首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitric oxide (NO) functions in various physiological and developmental processes in plants. However, the source of this signaling molecule in the diversity of plant responses is not well understood. It is known that NO mediates auxin-induced adventitious and lateral root (LR) formation. In this paper, we provide genetic and pharmacological evidence that the production of NO is associated with the nitrate reductase (NR) enzyme during indole-3-butyric acid (IBA)-induced lateral root development in Arabidopsis thaliana L. NO production was detected using 4,5-diaminofluorescein diacetate (DAF-2DA) in the NR-deficient nia1, nia2 and Atnoa1 (former Atnos1) mutants of A. thaliana. An inhibitor for nitric oxide synthase (NOS) N(G)-monomethyl-l-arginine (l-NMMA) was applied. Our data clearly show that IBA increased LR frequency in the wild-type plant and the LR initials emitted intensive NO-dependent fluorescence of the triazol product of NO and DAF-2DA. Increased levels of NO were restricted only to the LR initials in contrast to primary root (PR) sections, where NO remained at the control level. The mutants had different NO levels in their control state (i.e. without IBA treatment): nia1, nia2 showed lower NO fluorescence than Atnoa1 or the wild-type plant. The role of NR in IBA-induced NO formation in the wild type was shown by the zero effects of the NOS inhibitors l-NMMA. Finally, it was clearly demonstrated that IBA was able to induce NO generation in both the wild-type and Atnoa1 plants, but failed to induce NO in the NR-deficient mutant. It is concluded that the IBA-induced NO production is nitrate reductase-associated during lateral root development in A. thaliana.  相似文献   

2.
The relationship between nitric oxide (NO) and salicylic acid (SA) was investigated in Arabidopsis thaliana. Here it is shown that SA is able to induce NO synthesis in a dose-dependent manner in Arabidopsis. NO production was detected by confocal microscopic analysis and spectrofluorometric assay in plant roots and cultured cells. To identify the metabolic pathways involved in SA-induced NO synthesis, genetic and pharmacological approaches were adopted. The analysis of the nia1,nia2 mutant showed that nitrate reductase activity was not required for SA-induced NO production. Experiments performed in the presence of a nitric oxide synthase (NOS) inhibitor suggested the involvement of NOS-like enzyme activity in this metabolic pathway. Moreover, the production of NO by SA treatment of Atnos1 mutant plants was strongly reduced compared with wild-type plants. Components of the SA signalling pathway giving rise to NO production were identified, and both calcium and casein kinase 2 (CK2) were demonstrated to be involved. Taken together, these results suggest that SA induces NO production at least in part through the activity of a NOS-like enzyme and that calcium and CK2 activity are essential components of the signalling cascade.  相似文献   

3.
The possible involvement of nitric oxide (NO) in oxidative stress tolerance was studied using Arabidopsis thaliana wild type (WT) and Atnos1 mutant plants, in which endogenous NO production is greatly diminished because 80% of nitric oxide synthase (NOS) activity is eliminated due to T-DNA insertion in the first exon of the NOS1 gene. Compared with WT, Atnos1 mutant plants showed increased hypersensitivity to salt stress and methyl viologen (MV) treatment. The maximal photochemical efficiency of photosystem II (F(v)/F(m)) and membrane integrity decreased in WT and Atnos1 mutant plants under stresses, but the extent was higher in the mutant. Treatment with sodium nitroprusside (SNP) (a NO donor) to Atnos1 mutant plants alleviated the damage. Instead, inhibition of nitric oxide accumulation in the WT plants produced opposite effects. Hydrogen peroxide and lipid peroxidation increased and the extent was higher in Atnos1 mutant plants than that in WT plants under MV stress. These results indicated that nitric oxide could protect the damage against NaCl and MV treatments.  相似文献   

