首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tubulin is an unstable protein when stored in solution and loses its ability to form microtubules rapidly. We have found that D2O stabilizes the protein against inactivation at both 4 and 37 degrees C. In H2O-based buffer, tubulin was completely inactivated after 40 h at 4 degrees C, but in buffer prepared in D2O, no activity was lost after 54 h. Tubulin was completely inactivated at 37 degrees C in 8 h in H2O buffer, but only 20% of the activity was lost in D2O buffer. Tubulin also lost its colchicine binding activity at a slower rate in D2O. The deuterated solvent retarded an aggregation process that occurs during incubation at both temperatures. Inactivation in H2O buffer was partially reversed by transferring the protein to D2O buffer; however, aggregation was not reversed. The level of binding of BisANS, a probe of exposed hydrophobic sites in proteins, increases during the inactivation of tubulin. In D2O, the rate of this increase is slowed somewhat. We propose that D2O has its stabilizing effect on a conformational step or steps that involve the disruption of hydrophobic forces. The conformational change is followed by an aggregation process that cannot be reversed by D2O. As reported previously [Ito, T., and Sato, H. (1984) Biochim. Biophys. Acta 800, 21-27], we found that D2O stimulates the formation of microtubules from tubulin. We also observed that the products of assembly in D2O/8% DMSO consisted of a high percentage of ribbon structures and incompletely folded microtubules. When these polymers were disassembled and reassembled in H2O/8% DMSO, the products were microtubules. We suggest that the combination of D2O and DMSO, both stimulators of tubulin assembly, leads to the rapid production of nuclei that lead to the formation of ribbon structures rather than microtubules.  相似文献   

2.
A fluorescence method has been developed for accurate and instantaneous measurement of transepithelial diffusional water permeability (Pd) in perfused kidney tubules based on the sensitivity of the fluorophore aminonapthelane trisulfonic acid (ANTS) to solution H2O/D2O content. The fluorescence of ANTS was 3.2-fold lower in an H2O buffer than in a D2O buffer. The response of ANTS fluorescence to a change in solution H2O/D2O content occurred in less than 1 ms and was due to a collisional quenching mechanism. Isolated cortical (CCT) and outer medullary (OMCT) collecting tubules from rabbit were perfused with an isosmotic D2O buffer at specified lumen flow rates (2-100 nl/min); tubules were bathed in isosmotic H2O or D2O buffers in which vasopressin (VP) could be added rapidly. Lumen fluorescence was monitored by quantitative epifluorescence microscopy at 380 +/- 5 nm excitation and greater than 530 emission wavelengths. Pd was determined from tubule geometry, lumen flow, ANTS fluorescence, and ANTS fluorescence vs. H2O/D2O calibration relation. The instrument response time for a change in bath H2O/D2O content was less than 4 s. At 37 degrees C, Pd values (mean +/- SE in cm/s x 10(4] were 6.4 +/- 1.0 (-VP, n = 9) and 14.3 +/- 1.1 (+250 microU/ml bath VP, n = 9) in the CCT, and 5.8 +/- 1.0 (-VP, n = 6) and 15.3 +/- 2.0 (+VP, n = 6) in the OMCT; at 23 degrees C, Pd was 5.1 +/- 0.6 (-VP, n = 4) and 7.8 +/- 0.6 (+VP, n = 4) in the CCT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The phosphorylation of microtubular proteins isolated by reassembly in vitro from slices of guinea-pig cerebral cortex labelled with [32P]orthophosphate was investigated. Under the conditions tested, both and the alpha and beta forms of tubulin contained metabolically-active P which accounted for about one third of the total 32P incorporated into protein; the remaining protein-bound 32P was associated with 3-4 minor high MW components co-purifying with tubulin during two cycles of assembly-disassembly. Microtubular protein prepared in this way contained approx. 0.8 mol of alkalilabile P/mol of tubulin dimer (M.W. 110,000). In vitro studies showed that reassembled microtubular protein preparations catalysed the incorporation of up to 0.55 mol of P/mol of tubulin dimer during incubation with Mg2+ and [gamma 32P]ATP. The reaction was linear during the first 30 min of incubation at 37 degrees C. Cyclic AMP (10 microM, final concentration) caused a transient increase in the initial rates of tubulin phosphorylation. Little label was incorporated into the minor high M.W. components under these conditions. The in vitro phosphorylation of microtubular protein increased in a non-linear manner with respect to protein concentration: this was in contrast to earlier experiments showing linear kinetics when chromatographically isolated tubulin was tested for intrinsic kinase activity. Isolated microtubular protein preparations bound [3H]GTP, [3H]ATP and to a lesser extent, [3H]cyclic AMP, and exhibited Ca(2+)-ATPase activity (up to 60 pmol Pi released min/mg protein at 37 degrees C).  相似文献   

