首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Menke M  Gerke V  Steinem C 《Biochemistry》2005,44(46):15296-15303
By means of scanning force and fluorescence microscopy of artificial membranes immobilized on mica surfaces, the lateral organization of the annexin A2/S100A10 heterotetramer (annexin A2t) and its influence on the lateral organization of the lipids within the membrane have been elucidated. Planar lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) were prepared on atomically flat mica surfaces by the spreading of unilamellar vesicles. Fluorescence images of fluorescently labeled annexin A2t and scanning force microscopy images of nonlabeled protein bound to POPC/POPS bilayers show the formation of micrometer-sized lateral protein domains in the presence of 1 mM CaCl2. By means of scanning force microscopy, not only protein domains became discernible but also small membrane domains, which were attributed to POPS-enriched areas. A depletion of these POPS domains was observed in the vicinity of annexin A2t protein domains. These results indicate that annexin A2t is a peripheral membrane-binding complex capable of inducing lipid segregation.  相似文献   

2.
M Roux  M Bloom 《Biochemistry》1990,29(30):7077-7089
The binding of calcium, magnesium, lithium, potassium, and sodium to membrane bilayers of 5 to 1 (M/M) 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and 1-palmitoyl- 2-oleoylphosphatidylserine (POPS) was investigated by using deuterium nuclear magnetic resonance (2H NMR). Both lipids were deuteriated on their polar headgroups, and spectra were obtained at 25 degrees C in the liquid-crystalline phase as a function of salt concentration. The spectra obtained with calcium were correlated with 45CaCl2 binding studies to determine the effective membrane-bound calcium at low calcium binding, up to 0.78 calcium per POPS. Deuterium quadrupolar splittings of both POPC and POPS headgroups were shown to be very sensitive to calcium binding. The behavior of these two headgroups over a wide range of CaCl2 concentrations suggests that Ca2+ binding occurs in at least two steps, the first step being achieved with 0.5 M CaCl2, with a stoichiometry of 0.5 Ca2+ per POPS. Correlations of the deuterium Ca2+ binding data with related data obtained after incorporation of a cationic integral peptide showed that the effects of these two cationic molecules of the POPS headgroup are qualitatively similar, and provided further support for two-step Ca2+ binding to the POPC/POPS 5:1 membranes. The corresponding data obtained with magnesium, lithium, and potassium indicate that these cations interact with both the choline and serine headgroups. The amplitudes of headgroup perturbations could be partly correlated to the relative affinities of the metallic cations for the lipid membrane. The two-step binding described with Ca2+ appears to be relevant to the Mg2+ data, and in certain limits to the Li+ data. The data were interpreted in terms of conformational changes of the lipid headgroups induced by an electric field due to the charges of the membrane-bound metallic cations. A conformational change of the serine headgroup induced by the membrane-bound charges is proposed. We propose that the metallic cations can be differentiated on the basis of their respective spatial distribution functions relative to the choline and serine headgroups. According to this interpretation, the divalent cations Ca2+ and Mg2+ are more deeply buried in the membrane than monovalent Na+ and K+, the case of Li+ being intermediate of the latter two. This conclusion is discussed in relation to fundamental theories of the spatial distribution of ions near the interface between water and smooth charged solid surfaces.  相似文献   

3.
Correlation between lipid plane curvature and lipid chain order.   总被引:1,自引:1,他引:0       下载免费PDF全文
The 1-palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE:POPC) system has been investigated by measuring, in the inverted hexagonal (HII) phase, the intercylinder spacings (using x-ray diffraction) and orientational order of the acyl chains (using 2H nuclear magnetic resonance). The presence of 20 wt% dodecane leads to the formation of a HII phase for the composition range from 0 to 39 mol% of POPC in POPE, as ascertained by x-ray diffraction and 2H nuclear magnetic resonance. The addition of the alkane induces a small decrease in chain order, consistent with less stretched chains. An increase in temperature or in POPE proportion leads to a reduction in the intercylinder spacing, primarily due to a decrease in the water core radius. A temperature increase also leads to a reduction in the orientational order of the lipid acyl chains, whereas the POPE proportion has little effect on chain order. A correlation is proposed to relate the radius of curvature of the cylinders in the inverted hexagonal phase to the chain order of the lipids adopting the HII phase. A simple geometrical model is proposed, taking into account the area occupied by the polar headgroup at the interface and the orientational order of the acyl chains reflecting the contribution of the apolar core. From these parameters, intercylinder spacings are calculated that agree well with the values determined experimentally by x-ray diffraction, for the variations of both temperature and POPE:POPC proportion. This model suggests that temperature increases the curvature of lipid layers, mainly by increasing the area subtended by the hydrophobic core through chain conformation disorder, whereas POPC content affects primarily the headgroup interface contribution. The frustration of lipid layer curvature is also shown to be reflected in the acyl chain order measured in the L alpha phase, in the absence of dodecane; for a given temperature, increased order is observed when the curling tendencies of the lipid plane are more pronounced.  相似文献   