4.
5.
Phytohormone salicylic acid (SA) plays important roles in plant responses to environmental stress. However, knowledge about the molecular mechanisms for SA affecting the stomatal movements is limited. In this paper, we demonstrated that exogenous SA significantly induced stomatal closure and nitric oxide (NO) generation in Arabidopsis guard cells based on genetic and physiological data. These effects were significantly inhibited by the NO scavenger c-PTIO, NO synthase (NOS) inhibitor L-NAME or nitrate reductase suppressor tungstate respectively, implying that NOS and nitrate reductase (NR) participate in SA-evoked stomatal closing. Furthermore, the effects of SA promotion of stomatal closure and NO synthesis are significantly suppressed in NR single mutants of nia1, nia2 or double mutant nia1/nia2, compared with the wild type plants. This suggests that both Nia1 and Nia2 are involved in SA-stimulated stomatal closure. In addition, pharmacological experiments showed that protein kinases, cGMP and cADPR are involved in SA-mediated NO accumulation and stomatal closure induced by SA in Arabidopsis.  相似文献   

6.
7.
The origin of nitric oxide (*NO) in plants is unclear and an *NO synthase (NOS)-like enzyme and nitrate reductase (NR) are claimed as potential sources. Here we used wild-type and NR-defective double mutant plants to investigate *NO production in Arabidopsis thaliana in response to Pseudomonas syringae pv maculicola. NOS activity increased substantially in leaves inoculated with P. syringae. However, electron paramagnetic resonance experiments showed a much higher *NO formation that was dependent on nitrite and mitochondrial electron transport rather than on arginine or nitrate. Overall, these results indicate that NOS, NR and a mitochondrial-dependent nitrite-reducing activity cooperate to produce *NO during A. thaliana-P. syringae interaction.  相似文献   

8.
The effect of mechanical stress (centrifugation) on the inductionof nitric oxide (NO) formation and DNA fragmentation was investigatedin leaf cells of Arabidopsis thaliana. Centrifuged and non-centrifugedleaves from wild-type and nitrate reductase (NR)nia1, nia2 doublemutant, defective in the assimilation of nitrate, were labelledwith 4,5-diaminofluorescein diacetate (DAF-2 DA) to visualizein vivo NO production. After these treatments, DNA fragmentationwas detected by the terminal deoxynucleotidyl transferase-mediateddUTP nick end in situ labelling (TUNEL) method. Exposure toan NO-releasing compound, sodium nitroprusside (SNP) mimickedthe cell response to centrifugation (20 g). The involvementof endogenous NO as a signal in mechanical stress and in DNAfragmentation was confirmed by inhibition of NO production usinga nitric oxide synthase (NOS) inhibitor viz. NG-monomethyl-L -arginine (L -NMMA). These results indicate that NOS-likeactivity was present in A. thaliana leaves and was increasedby mechanical stress. The effect of leaf-wounding on nitricoxide production was identical to that of centrifugation. Experimentswith A. thaliana NR mutant also showed that NO bursts were inducedby mechanical and wounding stresses and that NO was not a by-productof NR activity. A positive and significant correlation betweenNO production and DNA fragmentation was recorded for both centrifugedand non-centrifuged cells. Our results suggest that factorsother than NO contribute to DNA damage and cell death, and furthermore,that an inducible form of NOS is present in A. thaliana. Copyright2001 Annals of Botany Company Arabidopsis thaliana, cell death, DNA fragmentation, NO, plant stress, wounding  相似文献   

9.
10.
The nitrate reductase (NR)-defective double mutant of Arabidopsis thaliana (nia1 nia2) has previously been shown to present a low endogenous content of NO in its leaves compared with the wild-type plants. In the present study, we analyzed the effect of NR mutation on floral induction and development of A. thaliana, as NO was recently described as one of the signals involved in the flowering process. The NO fluorescent probes diaminofluorescein-2 diacetate (DAF-2DA) and 1,2-diaminoanthraquinone (1,2-DAA) were used to localize NO production in situ by fluorescence microscopy in the floral structures of A. thaliana during floral development. Data were validated by incubating the intact tissues with DAF-2 and quantifying the DAF-2 triazole by fluorescence spectrometry. The results showed that NO is synthesized in specific cells and tissues in the floral structure and its production increases with floral development until anthesis. In the gynoecium, NO synthesis occurs only in differentiated stigmatic papillae of the floral bud, and, in the stamen, only anthers that are producing pollen grains synthesize NO. Sepals and petals do not show NO production. NR-deficient plants emitted less NO, although they showed the same pattern of NO emission in their floral organs. This mutant blossomed precociously when compared with wild-type plants, as measured by the increased caulinar/rosette leaf number and the decrease in the number of days to bolting and anthesis, and this phenotype seems to result from the markedly reduced NO levels in roots and leaves during vegetative growth. Overall, the results reveal a role for NR in the flowering process.  相似文献   