4.
The thermodynamics and kinetics of the binding to tubulin of the colchicine analog 2-methoxy-5-(2', 3', 4'-trimethoxyphenyl) tropone (termed AC because it lacks the B-ring of colchicine) have been characterized by fluorescence techniques. The fluorescence of AC is weak in aqueous solution and is enhanced 250-fold upon binding to tubulin. The following thermodynamic values were obtained for the interaction at 37 degrees C: K = 3.5 X 10(5) M-1; delta G0 = -7.9 kcal/mol; delta H0 = -6.8 kcal/mol; delta S0 = 3.6 entropy units. The AC-tubulin complex is 1-2 kcal/mol less stable than the colchicine-tubulin complex. The change in fluorescence of AC was employed to measure the kinetics of the association process, and quenching of protein fluorescence was used to measure both association and dissociation. The association process, like that of colchicine, could be resolved into a major fast phase and a minor slow phase. The apparent second order rate constant for the fast phase was found to be 5.2 X 10(4) M-1 S-1 at 37 degrees C, and the activation energy was 13 kcal/mol. This activation energy is 7-11 kcal/mol less than that for the binding of colchicine to tubulin. The difference in activation energies can most easily be rationalized by a mechanism involving a tubulin-induced conformational change in the ligand ( Detrich , H. W., III, Williams, R. C., Jr., Macdonald, T. L., Wilson, L., and Puett , D. (1981) Biochemistry 20, 5999-6005). Such a change would be expected to have a small activation energy in AC because it possesses a freely rotating single bond in place of the B-ring of colchicine.  相似文献   

5.
Heat injury and repair in Campylobacter jejuni   总被引:1,自引:0,他引:1  
A procedure for detecting and quantitating heat injury in Campylobacter jejuni was developed. Washed cells of C. jejuni A7455 were heated in potassium phosphate buffer (0.1 M, pH 7.3) at 46 degrees C. Samples were plated on brucella agar supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate and on a medium containing brilliant green, bile, Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate. Colonies were counted after 5 days of incubation at 37 degrees C in an atmosphere containing 5% O2, 10% CO2, and 85% N2. After 45 min at 46 degrees C, there was virtually no killing and ca. two log cycles of injury. Cells grown at 42 degrees C were more susceptible to injury than cells grown at 37 degrees C. The addition to brucella agar supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate of three different antibiotic mixtures used in the isolation of C. jejuni from foods or clinical specimens did not prevent recovery of heat-injured C. jejuni. Cells lost 260 nm of absorbing materials during heat injury. The addition of 5% NaCl or 40% sucrose to the heating buffer prevented leakage but did not prevent injury. Of the additional salts, sugars, and amino acids tested for protection, only NH4Cl, KCl, and LiCl2 prevented injury. Heat-injured C. jejuni repaired (regained dye and bile tolerance) in brucella broth supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate within 4 h. Increasing the NaCl in this medium to 1.25% inhibited repair, and increasing it to 2% was lethal. Heat-injured C. jejuni will repair at 42 degrees C but not at 5 degrees C.  相似文献   

