首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research on programmed cell death in plants is providing insight into the primordial mechanism of programmed cell death in all eukaryotes. Much of the attention in studies on animal programmed cell death has focused on determining the importance of signal proteases termed caspases. However, it has recently been shown that cell death can still occur even when the caspase cascade is blocked, revealing that there is an underlying oncotic default pathway. Many programmed plant cell deaths also appear to be oncotic. Shared features of plant and animal programmed cell death can be used to deduce the primordial components of eukaryotic programmed cell death. From this perspective, we must ask whether the mitochondrion is a common factor that can serve in plant and animal cell death as a stress sensor and as a dispatcher of programmed cell death.  相似文献   

2.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death, which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insight into the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells.  相似文献   

3.
Pathways of apoptosis and importance in development   总被引:4,自引:0,他引:4  
The elimination of cells by programmed cell death is a fundamental event in development where multicellular organisms regulate cell numbers or eliminate cells that are functionally redundant or potentially detrimental to the organism. The evolutionary conservation of the biochemical and genetic regulation of programmed cell death across species has allowed the genetic pathways of programmed cell death determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster to act as models to delineate the genetics and regulation of cell death in mammalian cells. These studies have identified cell autonomous and non-autonomous mechanisms that regulate of cell death and reveal that developmental cell death can either be a pre-determined cell fate or the consequence of insufficient cell interactions that normally promote cell survival.  相似文献   

4.
Modulation of programmed cell death by medicinal plants.   总被引:16,自引:0,他引:16  
Programmed cell death (apoptosis), a form of cell death, described by Kerr and Wyllie some 20 years ago, has generated considerable interest in recent years. The mechanisms by which this mode of cell death (seen both in animal and plant cells), takes place have been examined in detail. Extracellular signals and intracellular events have been elaborated. Of interest to the clinician, is the concentrated effort to study pharmacological modulation of programmed cell death. The attempt to influence the natural phenomenon of programmed cell death stems from the fact that it is reduced (like in cancer) or increased (like in neurodegenerative diseases) in several clinical situations. Thus, chemicals that can modify programmed cell death are likely to be potentially useful drugs. From foxglove, which gave digitalis to the Pacific Yew from which came taxol, plants have been a source of research material for useful drugs. Recently, a variety of plant extracts have been investigated for their ability to influence the apoptotic process. This article discusses some of the interesting data. The ability of plants to influence programmed cell death in cancerous cells in an attempt to arrest their proliferation has been the topic of much research. Various cell-lines like HL60, human hepatocellular carcinoma cell line (KIM-1), a cholangiocarcinoma cell-line (KMC-1), B-cell hybridomas, U937 a monocytic cell-line, HeLa cells, human lymphoid leukemia (MOLT-4B) cells and K562 cells have been studied. The agents found to induce programmed cell death (measured either morphologically or flow cytometrically) included extracts of plants like mistletoe and Semicarpus anacardium. Isolated compounds like bryonolic acid (from Trichosanthes kirilowii var. Japonica, crocin (from saffron) and allicin (from Allium sativum) have also been found to induce programmed cell death and therefore arrest proliferation. Even Chinese herbal medicine "Sho-saiko-to" induces programmed cell death in selected cancerous cell lines. Of considerable interest is the finding that Panax ginseng prevents irradiation-induced programmed cell death in hair follicles, suggesting important therapeutic implications. Nutraceuticals (dietary plants) like soya bean, garlic, ginger, green tea, etc. which have been suggested, in epidemiological studies, to reduce the incidence of cancer may do so by inducing programmed cell death. Soy bean extracts have been shown to prevent development of diseases like polycystic kidneys, while Artemisia asiatica attenuates cerulein-induced pancreatitis in rats. Interestingly enough, a number of food items as well as herbal medicines have been reported to produce toxic effects by inducing programmed cell death. For example, programmed cell death in isolated rat hepatocytes has been implicated in the hepatitis induced by a herbal medicine containing diterpinoids from germander. Other studies suggest that rapid progression of the betel- and tobacco-related oral squamous cell carcinomas may be associated with a simultaneous involvement of p53 and c-myc leading to inhibition of programmed cell death. Several mechanisms have been identified to underlie the modulation of programmed cell death by plants including endonuclease activation, induction of p53, activation of caspase 3 protease via a Bcl-2-insensitive pathway, potentiate free-radical formation and accumulation of sphinganine. Programmed cell death is a highly conserved mechanism of self-defense, also found to occur in plants. Hence, it is natural to assume that chemicals must exist in them to regulate programmed cell death in them. Thus, plants are likely to prove to be important sources of agents that will modulate programmed cell death.  相似文献   