11.
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are key signalling molecules produced in response to various stimuli and involved in a diverse range of plant signal transduction processes. Nitric oxide and H(2)O(2) have been identified as essential components of the complex signalling network inducing stomatal closure in response to the phytohormone abscisic acid (ABA). A close inter-relationship exists between ABA and the spatial and temporal production and action of both NO and H(2)O(2) in guard cells. This study shows that, in Arabidopsis thaliana guard cells, ABA-mediated NO generation is in fact dependent on ABA-induced H(2)O(2) production. Stomatal closure induced by H(2)O(2) is inhibited by the removal of NO with NO scavenger, and both ABA and H(2)O(2) stimulate guard cell NO synthesis. Conversely, NO-induced stomatal closure does not require H(2)O(2) synthesis nor does NO treatment induce H(2)O(2) production in guard cells. Tungstate inhibition of the NO-generating enzyme nitrate reductase (NR) attenuates NO production in response to nitrite in vitro and in response to H(2)O(2) and ABA in vivo. Genetic data demonstrate that NR is the major source of NO in guard cells in response to ABA-mediated H(2)O(2) synthesis. In the NR double mutant nia1, nia2 both ABA and H(2)O(2) fail to induce NO production or stomatal closure, but in the nitric oxide synthase deficient Atnos1 mutant, responses to H(2)O(2) are not impaired. Importantly, we show that in the NADPH oxidase deficient double mutant atrbohD/F, NO synthesis and stomatal closure to ABA are severely reduced, indicating that endogenous H(2)O(2) production induced by ABA is required for NO synthesis. In summary, our physiological and genetic data demonstrate a strong inter-relationship between ABA, endogenous H(2)O(2) and NO-induced stomatal closure.  相似文献   

12.
Brassinosteroids (BRs) are growth‐promoting plant hormones that play a crucial role in biotic stress responses. Here, we found that BR treatment increased nitric oxide (NO) accumulation, and a significant reduction of virus accumulation in Arabidopsis thaliana. However, the plants pre‐treated with NO scavenger [2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐1‐oxyl‐3‐oxide (PTIO)] or nitrate reductase (NR) inhibitor (tungstate) hardly had any NO generation and appeared to have the highest viral replication and suffer more damages. Furthermore, the antioxidant system and photosystem parameters were up‐regulated in brassinolide (BL)‐treated plants but down regulated in PTIO‐ or tungstate‐treated plants, suggesting NO may be involved in BRs‐induced virus resistance in Arabidopsis. Further evidence showed that NIA1 pathway was responsible for BR‐induced NO accumulation in Arabidopsis. These results indicated that NO participated in the BRs‐induced systemic resistance in Arabidopsis. As BL treatment could not increase NO levels in nia1 plants in comparison to nia2 plants. And nia1 mutant exhibited decreased virus resistance relative to Col‐0 or nia2 plants after BL treatment. Taken together, our study addressed that NIA1‐mediated NO biosynthesis is involved in BRs‐mediated virus resistance in A. thaliana.  相似文献   