6.
Heat injury and repair in Campylobacter jejuni.   总被引:3,自引:2,他引:1       下载免费PDF全文
A procedure for detecting and quantitating heat injury in Campylobacter jejuni was developed. Washed cells of C. jejuni A7455 were heated in potassium phosphate buffer (0.1 M, pH 7.3) at 46 degrees C. Samples were plated on brucella agar supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate and on a medium containing brilliant green, bile, Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate. Colonies were counted after 5 days of incubation at 37 degrees C in an atmosphere containing 5% O2, 10% CO2, and 85% N2. After 45 min at 46 degrees C, there was virtually no killing and ca. two log cycles of injury. Cells grown at 42 degrees C were more susceptible to injury than cells grown at 37 degrees C. The addition to brucella agar supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate of three different antibiotic mixtures used in the isolation of C. jejuni from foods or clinical specimens did not prevent recovery of heat-injured C. jejuni. Cells lost 260 nm of absorbing materials during heat injury. The addition of 5% NaCl or 40% sucrose to the heating buffer prevented leakage but did not prevent injury. Of the additional salts, sugars, and amino acids tested for protection, only NH4Cl, KCl, and LiCl2 prevented injury. Heat-injured C. jejuni repaired (regained dye and bile tolerance) in brucella broth supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate within 4 h. Increasing the NaCl in this medium to 1.25% inhibited repair, and increasing it to 2% was lethal. Heat-injured C. jejuni will repair at 42 degrees C but not at 5 degrees C.  相似文献   

7.
A low molecular mass pectate lyase from Fusarium moniliforme was unfolded reversibly by urea and Gdn-HCl at its optimum pH of 8.5, as monitored by intrinsic fluorescence, circular dichroism, and enzymatic activity measurements. Equilibrium unfolding studies yielded a deltaG(H(2)O) of 1.741 kcal/mol, D1/2 of 2.3M, and m value of 0.755kcal/molM with urea and a deltaG(H(2)O) of 1.927kcal/mol, D1/2 of 1.52M, and m value of 1.27 kcal/molM with Gdn-HCl as the denaturant. Thermal denaturation of the pectate lyase at, pH 8.5, was also reversible even after exposure to 75 degrees C for 10 min. Thermodynamic parameters calculated from thermal denaturation curves at pH values from 5.0 to 8.5 yielded a deltaCp of 0.864kcal/(molK). The deltaG(25 degrees C) at, pH 8.5, was 2.06kcal/mol and was in good agreement with the deltaG(H(2)O) values obtained from chemical denaturation curves. There was no exposure of hydrophobic pockets during chemical or thermal denaturation as indicated by the inability of ANS to bind the pectate lyase.  相似文献   

8.
The thermal stability of the lipase from Chromobacterium viscosum was assessed by deactivation (loss of activity), fluorescence, circular dichroism (CD) and static light scattering (SLS) measurements. Lipase fluorescence emission is dominated by the tryptophyl contribution. An increase in the tyrosyl contribution from 2 to 16% was only observed upon prolonged incubation at 60 degrees C. The effect of temperature on the tryptophyl quantum yield was studied and two activation energies were calculated. Tryptophan residues in the native structure have an activation energy of 1.9 kcal mol(-1) for temperature-dependent non-radiative deactivation of the excited state. A structural change occurs at approximately 66.7 degrees C and the activation energy increases to 10.2 kcal mol(-1). This structural change is not characterized by tryptophan exposure on the surface of the protein. The deactivation and the evolution of structural changes with time after lipase incubation at 60 degrees C were assessed by fluorescence, CD and SLS measurements. CD spectra show that both secondary and tertiary structures remain native-like after incubation at 60 degrees C in spite of the fluorescence changes observed (red-shift from 330 to 336 nm on the trytophyl emission). SLS measurements together with the CD data show that deactivation may be due to protein association between native molecules. Deactivation and the decrease on the fraction of non-associated native lipase evaluated by changes in fluorescence intensity with time, show apparent first order kinetics. According to the rate constants, fluorescence changes precede deactivation pointing to an underestimation of the deactivation. Reactivation upon dilution during the activity assay and substrate-induced reactivation due to lipase interfacial adsorption are possible causes for this underestimation.  相似文献   