5.
The cell cycle and cell population kinetics have been analyzed in the interdigital regions of chick limb-buds during the course of programmed cell death both in normal and the 5-bromodeoxyuridine (BrdU)-treated embryos. Our previous study has shown that a single administration of BrdU at day 6 1/3 inhibited the programmed cell death occurring in normal development of limb-buds.
Pulse- as well as continuous labelings with tritiated thymidine (3H-TdR) were used. The results obtained from the analyses made on both normal and experimental embryos have demonstrated the presence of a particular DNA-synthetic period, around day 6 1/3, closely related to the programmed death occurring on day 7 1/3. In normal embryos, new cell populations, which did not belong to any phases of normal cell cycle, made their appearances in the process of programmed cell death. A possible correlation between programmed cell death and the cell cycle has been discussed in relation to the morphogenesis of limbs in both normal and BrdU-treated embryos.  相似文献   

6.
Plant proteolytic enzymes: possible roles during programmed cell death   总被引:25,自引:0,他引:25  
Proteolytic enzymes are known to be associated with developmentally programmed cell death during organ senescence and tracheary element differentiation. Recent evidence also links proteinases with some types of pathogen- and stress-induced cell suicide. The precise roles of proteinases in these and other plant programmed cell death processes are not understood, however. To provide a framework for consideration of the importance of proteinases during plant cell suicide, characteristics of the best-known proteinases from plants including subtilisin-type and papain-type enzymes, phytepsins, metalloproteinases and the 26S proteasome are summarized. Examples of serine, cysteine, aspartic, metallo- and threonine proteinases linked to animal programmed cell death are cited and the potential for plant proteinases to act as mediators of signal transduction and as effectors of programmed cell death is discussed.  相似文献   

7.
细胞凋亡与细胞程序性死亡   总被引:3,自引:1,他引:3  
细胞凋亡与程序性死亡是多细胞动物生命过程中必不可少的正常过程,它与细胞增殖具有同样重要意义。细胞凋亡与程序性死亡失控不仅扰乱发育,还导致病变。因此,这一领域的研究受到生命科学研究者的广泛重视,进展很快。本文从凋亡的定义、形态学特点、诱导、生物化学背景、基因调控等5个方面综合分析了近年来国内外的研究进展。  相似文献   

8.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insightinto the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
Caspase-independent programmed cell death with necrotic morphology.   总被引:14,自引:0,他引:14  
Cell death is generally classified into two large categories: apoptosis represents active, programmed cell death, while necrosis represents passive cell death without underlying regulatory mechanisms. Recent progress revealed that caspases, a family of cysteine proteases, play a central role in the regulation of apoptosis. Unexpectedly, however, caspase inhibition occasionally turns the morphology of programmed cell death from apoptotic into necrotic without inhibiting death itself. In this article, we review different models of caspase-independent programmed cell death showing necrotic-like morphology, including our Ras-mediated caspase-independent cell death. Based on these findings, we suggest the existence of a necrotic-like cell death regulated by cellular intrinsic death programs distinct from that of apoptosis. Even though type 2 physiological cell death, or autophagic degeneration, has been recognized as a necrotic-like programmed cell death for a long time, the underlying molecular mechanisms have not been identified despite its physiological significance. This has been in part due to the previous absence of adequate caspase-independent cellular models to study, recent efforts may now help to elucidate these mechanisms.  相似文献   

