首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guo J  Zeng Q  Emami M  Ellis BE  Chen JG 《PloS one》2008,3(8):e2982

Background

The plant hormone abscisic acid (ABA) regulates diverse processes of plant growth and development. It has recently been proposed that GCR2 functions as a G-protein-coupled receptor (GPCR) for ABA. However, the structural relationships and functionality of GCR2 have been challenged by several independent studies. A central question in this controversy is whether gcr2 mutants are insensitive to ABA, because gcr2 mutants were shown to display reduced sensitivity to ABA under one experimental condition (e.g. 22°C, continuous white light with 150 µmol m-2 s−1) but were shown to display wild-type sensitivity under another slightly different condition (e.g. 23°C, 14/10 hr photoperiod with 120 µmol m−2 s−1). It has been hypothesized that gcr2 appears only weakly insensitive to ABA because two other GCR2-like genes in Arabidopsis, GCL1 and GCL2, compensate for the loss of function of GCR2.

Principal Findings

In order to test this hypothesis, we isolated a putative loss-of-function allele of GCL2, and then generated all possible combinations of mutations in each member of the GCR2 gene family. We found that all double mutants, including gcr2 gcl1, gcr2 gcl2, gcl1 gcl2, as well as the gcr2 gcl1 gcl2 triple mutant displayed wild-type sensitivity to ABA in seed germination and early seedling development assays, demonstrating that the GCR2 gene family is not required for ABA responses in these processes.

Conclusion

These results provide compelling genetic evidence that GCR2 is unlikely to act as a receptor for ABA in the context of either seed germination or early seedling development.  相似文献   

2.
Abscisic acid (ABA) plays regulatory roles in a host of physiological processes throughout plant growth and development. Seed germination, early seedling development, stomatal guard cell functions, and acclimation to adverse environmental conditions are key processes regulated by ABA. Recent evidence suggests that signaling processes in both seeds and guard cells involve heterotrimeric G proteins. To assess new roles for the Arabidopsis (Arabidopsis thaliana) Galpha subunit (GPA1), the Gbeta subunit (AGB1), and the candidate G-protein-coupled receptor (GCR1) in ABA signaling during germination and early seedling development, we utilized knockout mutants lacking one or more of these components. Our data show that GPA1, AGB1, and GCR1 each negatively regulates ABA signaling in seed germination and early seedling development. Plants lacking AGB1 have greater ABA hypersensitivity than plants lacking GPA1, suggesting that AGB1 is the predominant regulator of ABA signaling and that GPA1 affects the efficacy of AGB1 execution. GCR1 acts upstream of GPA1 and AGB1 for ABA signaling pathways during germination and early seedling development: gcr1 gpa1 double mutants exhibit a gpa1 phenotype and agb1 gcr1 and agb1 gcr1 gpa1 mutants exhibit an agb1 phenotype. Contrary to the scenario in guard cells, where GCR1 and GPA1 have opposite effects on ABA signaling during stomatal opening, GCR1 acts in concert with GPA1 and AGB1 in ABA signaling during germination and early seedling development. Thus, cell- and tissue-specific functional interaction in response to a given signal such as ABA may determine the distinct pathways regulated by the individual members of the G-protein complex.  相似文献   

3.
Pandey S  Assmann SM 《The Plant cell》2004,16(6):1616-1632
Heterotrimeric G proteins composed of alpha, beta, and gamma subunits link ligand perception by G protein-coupled receptors (GPCRs) with downstream effectors, providing a ubiquitous signaling mechanism in eukaryotes. The Arabidopsis thaliana genome encodes single prototypical Galpha (GPA1) and Gbeta (AGB1) subunits, and two probable Ggamma subunits (AGG1 and AGG2). One Arabidopsis gene, GCR1, encodes a protein with significant sequence similarity to nonplant GPCRs and a predicted 7-transmembrane domain structure characteristic of GPCRs. However, whether GCR1 actually interacts with GPA1 was unknown. We demonstrate by in vitro pull-down assays, by yeast split-ubiquitin assays, and by coimmunoprecipitation from plant tissue that GCR1 and GPA1 are indeed physically coupled. GCR1-GPA1 interaction depends on intracellular domains of GCR1. gcr1 T-DNA insertional mutants exhibit hypersensitivity to abscisic acid (ABA) in assays of root growth, gene regulation, and stomatal response. gcr1 guard cells are also hypersensitive to the lipid metabolite, sphingosine-1-phosphate (S1P), which is a transducer of the ABA signal upstream of GPA1. Because gpa1 mutants exhibit insensitivity in aspects of guard cell ABA and S1P responses, whereas gcr1 mutants exhibit hypersensitivity, GCR1 may act as a negative regulator of GPA1-mediated ABA responses in guard cells.  相似文献   

