature drops, whereas the increases in whole blood viscosity and plasma fibrinogen were greater after cold-air exposure. The effects of cold-air exposure on the CVD risk factors of healthy rats, particularly the systolic blood pressure, whole blood viscosity (150/s), and LDL/HDL, were greater than those in hypertensive rats. In conclusion, CVD risk may increase with cold-air ranks. Blood pressure-induced CVD risk may be greater during cold-air temperature drop, whereas atherosclerosis-induced CVD risk may be greater after cold-air exposure. The effect of cold air on the CVD risk factors in healthy subjects may be more significant than those in hypertensive subjects.  相似文献   

8.
Neal  Anita S.  Diaz  Rodrigo  Qureshi  Jawwad A.  Cave  Ronald D. 《Biological invasions》2021,23(12):3719-3731

Cold tolerance and potential distribution of Myllocerus undecimpustulatus undatus Marshall, a polyphagous pest in the United States, were investigated. Adult survivorship after 2 days at 0 °C and ??5 °C averaged 60% and 18%, respectively. Four days of exposure resulted in survivorship of 11% at 0 °C and 4% at ??5 °C, respectively. Summer-collected weevils at ??5 °C through repeated cold exposure of 2 h survived 3 times longer than those subjected to sustained cold period of 10 h. Leaf consumption did not differ among summer-collected weevils at constant 20 °C and repeated cold exposure treatments; weevils under sustained cold exposure consumed less than weevils in repeated cold exposure treatments. Leaf area consumed after cold exposure was 2–4 times greater in winter-collected weevils compared to summer-collected weevils. Leaf consumption by winter-collected weevils decreased as the number of repeated cold exposure periods increased. Locality data from collections in Florida during 2000–2012 were used to produce a correlative model complemented by a mechanistic model from the cold tolerance data to project the potential distribution of M. undecimpustulatus undatus in North America. The models support the hypothesis that M. undecimpustulatus undatus could spread to areas of the southeastern and western United States. The predicted northern distribution followed an isothermal line about 33° North. The niche model defined an area along the western Gulf Coast as unsuitable for the weevil, possibly because the area receives greater annual rainfall than other areas of the southeastern United States and has aquic or udic soil unlike the well-drained sandy soil of peninsular Florida.

  相似文献   

9.
Abstract.
  • 1 In Drosophila melanogaster, the cold-shock tolerance of adult flies at -7°C increased 22% after a prior 2h exposure to 4°C as measured by LD50, the dose (degree minutes of exposure to subzero temperature) which resulted in 50% mortality.
  • 2 Cold-shock tolerance was further significantly increased by selecting cold resistant lines by exposure of adults (1) to 4°C for 2 h (short-term chilling), or (2) to -7°C for 80–120 min (cold shock), or (3) to short-term chilling followed by cold-shock.
  • 3 After ten generations of selection, the greatest increase in cold-shock tolerance was found in flies selected using the combined exposure of short-term chilling and cold shock. LD50s increased 33% in comparison with the unselected control strain when no chilling pre-treatment was given prior to cold shock at -7°C.
  • 4 The rapid cold-hardening response increased 82% in the line selected by the short-term chilling and cold-shock regime.
  • 5 The enhanced cold-shock tolerance was relatively stable since no decrease was observed after four generations without selection.
  • 6 This report shows the role of short-term adaptation as well as selection in the capacity to survive low temperatures in non-diapausing stages of insects.
  相似文献   

10.
The results of laboratory tests indicated the average survival rates for Psorophora columbiae eggs remained quite high for all of the egg populations exposed to a temperature of 27°C (range 83.0–100.0% survival) after 96 days of exposure, except for the non‐diapausing eggs on dry soil (66.3%). In regard to the exposure of egg populations to moderately cold temperatures (i.e. 8°C, 4°C and ?2°C) for periods of up to 16 days, survival rates for egg populations exposed to 8°C continued to remain relatively high (average >85%) for the remainder of the experimental exposure period (i.e. 96 days). Diapausing Ps. columbiae eggs were more tolerant (82.0% survival) to low temperatures (?2°C) than non‐diapausing eggs (2.4% survival) for 64 days, particularly at temperatures of and below 4°C. Diapausing and non‐diapausing eggs were similar in their ability to survive under high temperatures (34°C and 38°C). High soil moisture (30–40%) or substrate moisture (95% relative humidity) content appeared to enhance the ability of the mosquito eggs to survive both low and high temperature extremes.  相似文献   