13.
Zhao MG  Tian QY  Zhang WH 《Plant physiology》2007,144(1):206-217
Nitric oxide (NO) has emerged as a key molecule involved in many physiological processes in plants. To characterize roles of NO in tolerance of Arabidopsis (Arabidopsis thaliana) to salt stress, effect of NaCl on Arabidopsis wild-type and mutant (Atnoa1) plants with an impaired in vivo NO synthase (NOS) activity and a reduced endogenous NO level was investigated. Atnoa1 mutant plants displayed a greater Na+ to K+ ratio in shoots than wild-type plants due to enhanced accumulation of Na+ and reduced accumulation of K+ when exposed to NaCl. Germination of Atnoa1 seeds was more sensitive to NaCl than that of wild-type seeds, and wild-type plants exhibited higher survival rates than Atnoa1 plants when grown under salt stress. Atnoa1 plants had higher levels of hydrogen peroxide than wild-type plants under both control and salt stress, suggesting that Atnoa1 is more vulnerable to salt and oxidative stress than wild-type plants. Treatments of wild-type plants with NOS inhibitor and NO scavenger reduced endogenous NO levels and enhanced NaCl-induced increase in Na+ to K+ ratio. Exposure of wild-type plants to NaCl inhibited NOS activity and reduced quantity of NOA1 protein, leading to a decrease in endogenous NO levels measured by NO-specific fluorescent probe. Treatment of Atnoa1 plants with NO donor sodium nitroprusside attenuated the NaCl-induced increase in Na+ to K+ ratio. Therefore, these findings provide direct evidence to support that disruption of NOS-dependent NO production is associated with salt tolerance in Arabidopsis.  相似文献   

14.
The root epidermis is composed of two cell types: trichoblasts (or hair cells) and atrichoblasts (or non-hair cells). In lettuce (Lactuca sativa cv. Grand Rapids var. Rapidmor oscura) plants grown hydroponically in water, the root epidermis did not form root hairs. The addition of 10 µM sodium nitroprusside (SNP), a nitric oxide (NO) donor, resulted in almost all rhizodermal cells differentiated into root hairs. Treatment with the synthetic auxin 1-naphthyl acetic acid (NAA) displayed a significant increase of root hair formation (RHF) that was prevented by the specific NO scavenger carboxy-PTIO (cPTIO). In Arabidopsis, two mutants have been shown to be defective in NO production and to display altered phenotypes in which NO is implicated. Arabidopsis nos1 has a mutation in an NO synthase structural gene (NOS1), and the nia1 nia2 double mutant is null for nitrate reductase (NR) activity. We observed that both mutants were affected in their capacity of developing root hairs. Root hair elongation was significantly reduced in nos1 and nia1 nia2 mutants as well as in cPTIO-treated wild type plants. A correlation was found between endogenous NO level in roots detected by the fluorescent probe DAF-FM DA and RHF. In Arabidopsis, as well as in lettuce, cPTIO blocked the NAA-induced root hair elongation. Taken together, these results indicate that: (1) NO is a critical molecule in the process leading to RHF and (2) NO is involved in the auxin-signaling cascade leading to RHF.Key Words: auxin, nitric oxide, root hair, lettuce, arabidopsis, nos1 mutant, nia1, nia2 mutant  相似文献   