4.
The reduction in spectral splitting, or motional narrowing, of the deuterium spectra of D2O/phos-pholipid mixtures near the main chain melting phase transition was studied for palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE) and equimolar mixtures of the two at 10% hydration. For POPC the splitting was about 1700 Hz in both the fluid and gel phases, dropping to zero near the phase transition (as reported previously). For POPE the splitting remained approximately constant above the phase transition. Below the phase transition the spectrum showed a single broad line whose linewidth varied between 100 Hz and 800 Hz. This was interpreted as being due to small domains of water within a weakly hydrated crystal. POPC:POPE (1:1) samples exhibited motional narrowing behaviour similar to that for POPC except that the splitting above the phase transition was approximately twice that below the transition. The relatively broad temperature range (20 K) of the transition is explained using a simple physical model involving lipid fluctuations near the phase transition.Abbreviations NMR Nuclear Magnetic Resonance - PC phosphatidylcholine - PE phosphatidylethanolamine - POPC Palmitoyloleoylphosphatidylcholine - POPE Palmitoyloleoylphosphatidylethanolamine - HII Inverse hexagonal phase  相似文献   

5.
Pardaxin is a membrane-lysing peptide originally isolated from the fish Pardachirus marmoratus. The effect of the carboxy-amide of pardaxin (P1a) on bilayers of varying composition was studied using (15)N and (31)P solid-state NMR of mechanically aligned samples and differential scanning calorimetry (DSC). (15)N NMR spectroscopy of [(15)N-Leu(19)]P1a found that the orientation of the peptide's C-terminal helix depends on membrane composition. It is located on the surface of lipid bilayers composed of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and is inserted in lipid bilayers composed of 1,2-dimyristoyl-phosphatidylcholine (DMPC). The former suggests a carpet mechanism for bilayer disruption whereas the latter is consistent with a barrel-stave mechanism. The (31)P chemical shift NMR spectra showed that the peptide significantly disrupts lipid bilayers composed solely of zwitterionic lipids, particularly bilayers composed of POPC, in agreement with a carpet mechanism. P1a caused the formation of an isotropic phase in 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) lipid bilayers. This, combined with DSC data that found P1a reduced the fluid lamellar-to-inverted hexagonal phase transition temperature at very low concentrations (1:50,000), is interpreted as the formation of a cubic phase and not micellization of the membrane. Experiments exploring the effect of P1a on lipid bilayers composed of 4:1 POPC:cholesterol, 4:1 POPE:cholesterol, 3:1 POPC:1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), and 3:1 POPE:POPG were also conducted, and the presence of anionic lipids or cholesterol was found to reduce the peptide's ability to disrupt bilayers. Considered together, these data demonstrate that the mechanism of P1a is dependent on membrane composition.  相似文献   

6.
In this study we examined the properties of supported planar bilayers (SPBs) formed from phospholipid components that comprise the mitochondrial inner membrane. We used 1-palmitoyl-2-oleoyl-sn-glycero- 3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and cardiolipin (CL). Liposomes of binary POPE:POPC (1:1, mol:mol) and ternary (POPE:POPC:CL (0.5:0.3:0.2, mol:mol:mol) composition were used in the formation of SPBs on mica. The characterization of the SPBs was carried out below (4 degrees C) and above (24 and 37 degrees C) the phase transition temperature (Tm) of the mixtures in solution. We observed: (i) that the thickness of the bilayers, calculated from a cross-sectional analysis, decreased as the visualization temperature increased; (ii) the existence of laterally segregated domains that respond to temperature in SPBs of POPE:POPC:CL; (iii) a decrease in height and an increase in roughness (Ra) of SPBs after cytochrome c (cyt c) injection at room temperature. To obtain further insight into the nature of the interaction between cyt c and the bilayers, the competition between 8-anilino-1-naphthalene sulfonate (ANS) and the protein for the same binding sites in liposomes was monitored by fluorescence. The results confirm the existence of preferential interaction of cyt c with CL containing liposomes. Taking these results and those of previous papers published by the group, we discuss the preferential adsorption of cyt c in CL domains. This provides support for the relevance of these phospholipids as a proton trap in the oxidative phosphorylation process that occurs in the energy transducing membranes.  相似文献   

7.
髓鞘碱性蛋白(myelin basic protein,MBP)是中枢神经系统(central nervous system,CNS)髓鞘成熟期的主要蛋白质之一.研究资料表明,MBP与变态反应性脑脊髓炎(allergic encephalomyelitis,EAE)、多发性硬化等多种神经疾病有关,是反映中枢神经系统有无...  相似文献   