11.
Environmental stress generally disturbs cellular homeostasis. Researchers have hypothesized that chilling injury is linked to a shortage of ATP. However, previous studies conducted on insects exposed to nonfreezing low temperatures presented conflicting results. In this study, we investigated the mitochondrial bioenergetics of Drosophila melanogaster flies exposed to chronic cold stress (4 °C). We assessed mitochondrial oxygen consumption while monitoring the rate of ATP synthesis at various times (0, 1, 2, and 3 days) during prolonged cold stress and at two assay temperatures (25 and 4 °C). We compared organelle responses between cold-susceptible and cold-acclimated phenotypes. Continuous exposure to low temperature provoked temporal declines in the rates of mitochondrial respiration and ATP synthesis. Respiratory control ratios (RCRs) suggested that mitochondria were not critically uncoupled. Nevertheless, after 3 days of continuous cold stress, a sharp decline in the mitochondrial ATP synthesis rate was observed in control flies when they were assayed at low temperature. This change was associated with reduced survival capacity in control flies. In contrast, cold-acclimated flies exhibited high survival and maintained higher rates of mitochondrial ATP synthesis and coupling (i.e., higher RCRs). Adaptive changes due to cold acclimation observed in the whole organism were thus manifested in isolated mitochondria. Our observations suggest that cold tolerance is linked to the ability to maintain bioenergetics capacity under cold stress.  相似文献   

12.
Prolonged exposure to cold can impair manual performance, which in turn can affect work task performance. We investigated whether mild whole-body cold stress would affect isometric force control during submaximal hand grip and key pinch tasks. Twelve male participants performed isometric hand grip and key pinch tasks at 10% and 30% of maximal voluntary contraction (MVC) for 30 and 10 s respectively, in cold (8 °C) and control (25 °C) conditions. Finger temperature decreased significantly by 18.7 ± 2.1 °C and continuous low-intensity shivering in the upper trunk increased significantly in intensity and duration during cold exposure. Rectal temperature decreased similarly for the 8 °C and 25 °C exposures. Force variability (FCv) was <2% for the hand grip tasks, and <3% for the key pinch tasks. No significant changes in FCv or force accuracy were found between the ambient temperatures. In conclusion, isometric force control during hand grip and key pinch tasks was maintained when participants experienced mild whole-body cold stress compared with when they were thermally comfortable.  相似文献   

13.
The present study aimed to investigate in Hoplosternum littorale (Hancock, 1828) the effects of different water temperatures (10 °C, 25 °C-control group- and 33 °C) on physiologic and metabolic traits following acute (1 day) and chronic (21 days) exposures. We analyzed several biomarker responses in order to achieve a comprehensive survey of fish physiology and metabolism under the effect of this natural stressor. We measured morphological indices, biochemical and hematological parameters as well as oxidative stress markers. To evaluate energy consumption, muscle and hepatic total lipid, protein and glycogen concentrations were also quantified. Extreme temperatures exposures clearly resulted in metabolic adjustments, being liver energy reserves and plasma metabolites the most sensitive parameters detecting those changes. We observed reduced hepatosomatic index after acute and chronic exposure to 33 °C while glycogen levels decreased at both temperatures and time of exposure tested. Additionally, acute and chronic exposures to 10 °C increased liver lipid content and plasma triglycerides. Total protein concentration was higher in liver and lower in plasma after chronic exposures to 10 °C and 33 °C. Acute exposition at both temperatures caused significant changes in antioxidant enzymes tested in the different tissues without oxidative damage to lipids. Antioxidant defenses in fish failed to protect them when they were exposed for 21 days to 10 °C, promoting higher lipid peroxidation in liver, kidney and gills. According to multivariate analysis, oxidative stress and metabolic biomarkers clearly differentiated fish exposed chronically to 10 °C. Taken together, these results demonstrated that cold exposure was more stressful for H. littorale than heat stress. However, this species could cope with variations in temperature, allowing physiological processes and biochemical reactions to proceed efficiently at different temperatures and times of exposure. Our study showed the ability of H. littorale to resist a wide range of environmental temperatures and contributes for the understanding of how this species is adapted to environments with highly variable physicochemical conditions.  相似文献   

14.
Ansari , A. Q., and W. E. Loomis . (Iowa State University, Ames.) Leaf temperatures. Amer. Jour. Bot. 46(10): 713–717. Illus. 1959.—Leaf temperatures were measured with a thermocouple and potentiometer. Readings were taken on leaves of varying thickness, under varying environmental and plant conditions, and during alternating heating and cooling cycles in sun and shade. Leaves tended to assume air temperature. Sunshine heated thin leaves 6–10°C. above the air in about 1 min. Very thick leaves were heated 20°C. above air in 20–30 min. Cooling in still air in shade was at the same rate as heating in sunshine, and the product of this rate times leaf mass in g./cm.2 was constant for all leaves tested. Wind at 5 m.p.h. lowered leaf temperature in the sun about half way to air temperature. This cooling effect can result in a reduction of transpiration by wind. Transpiration had a minor effect on leaf temperature. Wilted leaves showed nearly the same temperature response as turgid ones. Dried leaves heated less and cooled faster in shade than transpiring leaves. Vaselined leaves were 1–3°C. warmer than transpiring leaves but showed similar heating and cooling curves.  相似文献   