9.
Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis.   总被引:5,自引:0,他引:5  
Photosynthetically active vesicles with attached phycobilisomes from Anabaena variabilis, were isolated and shown to transfer excitation energy from phycobiliproteins to F696 chlorophyll (Photosystem II). The best results were obtained when cells were disrupted in a sucrose/phosphate/citrate mixture (0.3 : 0.5 : 0.3 M, respectively) containing 1.5% serum albumin. The vesicles showed a phycocyanin/chlorophyll ratio essentially identical to that of whole cells, and oxygen evolution rates of 250 mumol O2/h per mg chlorophyll (with 4 mM ferricyanide added as oxidant), whereas whole cells had rates of up to 450. Excitation of the vesicles by 600 nm light produced fluorescence peaks (-196 degrees C) at 644, 662, 685, 695, and 730 nm. On aging of the vesicles, or upon dilution, the fluorescence yield of the 695 nm emission peak gradually decreased with an accompanying increase and final predominant peak at 685 nm. This shift was accompanied by a decrease in the quantum efficiency of Photosystem II activity from an initial 0.05 to as low as 0.01 mol O2/einstein (605 nm), with a lesser change in the Vmax values. The decrease in the quantum efficiency is mainly attributed to excitation uncoupling between phycobilisomes and Photosystem II. It is concluded that the F685 nm emission peak, often exclusively attributed to Photosystem II chlorophyll, arises from more than one component with phycobilisome emission being a major contributor. Vesicles from which phycobilisomes had been removed, as verified by electron microscopy and spectroscopy, had an almost negligible emission at 685 nm.  相似文献   

10.
The effects of elevated pH and high salt concentrations on tubulin   总被引:1,自引:0,他引:1  
The effects of incubating phosphocellulose-purified bovine tubulin at 4 degrees C in nucleotide-free buffers at alkaline pH or at high concentrations of NaCl, KCl, (NH4)2SO4, or NH4Cl have been studied. At pH greater than or equal to 7.5 or at NaCl concentrations greater than or equal to 0.7 M, tubulin releases bound nucleotides irreversibly and loses, with apparent first-order kinetics, the ability to assemble into microtubules. In 0.1 M 1,4-piperazinediethanesulfonic acid buffer, pH 6.9, in the presence of 1.3 M NH4Cl, tubulin undergoes more rapid loss of capacity to assemble than it does in NaCl and KCl, but 1.3 M (NH4)2SO4 causes no detectable change in tubulin after 1-h incubation. Incubation at high pH or at high neutral salt concentrations also causes an apparently irreversible change in the ultraviolet difference spectrum and in the sedimentation velocity profile of tubulin. At elevated salt concentrations a decrease of approximately 10% in the molar ellipticity within the wavelength range 220-260 nm is observed. The changes that occur during 1-h exposure to pH 8.0 can be completely prevented by including 1 mM guanosine 5'-triphosphate (GTP) or 4 M glycerol in the buffer, but those which occur at pH 9.0 cannot be prevented by these additions. In 1 M NaCl when the ratio of bound guanine nucleotide to tubulin reaches approximately 1.0, tubulin loses the abilities to assemble into microtubules and to bind colchicine. The rate of loss of nucleotide in 2 M NaCl is decreased in the presence of 1 mM GTP, and tubulin is protected almost completely from 1 M NaCl-induced loss of GTP (and retains the ability to exchange [3H]GTP as well) in the presence of bound colchicine. Investigators who anticipate exposing tubulin to buffers of elevated pH or high concentrations of chaotropic salts should be extremely cautious in interpreting the resulting data unless they can demonstrate that irreversible alteration of the protein has not occurred.  相似文献   

