首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The first enzyme unique to lysine biosynthesis in higher plants, dihydrodipicolinate synthase, has been partially purified from spinach leaves, using ion exchange chromatography, hydrophobic interaction chromatography and gel filtration. The spinach enzyme is moderately stable to short-term exposure to heat, in contrast to the pea leaf enzyme, but is unstable on storage even at ?20°. Thiol reagents interfere with the calorimetric assay used, and so cannot be routinely used to stabilize the enzyme, which has an active sulphydryl group. The MW of the enzyme is 115000 (gel filtration). Lysine is a potent inhibitor with an I(0.5) of 2OμM, whilst the lysine analogue S-β-aminoethylcysteinc has an I(0.5) of 400 μM. The Kt´m for aspartic-β-semialdehyde was determined to be 1.4mM, but this compound demonstrated marked substrate inhibition at concentrations above 7 mM, increasing the apparent S(0.5)for the second substrate, pyruvate.  相似文献   

2.
In recent years, dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52) has received considerable attention from a mechanistic and structural viewpoint. DHDPS catalyzes the reaction of (S)-aspartate-beta-semialdehyde with pyruvate, which is bound via a Schiff base to a conserved active-site lysine (Lys161 in the enzyme from Escherichia coli). To probe the mechanism of DHDPS, we have studied the inhibition of E. coli DHDPS by the substrate analog, beta-hydroxypyruvate. The K (i) was determined to be 0.21 (+/-0.02) mM, similar to that of the allosteric inhibitor, (S)-lysine, and beta-hydroxypyruvate was observed to cause time-dependent inhibition. The inhibitory reaction with beta-hydroxypyruvate could be qualitatively followed by mass spectrometry, which showed initial noncovalent adduct formation, followed by the slow formation of the covalent adduct. It is unclear whether beta-hydroxypyruvate plays a role in regulating the biosynthesis of meso-diaminopimelate and (S)-lysine in E. coli, although we note that it is present in vivo. The crystal structure of DHDPS complexed with beta-hydroxypyruvate was solved. The active site clearly showed the presence of the inhibitor covalently bound to the Lys161. Interestingly, the hydroxyl group of beta-hydroxypyruvate was hydrogen-bonded to the main-chain carbonyl of Ile203. This provides insight into the possible catalytic role played by this peptide unit, which has a highly strained torsion angle (omega approximately 201 degrees ). A survey of the known DHDPS structures from other organisms shows this distortion to be a highly conserved feature of the DHDPS active site, and we propose that this peptide unit plays a critical role in catalysis.  相似文献   

3.
4.
The essential amino acid lysine is synthesized in higher plants by a complex pathway that is predominantly regulated by feedback inhibition of two enzymes, namely aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). Although DHPS is thought to play a major role in this regulation, the relative importance of AK is not known. In order to study this regulation, we have expressed in the chloroplasts of transgenic potato plants a DHPS derived from Escherichia coli at a level 50-fold above the endogenous DHPS. The bacterial enzyme is much less sensitive to lysine inhibition than its potato counterpart. DHPS activity in leaves, roots and tubers of the transgenic plants was considerably higher and more resistant to lysine inhibition than in control untransformed plants. Furthermore, this activity was accompanied by a significant increase in level of free lysine in all three tissues. Yet, the extent of lysine overproduction in potato leaves was significantly lower than that previously reported in leaves of transgenic plants expressing the same bacterial enzyme, suggesting that in potato, AK may also play a major regulatory role in lysine biosynthesis. Indeed, the elevated level of free lysine in the transgenic potato plants was shown to inhibit the lysine-sensitive AK activity in vivo. Our results support previous reports showing that DHPS is the major rate-limiting enzyme for lysine synthesis in higher plants, but they suggest that additional plant-specific regulatory factors are also involved.  相似文献   