15.
It is well known for a long time, that nitric oxide (NO) functions in variable physiological and developmental processes in plants, however the source of this signaling molecule in the diverse plant responses is very obscure.1 Although existance of nitric oxide sythase (NOS) in plants is still questionable, LNMMA (NG-monomethyl-L-arginine)-sensitive NO generation was observed in different plant species.2,3 In addition, nitrate reductase (NR) is confirmed to have a major role as source of NO.4,5 This multifaced molecule acts also in auxin-induced lateral root (LR) formation, since exogenous auxin enhanced NO levels in regions of Arabidopsis LR initiatives. Our results pointed out the involvement of nitrate reductase enzyme in auxin-induced NO formation. In this addendum, we speculate on auxin-induced NO production in lateral root primordial formation.Key words: atnoa1, indole-3-butyric acid, nia1, nia2 double mutant, nitric oxideLateral roots are formed from root pericycle cells postembryonically which process is promoted by indole-acetic acid (IAA). It was recognized that IAA share common steps with NO in the signal transduction cascade towards the auxin induced adventitious and lateral root formation.68 Previously it was suggested that besides IAA, indol-3-butyric (IBA) is a true endogenous auxin in Arabidopsis, which acts in adventious and lateral root development.9,10 Our results showed that IBA induced LR initials emitted intensive NO fluorescence in Arabidopsis. This increased level of NO was present only in the LR initials in contrast to primary root (PR) sections where it remained at the control level.In plants NO can be produced by a number of enzyme systems and non-enzymatic ways. In roots, the most likely candidates of NO synthesis are NR enzymes (cytoplasmic and plasma membrane-bounded isoenzymes, cNR and PM-NR). Recently a new type of enzyme, the PM-bounded nitrite:NO reductase (Ni:NOR) was identified as a possible source of NO in roots.11 Because of the several formation potentials of NO, the identification of its source in plant tissues under different conditions is complicated. Using diverse mutants proved to be a good opportunity to investigate the possible sources of NO. In our experiments wild-type (Col-1), Atnoa1 (nitric oxide synthase associated 1 deficient) and nia1, nia2 (NR deficient) seedlings were applied in order to determine the enzymatic source of NO induced by auxin. In roots of these plants, different NO levels were measured in their control state (i.e., without IBA treatment). The NO content in Atnoa1 roots was similar to that of wild-type, while nia1, nia2 showed lower NO fluorescence than the other groups of plants. This result suggests that NR activity is needed to NO synthesis in roots. Further on, it was demonstrated that IBA induced NO generation in both the wild type and Atnoa1 root primordia, but this induction failed in the NR-deficient mutant. This reveals that the NO accumulation in root primordia induced by auxin requires NR activity. These observations were evidenced also by biochemical manner. On the one part, we applied L-NMMA, which is a specific inhibitor of mammalian NOS, on the other part, the inhibitor of NR enzyme tungstate was used and we monitored NO fluorescence in wild-type roots. The NOS inhibitor displayed no effect on NO levels neither at control state nor during auxin treatment, while tungstate inhibited NO synthesis in lateral roots and primary roots of control plants. The effect of tungstate was similar in auxin-treated roots, since application of this NR enzyme inhibitor decreased NO levels in PRs and LRs (Fig. 1).Open in a separate windowFigure 1NO fluorescence in lateral roots (white columns) and primary roots (grey columns) of control, control + 1 mM tungstate, IBA and IBA + 1 mM tungstate-treated wild-type Arabidopsis thaliana. Vertical bars are standard errors.Some speculations can be made on these results. Although more efforts are needed to make the scene clear, now we can predict that auxin somehow may induce NR isoenzymes, which produce nitrite in root cells. From this point, two further scenarios are possible: as the result of accumulated nitrite, either the NO-producing activity of NR or Ni:NOR activity are promoted, hereby NO is generated from nitrite reduction. NO formed in these two possible ways modulates the expression of certain cell cycle regulatory genes contributing to division of pericycle cells in LR primordia, as was published in tomato.12Nowadays research in the “NO-world” of plants is running very actively. Nevertheless, lot of more work is needed to reveal all the unknown faces of this novel multipurpose signaling molecule.  相似文献   

16.
Guo FQ  Crawford NM 《The Plant cell》2005,17(12):3436-3450
The Arabidopsis thaliana protein nitric oxide synthase1 (NOS1) is needed for nitric oxide (NO) synthesis and signaling during defense responses, hormonal signaling, and flowering. The cellular localization of NOS1 was examined because it is predicted to be a mitochondrial protein. NOS1-green fluorescent protein fusions were localized by confocal microscopy to mitochondria in roots. Isolated mitochondria from leaves of wild-type plants supported Arg-stimulated NO synthesis that could be inhibited by NOS inhibitors and quenched by a NO scavenger; this NOS activity is absent in mitochondria isolated from nos1 mutant plants. Because mitochondria are a source of reactive oxygen species (ROS), which participate in senescence and programmed cell death, these parameters were examined in the nos1 mutant. Dark-induced senescence of detached leaves and intact plants progressed more rapidly in the mutant compared with the wild type. Hydrogen peroxide, superoxide anion, oxidized lipid, and oxidized protein levels were all higher in the mutant. These results demonstrate that NOS1 is a mitochondrial NOS that reduces ROS levels, mitigates oxidative damage, and acts as an antisenescence agent.  相似文献   