10.
In mammals, mitochondria are important mediators of programmed cell death, and this process is often regulated by Bcl-2 family proteins. However, a role for mitochondria-mediated cell death in non-mammalian species is more controversial. New evidence from a variety of sources suggests that mammalian mitochondrial fission/division proteins also have the capacity to promote programmed cell death, which may involve interactions with Bcl-2 family proteins. Homologues of these fission factors and several additional mammalian cell death regulators are conserved in flies, worms and yeast, and have been suggested to regulate programmed cell death in these species as well. However, the molecular mechanisms by which these phylogenetically conserved proteins contribute to cell death are not known for any species. Some have taken the conserved pro-death activity of mitochondrial fission factors to mean that mitochondrial fission per se, or failed attempts to undergo fission, are directly involved in cell death. Other evidence suggests that the fission function and the cell death function of these factors are separable. Here we consider the evidence for these arguments and their implications regarding the origins of programmed cell death.  相似文献   

11.
In the avian hindbrain, the loss of premigratory neural crest cells from rhombomeres 3 and 5 (r3, r5) through programmed cell death contributes to the patterning of emigrant crest cells into three discrete streams. Programmed cell death is induced by the upregulation of Bmp4 and Msx2 in r3 and r5. We show that cSFRP2, a WNT antagonist, is expressed in the even-numbered rhombomeres and that over-expression of cSfrp2 inhibits Bmp4 expression in r3 and r5, preventing programmed cell death. By contrast, depleting cSFRP2 function in r4 results in elevated levels of Msx2 expression and ectopic programmed cell death, as does overexpression of Wnt1. We propose that programmed cell death in the rhombencephalic neural crest is modulated by pre-patterned cSfrp2 expression and a WNT-BMP signalling loop.  相似文献   

12.
Previously, we found that secretory cell degradation typically occurred through programmed cell death during secretory cavity development in Citrus sinensis L. (Osbeck). This finding indicated that secretory cavities could be utilized as a new cell biology model for investigating the regulatory mechanisms of plant programmed cell death. To study further the programmed cell death during secretory cavity development in Citrus fruit, we studied the morphogenetic characteristics of secretory cavities during their development in Citrus grandis cv. Tomentosa. Using light microscope- and electron microscope-TUNEL assays, immunohistochemistry and immunocytochemistry, we described the precise spatial and temporal alterations in caspase 3-like distribution, chromatin condensation and DNA fragmentation during the programmed cell death of secretory cavity cells. Caspase 3-like was found to be significantly located in both the cytoplasm and the nucleus of secretory cavity cells undergoing programmed cell death, and caspase 3-like is closely associated with chromatin condensation and DNA fragmentation. Interestingly, both caspase 3-like and DNA fragmentation were detected in the nucleoli. Our findings suggest that caspase 3-like may be involved in the programmed cell death of secretory cavity cells, especially in chromatin condensation, DNA fragmentation, nuclear degradation and the degradation of certain organelles.  相似文献   

13.
14.
Modern concepts of programmed cell death, particularly the apoptosis in animals and plants are analyzed in this paper. A comparative characteristic of apoptosis in animal and plant cells taking into consideration the physiologic features of cells is presented. Necrosis as a form of pathological and not genetically programmed cell death is characterized. The significance (necessity) of apoptosis during the formation of a plant’s hypersensitive response and the role of programmed cell death under conditions of joint interrelations in the “pathogen-host” system are discussed.  相似文献   

15.
Cell death can occur as an active, programmed event in response to cytotoxic injury or to endogenous growth limiting factors; the latter serve to maintain homeostasis of cell number in tissues. Cells seem to use different pathways for programmed death, as reflected by their different morphology and different biochemistry. Severe cell damage leading to incapacitation of essential cell functions such as ATP synthesis or the maintenance of membrane potential may lead to "necrosis". In any event, the incidence and rate of cell death increase with increasing signal intensity. Cytotoxic injury requires a certain number of primary insults; cell death will therefore occur only beyond a definable threshold. Growth factor control of cell death is receptor-mediated with dose-response relations including threshold phenomena follow the general principles of receptor kinetics. The occurrence of programmed cell death during the stages of carcinogenesis introduces a reversible component into this disease. Therefore, there may exist thresholds of dose or durations of exposure to certain carcinogens below which irreversible disease is not generated.  相似文献   