5.
Boughton BA  Dobson RC  Hutton CA 《Proteins》2012,80(8):2117-2122
The crystal structure of Escherichia coli dihydrodipicolinate synthase with pyruvate and substrate analogue succinic acid semialdehyde condensed with the active site lysine‐161 was solved to a resolution of 2.3 Å. Comparative analysis to a previously reported structure both resolves the configuration at the aldol addition center, where the final addition product clearly displays the (S)‐configuration, and the final conformation of the adduct within the active site. Direct comparison to two other crystal structures found in the Protein Data Bank, 1YXC, and 3DU0, demonstrates significant similarity between the active site residues of these structures. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The mRNA of Escherichia coli yedU gene is induced 31-fold upon heat shock. The 31-kD YedU protein, also calls Hsp31, is highly conserved in several human pathogens and has chaperone activity. We solved the crystal structure of YedU at 2.2 A resolution. YedU monomer has an alpha/beta/alpha sandwich domain and a small alpha/beta domain. YedU is a dimer in solution, and its crystal structure indicates that a significant amount of surface area is buried upon dimerization. There is an extended hydrophobic patch that crosses the dimer interface on the surface of the protein. This hydrophobic patch is likely the substrate-binding site responsible for the chaperone activity. The structure also reveals a potential protease-like catalytic triad composed of Cys184, His185, and Asp213, although no enzymatic activity could be identified. YedU coordinates a metal ion using His85, His122, and Glu90. This 2-His-1-carboxylate motif is present in carboxypeptidase A (a zinc enzyme), and a number of dioxygenases and hydroxylases that utilize iron as a cofactor, suggesting another potential function for YedU.  相似文献   

7.
In this study the putative catalytic triad Ser-His-Asp of the Staphylococcus hyicus ssp. hyicus lipase was investigated. Putative catalytic sites determined by homology comparisons of three staphylococcal and other non-staphylococcal lipases were altered by site-directed mutagenesis. Since the mutations did not influence the secretion of the lipase, the decrease in lipase activity of the mutants strongly supports the proposed involvement of Ser369 and His600 in catalysis. Asp559 is postulated to be the third amino acid of the triad.  相似文献   

8.
Catalytic aldolase antibodies, generated by reactive immunization, catalyze the aldol reaction with the efficiency of natural enzymes, but accept a much broader range of substrates. Two separate groups of aldolase antibodies that catalyze the same aldol reactions with antipodal selectivity were analyzed by comparing their amino acid sequences with their crystal structures, site-directed mutagenesis data, and computational docking of the transition states of the aldol reaction. The crystal structure of aldolase antibody 93F3 Fab' at 2.5A resolution revealed a combining site with two lysine residues, including LysL89 that reacts to form the covalent enamine intermediate. In contrast, antibody 33F12 has one active site lysine, LysH93. The reactive lysine residues in each group of antibodies are differentially located on the heavy and light chain variable regions in pseudo-symmetric opposite orientations, but both within highly hydrophobic environments. Thus, the defining feature for the observed enantioselectivities of these aldolase antibody catalysts is the respective location and relative disposition of the reactive lysine residues within the active sites of these catalysts.  相似文献   

9.
Dehydroquinate synthase (DHQS) is the N-terminal domain of the pentafunctional AROM protein that catalyses steps 2 to 7 in the shikimate pathway in microbial eukaryotes. DHQS converts 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) to dehydroquinate in a reaction that includes alcohol oxidation, phosphate beta-elimination, carbonyl reduction, ring opening, and intramolecular aldol condensation. Kinetic analysis of the isolated DHQS domains with the AROM protein showed that for the substrate DAHP the difference in Km is less than a factor of 3, that the turnover numbers differed by 24%, and that the Km for NAD+ differs by a factor of 3. Isothermal titration calorimetry revealed that a second (inhibitory) site for divalent metal binding has an approximately 4000-fold increase in KD compared to the catalytic binding site. Inhibitor studies have suggested the enzyme could act as a simple oxidoreductase with several of the reactions occurring spontaneously, whereas structural studies have implied that DHQS participates in all steps of the reaction. Analysis of site-directed mutants experimentally test and support this latter hypothesis. Differential scanning calorimetry, circular dichroism spectroscopy, and molecular exclusion chromatography demonstrate that the mutant DHQS retain their secondary and quaternary structures and their ligand binding capacity. R130K has a 135-fold reduction in specific activity with DAHP and a greater than 1100-fold decrease in the kcat/Km ratio, whereas R130A is inactive.  相似文献   

10.
Dihydrodipicolinate synthase (DHDPS) from Campylobacter jejuni is a natively homotetrameric enzyme that catalyzes the first unique reaction of (S)-lysine biosynthesis and is feedback-regulated by lysine through binding to an allosteric site. High-resolution structures of the DHDPS-lysine complex have revealed significant insights into the binding events. One key asparagine residue, N84, makes hydrogen bonds with both the carboxyl and the α-amino group of the bound lysine. We generated two mutants, N84A and N84D, to study the effects of these changes on the allosteric site properties. However, under normal assay conditions, N84A displayed notably lower catalytic activity, and N84D showed no activity. Here we show that these mutations disrupt the quaternary structure of DHDPS in a concentration-dependent fashion, as demonstrated by size-exclusion chromatography, multi-angle light scattering, dynamic light scattering, small-angle X-ray scattering (SAXS) and high-resolution protein crystallography.  相似文献   