15.
Variations in the preferred temperatures during the rest periods of Grammostola rosea Walckenaer and Paraphysa parvula Pocock, two mygalomorph spiders occupying different habitats in central Chile, are analyzed. The former inhabits arid and semi‐arid lowland near plant communities, composed of shrubs (evergreens with small leathery leaves) and small trees; the latter is found in the central mountains of the Chilean Andes, above 2000 m.a.s.l. The preferred temperatures of these spiders at different times of day and exposure to cold (15 °C) and warm (25 °C) acclimation temperatures are compared. Body mass does not affect the preferred temperature of the larger spider G. rosea, although P. parvula, a spider with half of the body mass of G. rosea, shows a decrease in preferred temperature with body mass. This can be explained by a higher plasticity and thermal sensitivity of the smaller species as result of increased surface : volume ratio. The preferred temperature increases with the hour of the day under both acclimation conditions in P. parvula and in cold‐acclimated G. rosea, which is likely associated with crepuscular and nocturnal behaviour in both species. Grammostola rosea shows temperature preferences lower than those of P. parvula under both acclimation conditions. The increase of the acclimation temperature from 15 to 25 °C results in an increment of 2–3 °C in the preferred temperature of P. parvula but only 0.2 °C in that of G. rosea. Two contrasting lifestyle strategies are found: a small mygalomorph spider with phenotypic plasticity and adaptation to the fluctuating environment of high altitude, and a large mygalomorph spider with higher thermal inertia adapted to the more stable environment of lowlands.  相似文献   

16.
The oomycete Leptolegnia chapmanii is among the most promising entomopathogens for biological control of Aedes aegypti. This mosquito vector breeds in small water collections, where this aquatic watermold pathogen can face short-term scenarios of challenging high or low temperatures during changing ambient conditions, but it is yet not well understood how extreme temperatures might affect the virulence and recycling capacities of this pathogen. We tested the effect of short-term exposure of encysted L. chapmanii zoospores (cysts) on A. aegypti larvae killed after infection by this pathogen to stressful low or high temperatures on virulence and production of cysts and oogonia, respectively. Cysts were exposed to temperature regimes between ?12 °C and 40 °C for 4, 6 or 8 h, and then their infectivity was tested against third instar larvae (L3) at 25 °C; in addition, production of cysts and oogonia on L3 killed by infection exposed to the same temperature regimes as well as their larvicidal activity were monitored. Virulence of cysts to larvae and the degree of zoosporogenesis on dead larvae under laboratory conditions were highest at 25 °C but were hampered or even blocked after 4 up to 8 h exposure of cysts or dead larvae at both the highest (35 °C and 40 °C) and the lowest (?12 °C) temperatures followed by subsequent incubation at 25 °C. The virulence of cysts was less affected by accelerated than by slow thawing from the frozen state. The production of oogonia on dead larvae was stimulated by short-term exposure to freezing temperatures (?12 °C and 0 °C) or cool temperatures (5 °C and 10 °C) but was not detected at higher temperatures (25 °C–40 °C). These findings emphasize the susceptibility of L. chapmanii to short-term temperature stresses and underscore its interest as an agent for biocontrol of mosquitoes in the tropics and subtropics, especially A. aegypti, that breed preferentially in small volumes of water that are generally protected from direct sunlight.  相似文献   

17.
Low and high temperatures are known as most important factors influencing plant performance and distribution. Plants of Lantana camara L. coming from two distinct geographical populations (Iberian Peninsula and Galápagos Islands) were cultivated in a common garden experiment, and their leaves were subjected to thermal treatments (from +20.0 to ?7.5°C during the winter and from +20.0 to +50.0°C during the summer) in a programmable water bath in darkness. Their photosynthetic performance and their recovery capacity after the thermal treatment were evaluated by measuring chlorophyll fluorescence, net photosynthesis rate, and leaf necrosis. In general, L. camara photosynthetic apparatus showed a wide range of temperature tolerance in darkness, showing optimal functioning of its photosystem II just after exposure to temperatures between ?2.5 and +35.0°C for the Iberian population and between +10.0 and +25.0°C for the Galápagos population. Just after exposure to low and high temperatures, gradual cold and heat-induced photoinhibition was recorded for both populations. After 24 h, leaves of L. camara demonstrated a great recovery capacity from ?2.5 to +42.5°C. However, leaves of the treatments from ?5.0°C down and +47.50°C up showed permanent damages to the photosynthetic apparatus and to the leaf tissues. Slight interpopulation differences were found only at extreme temperatures.  相似文献   