16.
A J Alles  K K Sulik 《Teratology》1989,40(2):163-171
Pregnant C57Bl/6J mice were treated with 100 mg/kg body weight of all-trans retinoic acid in sesame oil on day 11.0 of gestation. Among the live fetuses harvested on day 18 of gestation, 100% had mesomelic defects of the limbs as determined by gross examination and skeletal staining. Control fetuses treated with sesame oil had no observable limb malformations. Some treated and control embryos were harvested 12 hr after treatment and examined for patterns of cell death by using the supravital stain Nile blue sulphate and methylene-blue- and acid-fuchsin-stained histological sections. Retinoic-acid-induced cell death in the core of the limb was always associated with the zones of programmed cell death as seen in control embryos of comparable stages. This, in concert with previous studies demonstrating excessive cell death in regions of programmed cell death that correlated with subsequent malformations, leads us to conclude that the pathogenesis of mesomelic malformations has a primary association with the phenomenon of programmed cell death.  相似文献   

17.
Cell death can occur as an active, programmed event in response to cytotoxic injury or to endogenous growth limiting factors; the latter serve to maintain homeostasis of cell number in tissues. Cells seem to use different pathways for programmed death, as reflected by their different morphology and different biochemistry. Severe cell damage leading to incapacitation of essential cell functions such as ATP synthesis or the maintenance of membrane potential may lead to “necrosis”. In any event, the incidence and rate of cell death increase with increasing signal intensity. Cytotoxic injury requires a certain number of primary insults; cell death will therefore occur only beyond a definable threshold. Growth factor control of cell death is receptor-mediated with dose–response relations including threshold phenomena follow the general principles of receptor kinetics. The occurrence of programmed cell death during the stages of carcinogenesis introduces a reversible component into this disease. Therefore, there may exist thresholds of dose or durations of exposure to certain carcinogens below which irreversible disease is not generated.  相似文献   

18.
Programmed cell death mechanisms in neurological disease   总被引:2,自引:0,他引:2  
Programmed cell death (pcd) is a form of cell death in which the cell plays an active role in its own demise. Pcd plays a critical role in the development of the nervous system, as well as in its response to insult. Both anti-pcd and pro-pcd modulators play prominent roles in development and disease, including neurodegeneration, cancer, and ischemic vascular disease, among others. Over 100,000 published studies on one form of programmed cell death-apoptosis-have appeared, but recent studies from multiple laboratories suggest the existence of non-apoptotic forms of programmed cell death, such as autophagic programmed cell death. In addition, there appear to be programmatic cell deaths that do not fit the criteria for either apoptosis or autophagic cell death, arguing that additional programs may also be available to cells. Constructing a mechanistic taxonomy of all forms of pcd-based on inhibitors, activators, and identified biochemical pathways involved in each form of pcd-should offer new insight into cell deaths associated with various disease states, and ultimately offer new therapeutic approaches.  相似文献   

19.
In mature T cells, programmed cell death is thought to serve a regulatory function by limiting both the duration and amplitude of immune responses. Programmed cell death might also be involved in immuno-pathogenesis of certain infectious diseases: recent evidence suggests that programmed T-cell death plays an important role in immune suppression during viral infections. In this article, George DosReis, Maria Evangelina Fonseca and Marcela Lopes review their findings on programmed T-cell death in experimental infection induced by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. They also discuss the differential behavior of CD4(+) and CD8(+) T-cell subsets regarding programmed cell death, and same possible pathogenic aspects of host-parasite interaction, where abnormal or exaggerated programmed T-cell death could be involved.  相似文献   

20.
庄强  宁德刚 《微生物学通报》2009,36(6):0905-0909
mazEF是细菌染色体上的“毒素?抗毒素系统”基因(Toxin-antitoxin system, TA系统), 可介导胁迫诱导细菌细胞程序性死亡。本文介绍了mazEF系统的遗传结构特征、生理生化功能、环境胁迫激活mazEF系统介导的细菌细胞程序性死亡的机制, 参与细胞死亡过程中的细胞信号和细胞因子的调控, 以及关于mazEF系统介导的细菌细胞程序性死亡理论的争论, 提出了进一步丰富和完善细菌细胞程序性死亡理论亟待解决的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号