11.
Glycophorin and CD4 proteins are tightly associated with intact human erythrocyte membranes after a short-time incubation at low pH (1-2 min, pH lower than 5, 37 degrees C). Flow cytometry and epifluorescence microscope observations showed that after incubation of red cells with fluorescein isothiocyanate (FITC) labeled glycophorin at pH values lower than 5, the erythrocyte membrane and subsequently formed ghost membranes were fluorescent. Unlabeled glycophorin was reacted with mouse erythrocytes using the same low-pH conditions. Flow cytometry and fluorescence microscopy showed that anti-glycophorin monoclonal antibodies were able to recognize the epitopes of glycophorin associated with the mouse erythrocytes. Kinetic experiments showed that the interaction of FITC-glycophorin with red cell membranes can be monitored by a decrease in the fluorescence intensity. Erythrocyte associated glycophorin was not removed from the membranes after 24 h incubation in human plasma (in vitro, 39 degrees C). A glycoprotein extract containing CD4 was isolated from a T4-lymphoma cell line (CEM). This protein extract was incubated with erythrocytes using the same low-pH conditions. Fluorescently labeled monoclonal antibodies against CD4 stained the red cells after association of CD4 with the membranes. Electron microscopy showed 10 nm immunoglobulin G-coated gold beads associated with CD4-bearing erythrocyte membranes after incubation with anti-CD4 antibodies and then with the gold beads. The potential use of the CD4-erythrocyte complex as a therapeutical agent against acquired immune deficiency syndrome (AIDS) is suggested.  相似文献   

12.
A new fluorophor for tubulin which has permitted the monitoring of microtubule assembly in vitro is reported. DAPI (4',6-diamidino-2-phenylindole), a fluorophor already known as a DNA intercalator, was shown to bind specifically to a unique tubulin site as a dimer (KD(app) = 43 +/- 5 microM at 37 degrees C) or to tubulin associated in microtubules (KD(app) = 6 +/- 2 microM at 37 degrees C) with the same maximum enhancement in fluorescence. When tubulin polymerization was induced with GTP, the change in DAPI affinity for tubulin resulted in an enhancement of DAPI binding and, consequently, of fluorescence intensity. DAPI, whose binding site is different from that of colchicine, vinblastine, or taxol, did not interfere greatly with microtubule polymerization. It induced a slight diminution of the critical concentration for tubulin assembly due to a decrease in the depolymerizing rate constant. Moreover, DAPI did not interfere with GTP hydrolysis correlated with tubulin polymerization, but it decreased the GTPase activity at the steady state of tubulin assembly. Even at substoichiometric levels DAPI can be used to follow the kinetics of microtubule assembly.  相似文献   

13.
P Gaya  M Medina    M Nuez 《Applied microbiology》1991,57(11):3355-3360
Activity of raw milk lactoperoxidase-thiocyanate-hydrogen peroxide (LP) system on four Listeria monocytogenes strains at refrigeration temperatures after addition of 0.25 mM sodium thiocyanate and 0.25 mM hydrogen peroxide was studied. The LP system exhibited a bactericidal activity against L. monocytogenes at 4 and 8 degrees C; the activity was dependent on temperature, length of incubation, and strain of L. monocytogenes tested. D values in activated-LP system milk for the four strains tested ranged from 4.1 to 11.2 days at 4 degrees C and from 4.4 to 9.7 days at 8 degrees C. The lactoperoxidase level in raw milk declined during a 7-day incubation, the decrease being more pronounced at 8 degrees C than at 4 degrees C and in control milk than in activated-LP system milk. The thiocyanate concentration decreased considerably in activated-LP system milk at both temperatures during the first 8 h of incubation. LP system activation was shown to be a feasible procedure for controlling development of L. monocytogenes in raw milk at refrigeration temperatures.  相似文献   