17.
The molecular mechanisms of signal transduction of plants in response to Verticillium dahliae (VD) are not known. Here, we show that Arabidopsis reacts to VD-toxins with a rapid burst of nitric oxide (NO) and cortical microtubule destabilization. VD-toxins treatment triggered a disruption of cortical microtubules network. This disruption can be influenced by NO production. However, cortical microtubule disruptions were not involved in regulating the NO production. The results indicated that NO may act as an upstream signalling molecule to trigger the depolymerization of cortical microtubule. Cortical microtubules may act as a target of NO signal and as a sensor to mediate the activation of PR-1 gene expression. These results suggested that NO production and cortical microtubule dynamics appeared to be parts of the important signalling system and are involved in the defence mechanisms to VD-toxins in Arabidopsis .  相似文献   

18.
Mechanisms for nitric oxide synthesis in plants   总被引:25,自引:0,他引:25  
The discovery that nitric oxide (NO) acts as a signal fundamentally shifted our understanding of free radicals from toxic by-products of oxidative metabolism to key regulators of cellular functions. This discovery has led to intense investigation into the synthesis of NO in both animals and plants. Nitric oxide synthases (NOS) are the primary sources of NO in animals and are complex, highly regulated enzymes that oxidize arginine to NO and citrulline. Plant NO synthesis, however, appears more complex and includes both nitrite and arginine-dependent mechanisms. The components of the arginine pathway have been elusive as no known orthologues of animal NOS exist in plants. An Arabidopsis gene (AtNOS1) has been identified that is needed for NO synthesis in vivo and has biochemical properties similar to animal cNOS, yet it has no sequence similarity to any known animal NOS. An Atnos1 insertion mutant has been useful for genetic studies of NO regulation and for uncovering new roles for NO signalling. The elucidation of plant NO synthesis promises to yield novel mechanisms that may be applicable to animal systems.  相似文献   

19.
Nitrate reductase (NR) is an enzymatic source of nitric oxide (NO) in plants, and it needs Mo for the Mo-cofactor to be activated. Because NR-deficient mutants are not always available in some species, a cheap and simple pharmacological application of tungstate, which substitutes for Mo in the Mo-cofactor as a competitive antagonist, is widely used as a NR inhibitor in plant NO research. However, evidence indicates that tungstate not only inactivates NR but also inhibits other molybdate-dependent enzymes in plants. In addition, a number of investigations have shown that tungstate also inhibits root growth, affects cortical microtubule formation, and induces programmed cell death (PCD) in plants, just like other heavy metals do. Therefore, tungstate has been shown to exert many other effects that are not connected with the inhibition of NR activity. The origin and mechanism of using tungstate as a NR inhibitor in plants is reviewed here and the progress regarding tungstate toxicity to plants and the possible problems involved in using tungstate as a NR inhibitor in plant NO research are analysed. In summary, the use of tungstate as a NR inhibitor in plant NO research must be treated with caution, keeping in mind that it is not completely specific. It is necessary to search for more NR-deficient mutants and new, specific NR inhibitors. A combination of pharmacological and biochemical analysis with a genetic approach will be necessary in order to investigate the roles of NO in plants.  相似文献   

20.
Carbon (C) and nitrogen (N) metabolism are integrated processes that modulate many aspects of plant growth, development, and defense. Although plants with deficient N metabolism have been largely used for the elucidation of the complex network that coordinates the C and N status in leaves, studies at the whole-plant level are still lacking. Here, the content of amino acids, organic acids, total soluble sugars, starch, and phenylpropanoids in the leaves, roots, and floral buds of a nitrate reductase (NR) double-deficient mutant of Arabidopsis thaliana (nia1 nia2) were compared to those of wild-type plants. Foliar C and N primary metabolism was affected by NR deficiency, as evidenced by decreased levels of most amino acids and organic acids and total soluble sugars and starch in the nia1 nia2 leaves. However, no difference was detected in the content of the analyzed metabolites in the nia1 nia2 roots and floral buds in comparison to wild type. Similarly, phenylpropanoid metabolism was affected in the nia1 nia2 leaves; however, the high content of flavonol glycosides in the floral buds was not altered in the NR-deficient plants. Altogether, these results suggest that, even under conditions of deficient nitrate assimilation, A. thaliana plants are capable of remobilizing their metabolites from source leaves and maintaining the C–N status in roots and developing flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号