11.
12.
In plants and bacteria, the branch point of (S)-lysine biosynthesis is the condensation of (S)-aspartate-β-semialdehyde and pyruvate, a reaction catalysed by dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52). In this study, we probe the function of threonine 44 in Escherichia coli DHDPS, with respect to its role in the proton relay. Removal of the hydroxyl moiety of threonine 44, by mutation to valine, significantly attenuates activity (0.1% of wild-type) because the proton relay is broken. It was thus predicted that mutation of threonine 44 to serine would re-establish the proton relay and thus enzymatic activity. Following site-directed mutagenesis and purification to yield the DHDPS-Thr44Ser mutant enzyme, kinetic and structural studies were undertaken. The crystal structure of DHDPS-Thr44Ser showed that the active site was intact and that Ser44 and Tyr107 have some conformational flexibility, which is consistent with the observed loss of activity compared to the wild-type enzyme. Electron density was observed at the active site of DHDPS-Thr44Ser, which was identified as a trapped pyruvate analogue, α-ketoglutarate. The activity was indeed found to be increased relative to DHDPS-Thr44Val, but was still reduced to only ∼8% of that of the wild-type enzyme. Interestingly, there was a shift in the kinetic mechanism, from the substituted-enzyme mechanism, observed in the wild-type, to the ternary-complex mechanism, consistent with the trapped substrate analogue. Increased flexibility in the active site appears to facilitate the binding/reaction of substrate analogues, suggesting that wild-type DHDPS has evolved a relatively rigid active site in order to maintain substrate specificity for pyruvate.  相似文献   

13.
从天蓝色链霉菌Streptomyces coelicolor克隆得到海藻糖合酶基因 (ScTreS),在大肠杆菌Escherichia coli BL21(DE3) 中进行了异源表达,通过 Ni-NTA 亲和柱对表达产物进行分离纯化得到纯酶,经 SDS-PAGE 测定其分子量约为62.3 kDa。研究其酶学性质发现该酶最适温度35 ℃;最适pH 7.0,对酸性条件比较敏感。通过同源建模和序列比对分析,对该基因进行定点突变。突变酶K246A比酶活比野生酶提高了1.43倍,突变酶A165T相对提高了1.39倍,海藻糖转化率分别提高了14%和10%。利用突变体重组菌K246A进行全细胞转化优化海藻糖的合成条件并放大进行5 L罐发酵,结果表明:在麦芽糖浓度300 g/L、初始反应温度和pH分别为35 ℃和7.0的条件下,转化率最高达到71.3%,产量为213.93 g/L;当底物浓度增加到700 g/L时,海藻糖产量仍可达到465.98 g/L。  相似文献   

14.
3-Deoxy-D-manno-octulosonate-8-phosphate (KDOP) synthase catalyzes the production of KDOP from phosphoenolpyruvate (PEP) and arabinose-5-phosphate (A5P). In gram-negative bacteria KDOP is subsequently dephosphorylated, cytidylylated, and linked to lipid A and is required for lipid A incorporation into the outer membrane (Raetz, Annu. Rev. Biochem. 59:129–170, 1990). We have crystallized two forms of KDOP synthase belonging to space groups I23 or I213, one with a = b = c = 118.0 Å and the other with a = b = c = 233 Å.  相似文献   

15.
C-C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from Escherichia coli catalyses the hydrolytic C-C cleavage of the meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of E. coli MhpC has revealed a number of active-site amino acid residues that may participate in catalysis. Site-directed mutants of His263, Ser110, His114, and Ser40 have been analysed using steady-state and stopped-flow kinetics. Mutants H263A, S110A and S110G show 10(4)-fold reduced catalytic efficiency, but still retain catalytic activity for C-C cleavage. Two distinct steps are observed by stopped-flow UV/Vis spectrophotometry, corresponding to ketonisation and C-C cleavage: H263A exhibits very slow ketonisation and C-C cleavage, whereas S110A and S110G exhibit fast ketonisation, an intermediate phase, and slow C-C cleavage. H114A shows only twofold-reduced catalytic efficiency, ruling out a catalytic role, but shows a fivefold-reduced K(M) for the natural substrate, and an ability to process an aryl-containing substrate, implying a role for His114 in positioning of the substrate. S40A shows only twofold-reduced catalytic efficiency, but shows a very fast (500 s(-1)) interconversion of dienol (317 nm) to dienolate (394 nm) forms of the substrate, indicating that the enzyme accepts the dienol form of the substrate. These data imply that His263 is responsible for both ketonisation of the substrate and for deprotonation of water for C-C cleavage, a novel catalytic role in a serine hydrolase. Ser110 has an important but non-essential role in catalysis, which appears not to be to act as a nucleophile. A catalytic mechanism is proposed involving stabilisation of reactive intermediates and activation of a nucleophilic water molecule by Ser110.  相似文献   