14.
Activity of raw milk lactoperoxidase-thiocyanate-hydrogen peroxide (LP) system on four Listeria monocytogenes strains at refrigeration temperatures after addition of 0.25 mM sodium thiocyanate and 0.25 mM hydrogen peroxide was studied. The LP system exhibited a bactericidal activity against L. monocytogenes at 4 and 8 degrees C; the activity was dependent on temperature, length of incubation, and strain of L. monocytogenes tested. D values in activated-LP system milk for the four strains tested ranged from 4.1 to 11.2 days at 4 degrees C and from 4.4 to 9.7 days at 8 degrees C. The lactoperoxidase level in raw milk declined during a 7-day incubation, the decrease being more pronounced at 8 degrees C than at 4 degrees C and in control milk than in activated-LP system milk. The thiocyanate concentration decreased considerably in activated-LP system milk at both temperatures during the first 8 h of incubation. LP system activation was shown to be a feasible procedure for controlling development of L. monocytogenes in raw milk at refrigeration temperatures.  相似文献   

15.
Lanreotide was labelled with 188Re obtained from 188W/188Re generator, using stannous ion as reducing agent, ascorbic acid as stabilizers and hydroxy ethylidene bisphosphonate (HEDP) as intermediary ligand at different molar ratios, pH and incubation times. Best yields (>95%) were obtained using molar ratios SnF2/lanreotide, ascorbic/lanreotide and HEDP/lanreotide of 40, 12 and 260, respectively, pH 1-2 with an incubation at 100 degrees C for 30 min. Quality control evaluation and stability of the radiolabel compound was done by the following selected methods: chromatography in Whatman 3 MM with MEK and NaCl 0.15 M as solvents, ITLC-SG with ethanol-HCl 0.01N (90:10); reverse phase extraction cartridge (Sep-pak C18, Waters Associated) and RP-HPLC with radiometric and UV detection (220 nm) using MCH-5 n-capp column with linear gradient from 90% H2O (TFA 0.1%): 10% ACN (TFA 0.1%) up to 10% H2O (TFA 0.1%):90% ACN (TFA 0.1%) in 30 min, at flow 1 ml/min. Biodistribution in normal mice showed that 188Re-lanreotide is excreted mainly through the hepatobiliary system: more than 70% I.D. is present in gallbladder and intestines at 2 hr post injection. The stability of the 188Re-peptide bond by cysteine challenge test at 37 degrees C, during 2 and 24 hr of incubation time, reveals that approximately 300 and 100 molar ratio cys/peptide is required to displace 50% of the 188Re from the complex. In vitro stability of 188Re-lanreotide at room temperature (Rt) was demonstrated during 24 hr Future works must be done in order to investigate its binding capacity to somatostatin receptors.  相似文献   

16.
An approach has been suggested to study the H/D isotope effect on protein-water and protein-protein intermolecular interactions by determining the content of non-freezing water using low-temperature (1)H NMR in mixed (H2O/D2O) water solutions. Direct data are obtained on the amount of H2O adsorbed (absolute hydration) in presence of the heavy isotope (deuterium D), and isothermals of H2O/D2O fractionation at protein surface groups are presented for temperatures between -10 degrees C and -35 degrees C and solutions of varying composition. The fractionation factor, phi = [x/(1 - x)]/[x(0)/(1 - x(0))], where x and x(0) are the fractions of deuterons in hydration and bulk water, respectively, appeared to be extremely high: phi > 1 at 0.03 < x(0) < 0.10. The high values of phi indicate a decrease in apparent hydration of protein molecules. A probable reason of the effect can be an inter-protein molecular solvent-mediated interaction induced by D2O. The excess of phi over 1 appears to provide a quantitative estimate of the fraction of hydration water affected by such interaction.  相似文献   