18.
When plants of Zea mays L. cv. LG11 that have been grown at optimal temperatures are transferred to chilling temperatures (0–12°C) photoinhibition of photosynthetic CO2 assimilation can occur. This study examines how growth at sub-optimal temperatures alters both photosynthetic capacity and resistance to chilling-dependent photoinhibition. Plants of Z. mays cv. LG11 were grown in controlled environments at 14, 17, 20 and 25°C. As a measure of the capacity for photosynthesis under light limiting conditions, the maximum quantum yields of CO2 assimilation (φa.c) and O2 evolution (φa.o) were determined for the laminae of the second leaves at photon fluxes of 50–150 μmol m-2s-1. To determine photosynthetic capacity at photon fluxes approaching light saturation, rates of CO2 uptake (A1500) and O2 evolution (A1500) were determined in a photon flux of 1500 μmol m-2s-1. In leaves developed at 14°C, φ and φ were 26 and 43%, respectively, of the values for leaves grown at 25°C. Leaves grown at 17°C showed intermediate reductions in φ and φ, whilst leaves developed at 20°C showed no significant differences from those grown at 25°C. Similar patterns of decrease were observed for A1500 and A1500.0 with decreasing growth temperature. Leaves developed at 25°C showed higher rates of CO2 assimilation at all light levels and measurement temperatures in comparison to leaves developed at 17 and 14°C. A greater reduction in A1500 relative to A1500.0 with decreasing growth temperature was attributed to increased stomatal limitation. Exposure of leaves to 800–1000 μmol m-2 s-1 when plant temperature was depressed to ca 6.5°C produced a photoinhibition of photosynthetic CO2 assimilation in all leaves. However, in leaves developed at 17°C the decrease in A1500 following this chilling treatment was only 25% compared to 90% in leaves developed at 25°C. Recovery following chilling was completed earlier in leaves developed at 17°C. The results suggest that growth at sub-optimal temperatures induces increased tolerance to exposure to high light at chilling temperatures. This is offset by the large loss in photosynthetic capacity imposed by leaf development at sub-optimal temperatures.  相似文献   

19.
Photosynthesis in C3–C4 intermediates reduces carbon loss by photorespiration through refixing photorespired CO2 within bundle sheath cells. This is beneficial under warm temperatures where rates of photorespiration are high; however, it is unknown how photosynthesis in C3–C4 plants acclimates to growth under cold conditions. Therefore, the cold tolerance of the C3–C4 Salsola divaricata was tested to determine whether it reverts to C3 photosynthesis when grown under low temperatures. Plants were grown under cold (15/10 °C), moderate (25/18 °C) or hot (35/25 °C) day/night temperatures and analysed to determine how photosynthesis, respiration and C3–C4 features acclimate to these growth conditions. The CO2 compensation point and net rates of CO2 assimilation in cold‐grown plants changed dramatically when measured in response to temperature. However, this was not due to the loss of C3–C4 intermediacy, but rather to a large increase in mitochondrial respiration supported primarily by the non‐phosphorylating alternative oxidative pathway (AOP) and, to a lesser degree, the cytochrome oxidative pathway (COP). The increase in respiration and AOP capacity in cold‐grown plants likely protects against reactive oxygen species (ROS) in mitochondria and photodamage in chloroplasts by consuming excess reductant via the alternative mitochondrial respiratory electron transport chain.  相似文献   

20.
Although sex determination in amphibians is believed to be a genetic process, environmental factors such as temperature are known to influence the sex differentiation and development. Extremely low and high temperatures influence gonadal development and sex ratio in amphibians but the mechanism of action is not known. In the present study, effect of different temperatures on gonadal development, sex ratio and metamorphosis was studied in the Indian skipper frog, Euphlyctis cyanophlyctis. The embryos of Gosner stage 7 were exposed to 20, 22, 24, 26, 28, 30 and 32°C up to tadpole stage 42. The embryos (stage 7) were also exposed to 20 and 32°C up to tadpole stage 25 (non-feeding stages). Tadpoles of stage 25 were reared at 20 and 32°C up to stage 42 (feeding stages). The results show that exposure to higher temperatures (28, 30 and 32°C) during stages 7–42 produced male-biased sex ratio. Rearing of tadpoles at 32°C during stages 25–42 produced male-biased sex ratio, while exposure during stages 7–25 did not affect sex ratio. Embryos and tadpoles exposed to lower temperatures (20 and 22°C) died during the early stages. High temperatures stimulated testis development, and disturbed ovary development. Exposure to high temperatures resulted in the early metamorphosis of tadpoles with reduced body size. These results demonstrated that high temperatures influence gonadal development differently in male and female tadpoles, leading to male-biased sex ratio. These results suggest that high temperature probably acts through stress hormones and favours the small-sized sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号