16.
Summary Dihydrodipicolinate synthase (DHPS; EC 4.2.1.52) is the first committed enzyme in the lysine branch of the aspartate-derived amino acid biosynthesis pathway and is common to bacteria and plants. Due to feedback inhibition by lysine, DHPS serves in a regulatory role for this pathway in plant metabolism. To elucidate the molecular genetic characteristics of DHPS, we isolated a putative full-length cDNA clone for maize DHPS by direct genetic selection in an Escherichia coli dapA auxotroph. The maize DHPS activity expressed in the complemented E. coli auxotroph showed the lysine inhibition characteristics of purified maize DHPS, indicating that the cDNA encoded sequences for both the catalytic function and regulatory properties of the enzyme. The N-terminal amino acid sequence of purified maize DHPS was determined by direct sequencing and showed homology to a sequence within the cDNA, indicating that the clone contained the entire coding region for a mature polypeptide of 326 amino acids plus a 54 amino acid transit peptide sequence. The molecular weight of 35854, predicted from the deduced amino acid sequence, was similar to the 38 000 Mr determined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) for the purified enzyme from maize. DHPS mRNAs complementary to the cDNA were detected in RNA isolated from developing maize endosperm and embryo tissues. Southern blots indicated the presence of more than one genomic sequence homologous to DHPS per haploid maize genome.  相似文献   

17.
Summary The inherent infidelity of Taq DNA polymerase in the polymerase chain reaction was exploited to produce random mutations in thetrp A gene. Screening of the resulting clones allowed selection of non-interactive mutant subunits retaining their intrinsic catalytic activity. Two single changes responsible for this phenotype were identified by DNA sequencing as: 126 valine (GTG)glutamic acid (GAG) and 128 valine (GTT)aspartic acid (GAT). Three single changes giving a non-interactive phenotype with an impaired intrinsic catalytic activity were identified by DNA sequencing as a66 asparagine (AAC)aspartic acid (GAC); 109lysine (AAA) arginine (AGA); 118 cysteine (TGC)arginine (CGC). Where possible, we individually assessed the importance of these residues in interaction in light of structural information from X-ray crystallography and by intergeneric protein sequence comparison.  相似文献   

18.
Using site-directed mutagenesis, an aspartate side chain involved in binding metal ions in the active site of Escherichia coli alkaline phosphatase (Asp-369) was replaced, alternately, by asparagine (D369N) and by alanine (D369A). The purified mutant enzymes showed reduced turnover rates (kcat) and increased Michaelis constants (Km). The kcat for the D369A enzyme was 5,000-fold lower than the value for the wild-type enzyme. The D369N enzyme required Zn2+ in millimolar concentrations to become fully active; even under these conditions the kcat measured for hydrolysis of p-nitrophenol phosphate was 2 orders of magnitude lower than for the wild-type enzyme. Thus the kcat/Km ratios showed that catalysis is 50 times less efficient when the carboxylate side chain of Asp-369 is replaced by the corresponding amide; and activity is reduced to near nonenzymic levels when the carboxylate is replaced by a methyl group. The crystal structure of D369N, solved to 2.5 A resolution with an R-factor of 0.189, showed vacancies at 2 of the 3 metal binding sites. On the basis of the kinetic results and the refined X-ray coordinates, a reaction mechanism is proposed for phosphate ester hydrolysis by the D369N enzyme involving only 1 metal with the possible assistance of a histidine side chain.  相似文献   

19.
蔗糖是自然界中广泛存在的一种天然产物.在植物等生命体中,蔗糖磷酸合酶(Sucrose phosphate synthase,SPS)是蔗糖合成的限速酶.SPS催化合成蔗糖-6-磷酸;蔗糖磷酸酶(Sucrose Phosphatase,SPP)进一步把蔗糖-6-磷酸上的磷酸根水解下来而形成蔗糖.近几十年来关于SPS的研究...  相似文献   

20.
The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysine revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号