17.
The mitotic inhibitor 1-propargyl-5-chloropyrimidin-2-one (a metahalone) was found to bind to DEAE-cellulose purified rat brain tubulin. A decrease in the fluorescence of 1-propargyl-5-chloropyrimidin-2-one was seen when the drug was incubated in the presence of increasing tubulin concentrations. The decrease in metahalone fluorescence was not affected by the addition of GTP, indicating drug interaction at other portions of the tubulin molecule than the nucleotide binding sites. Scatchard plot analysis following incubation of tubulin with 1-propargyl-5-chloro-[2-14C]pyrimidin-2-one revealed that 1 mol of metahalone bound to 1 mol of tubulin dimer with a measured association constant of 8.0 X 10(3) M-1. Double reciprocal plots of vincristine and colchicine binding to tubulin in the presence of 1-propargyl-5-chloropyrimidin-2-one showed that the metahalone competitively inhibited colchicine binding to tubulin but had no influence on vincristine binding. This conclusion was supported by gel filtration chromatography where an increase in unbound colchicine was measured when 1-propargyl-5-chloropyrimidin-2-one was present in an incubation mixture containing colchicine and tubulin. In the presence of 5 mM 1-propargyl-5-chloropyrimidin-2-one, tubulin self-aggregated into crystalline structures. The binding of 1-propargyl-5-chloropyrimidin-2-one to tubulin at or near the colchicine binding site may be responsible for the metaphase arresting characteristics of this drug.  相似文献   

18.
D Panda  S Roy  B Bhattacharyya 《Biochemistry》1992,31(40):9709-9716
Concentration-dependent dissociation of dimers of goat brain tubulin S and tubulin was studied by fluorescence anisotropy. Upon dilution, assembly-competent fluorescein 5'-maleimide labeled dimers of tubulin S and tubulin show a progressive decrease in fluorescence anisotropy. That this lowering of anisotropy results from the dissociation of tubulin S dimers into monomers was shown by dilution experiments with unlabeled homologous and heterologous proteins. A nonlinear least-squares fit of the data gave a dissociation constant of 7.1 x 10(-8) M for tubulin S compared to 7.2 x 10(-7) M for tubulin at 25 degrees C in 0.1 M PEM buffer, pH 7.0. van't Hoff plots of dimer-monomer dissociation of tubulin S and tubulin also show considerable differences in delta H and delta S. Effects of ionic strength and colchicine on the equilibrium constants are also substantially different for tubulin and tubulin S. The implications of these observations on the influence of C-terminal tails on tubulin structure are discussed.  相似文献   

19.
Human plasma low-density lipoproteins (LDL) were incubated with 10 microM probucol for 1 h at 37 degrees C. Probucol incorporation into the LDL was complete as judged by filtration through a 0.2-micron filter, ultracentrifugation, and gel filtration. LDL with and without probucol were incubated for up to 24 h with 5 microM Cu2+ at 37 degrees C. Copper oxidation increased the content of random structure in the LDL protein from 30% to 36% at the expense of beta-structure (which decreased from 22% to 16%) without a change in alpha-helical content as measured by circular dichroism spectroscopy. This loss of beta-structure was prevented by the presence of probucol in the LDL during the copper incubation. Probucol reduced the rate of increase of fluorescence during copper oxidation at 37 degrees C. After 6 h, the fluorescence intensity at 360-nm excitation and 430-nm emission was 30% less in probucol-containing samples. Probucol had no effect on the circular dichroic spectrum of LDL and only minimal effects (less than 5%) on the fluorescence emission spectrum at wavelengths below 500 nm. Two fluorescence peaks, with emission at 420 nm and excitation at 340 and 360 nm, are resolved in three-dimensional fluorescence spectra of oxidized LDL. Probucol reduces the intensity of both peaks equally. The binding of a highly reactive heparin (HRH) fraction to LDL was measured by titration of LDL with HRH in the presence of fluoresceinamine-labeled HRH. The decrease in fluorescence anisotropy of the labeled HRH is proportional to the concentration of bound HRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号