4.
5.
6.
Nitric oxide (NO) plays important roles in plant development, and biotic and abiotic stress responses. In a recent study, we showed that endogenous NO negatively regulates abscisic acid (ABA) signaling in guard cells by inhibiting sucrose nonfermenting 1 (SNF1)-related protein kinase 2.6 (SnRK2.6)/open stomata 1(OST1) through S-nitrosylation. Application of NO breaks seed dormancy and alleviates the inhibitory effect of ABA on seed germination and early seedling growth, but it is unclear how NO functions at the stages of seed germination and early seedling development. Here, we show that like SnRK2.6, SnRK2.2 can be inactivated by S-nitrosoglutathione (GSNO) treatment through S-nitrosylation. SnRK2.2 and the closely related SnRK2.3 are known to play redundant roles in ABA inhibition of seed germination in Arabidopsis. We found that treatment with the NO donor SNP phenocopies the snrk2.2snrk2.3 double mutant in conferring ABA insensitivity at the stages of seed germination and early seedling growth. Our results suggest that NO negatively regulates ABA signaling in germination and early seedling growth through S-nitrosylation of SnRK2.2 and SnRK2.3.  相似文献   

7.
8.
Many gram-negative bacteria use N-acyl-homoserine lactones (AHL) as quorum-sensing signals to coordinate their collective behaviors. Accumulating evidence indicates that plants can respond to AHL. However, little is known about the molecular mechanism of plants reacting to these bacterial signals. In this study, we show that the treatment of Arabidopsis roots with N-3-oxo-hexanoyl-homoserine lactone (3OC6-HSL) and N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) resulted in significant root elongation. The genetic analysis revealed that the T-DNA insertional mutants of gcr1, encoding a G-protein-coupled receptor GCR1, were insensitive to 3OC6-HSL or 3OC8-HSL in assays of root growth. The loss-of-function mutants of the sole canonical Gα subunit GPA1 showed no response to AHL promotion of root elongation whereas Gα gain-of-function plants overexpressing either the wild type or a constitutively active version of Arabidopsis Gα exhibited the exaggerated effect on root elongation caused by AHL. Furthermore, the expression of GCR1 and GPA1 were significantly upregulated after plants were contacted with both AHL. Taken together, our results suggest that GCR1 and GPA1 are involved in AHL-mediated elongation of Arabidopsis roots. This provides insight into the mechanism of plant responses to bacterial quorum-sensing signals.  相似文献   

9.
10.
Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and stress tolerance. PYL/RCARs were identified an intracellular ABA receptors regulating ABA-dependent gene expression in Arabidopsis thaliana. However, their function in monocot species has not been characterized yet. Herein, it is demonstrated that PYL/RCAR orthologues in Oryza sativa function as a positive regulator of the ABA signal transduction pathway. Transgenic rice plants expressing OsPYL/RCAR5, a PYL/RCAR orthologue of rice, were found to be hypersensitive to ABA during seed germination and early seedling growth. A rice ABA signalling unit composed of OsPYL/RCAR5, OsPP2C30, SAPK2, and OREB1 for ABA-dependent gene regulation was further identified, via interaction assays and a transient gene expression assay. Thus, a core signalling unit for ABA-responsive gene expression modulating seed germination and early seedling growth in rice has been unravelled. This study provides substantial contributions toward understanding the ABA signal transduction pathway in rice.  相似文献   

11.
Gao G  Zhang S  Wang C  Yang X  Wang Y  Su X  Du J  Yang C 《PloS one》2011,6(4):e19406
The phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Protein phosphatases type 2C (PP2Cs) from group A, which includes the ABI1/HAB1 and PP2CA branches, are key negative regulators of ABA signaling. HAI-1 gene had been shown to affect both seed and vegetative responses to ABA, which is one of PP2Cs clade A in Arabidopsis thaliana. Transgenic plants containing pHAI-1::GUS (β-glucuronidase) displayed GUS activity existing in the vascular system of leave veins, stems and petioles. Green fluorescent protein fused HAI-1 (HAI-1-GFP) was found in the nucleus through transient transformation assays with onion epidermal cells. The water-loss assays indicated the loss-of-function mutants did not show symptoms of wilting and they had still turgid green rosette leaves. The assays of seed germination by exogenous ABA and NaCl manifested that the loss-of-function mutants displayed higher insensitivity than wild-type plants. Taken together, the final results suggest that the HAI-1 (AT5G59220) encoded a nuclear protein and it can be highly induced by ABA and wound in Arabidposis, the stress-tolerance phenotype showed a slightly improvement when HAI-1 gene was disrupted.  相似文献   

19.
N-酰基高丝氨酸内酯(AHLs)是革兰氏阴性细菌群体感应的信号分子。培养基中添加1μmol·L-13OC6-HSL和10μmol·L-13OC8-HSL可显著促进野生型拟南芥主根生长,但拟南芥G蛋白偶联受体GCR1和GCR2基因缺失突变体gcr1-1和gcr2-2对AHLs处理不敏感;实时荧光定量PCR分析显示,这2种AHLs的处理可以使拟南芥GCR1和GCR2基因表达量上调2~4倍。结果表明,G蛋白偶联受体GCR1和GCR2可能参与植物感应细菌信号进而做出根生长响应的信号转导。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号