8.
The binding of calcium to headgroup deuterated 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) was investigated by using deuterium magnetic resonance in pure POPS membranes and in mixed 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS 5:1 (m:m) bilayers. Addition of CaCl2 to pure POPS bilayers led to two component spectra attributed, respectively, to liquid-crystallin POPS (less than 15 kHz) and POPS molecules in the calcium-induced dehydrated phase (cochleate) (approximately 120 kHz). The liquid-crystalline component has nearly disappeared at a Ca2+ to POPS ratio of 0.5, indicating that, under such conditions, most of the POPS molecules are in the precipitated cochleate phase. After dilution of the POPS molecules in zwitterionic POPC membranes (POPC/POPS 5:1 m:m), single component spectra characteristic of POPS in the liquid-crystalline state were observed in the presence of Molar concentrations of calcium ions (Ca2+ to POPS ratio greater than 50), showing that the amount of dehydrated cochleate PS-Ca2+ phase, if any, was low (less than 5%) under such conditions. Deuterium NMR data obtained in the 15-50 degrees C temperature range with the mixed PC/PS membranes, either in the absence or the presence of Ca2+ ions, indicate that the serine headgroup undergoes a temperature-induced conformational change, independent of the presence of Ca2+. This is discussed in relation to other headgroup perturbations such as that observed upon change of the membrane surface charge density.  相似文献   

9.
Langmuir-Blodgett (LB) films of two heteroacid phospholipids of biological interest 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), as well as a mixed monolayer with chi(POPC)=0.4, were transferred onto mica in order to investigate by a combination of atomic force microscopy (AFM) and force spectroscopy (FS) their height, and particularly, their nanomechanical properties. AFM images of such monolayers extracted at 30 mN m(-1) revealed a smooth and defect-free topography except for the POPE monolayer. Since scratching such soft monolayers in contact mode was proved unsuccessful, their molecular height was measured by means of the width of the jump present in the respective force-extension curves. While for pure POPC a small jump occurs near zero force, for the mixed monolayer with chi(POPC)=0.4 the jump occurs at approximately 800 pN. Widths of approximately 2 nm could be established for POPC and chi(POPC)=0.4, but not for POPE monolayer at this extracting pressure. Such different mechanical stability allowed us to directly measure the threshold area/lipid range value needed to induce mechanical stability to the monolayers. AFM imaging and FS were next applied to get further structural and mechanical insight into the POPE phase transition (LC-LC') occurring at pressures >36.5 mN m(-1). This phase transition was intimately related to a sudden decrease in the area/molecule value, resulting in a jump in the force curve occurring at high force ( approximately 1.72 nN). FS reveals to be the unique experimental technique able to unveil structural and nanomechanical properties for such soft phospholipid monolayers. The biological implications of the nanomechanical properties of the systems under investigation are discussed considering that the annular phospholipids region of some transmembrane proteins is enriched in POPE.  相似文献   

10.
Cationic amphiphiles used for transfection can be incorporated into biological membranes. By differential scanning calorimetry (DSC), cholesterol solubilization in phospholipid membranes, in the absence and presence of cationic amphiphiles, was determined. Two different systems were studied: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)+cholesterol (1:3, POPC:Chol, molar ratio) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (POPS)+cholesterol (3:2, POPS:Chol, molar ratio), which contain cholesterol in crystallite form. For the zwitterionic lipid POPC, cationic amphiphiles were tested, up to 7 mol%, while for anionic POPS bilayers, which possibly incorporate more positive amphiphiles, the fractions used were higher, up to 23 mol%. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and DOTAP in methyl sulfate salt form (DOTAPmss) were found to cause a small decrease on the enthalpy of the cholesterol transition of pure cholesterol aggregates, possibly indicating a slight increase on the cholesterol solubilization in POPC vesicles. With the anionic system POPS:Chol, the cationic amphiphiles dramatically change the cholesterol crystal thermal transition, indicating significant changes in the cholesterol aggregates. For structural studies, phospholipids spin labeled at the 5th or 16th carbon atoms were incorporated. In POPC, at the bilayer core, the cationic amphiphiles significantly increase the bilayer packing, decreasing the membrane polarity, with the cholesterol derivative 3 beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholesterol (DC-chol) displaying a stronger effect. In POPS and POPS:Chol, DC-chol was also found to considerably increase the bilayer packing. Hence, exogenous cationic amphiphiles used to deliver nucleic acids to cells can change the bilayer packing of biological membranes and alter the structure of cholesterol crystals, which are believed to be the precursors to atherosclerotic lesions.  相似文献   

11.
The mixing properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were examined in liquid-crystalline phase using fluorescent probes incorporated into lipid bilayers. The excimer to monomer (E/M) fluorescence ratio of 1-hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-phosphocholine (PPC) versus PPC concentration was higher for binary mixtures containing phosphatidylcholine (PC)/phosphatidylethanolamine (PE) (1:1) compared to PC matrix. When POPC was gradually replaced with POPE, the E/M ratio also increased suggesting the enhanced lateral mobility or the lateral enrichment of PPC into domains or both. Evidences for the PE-induced domain formation were further provided by resonance energy transfer between 2-(4, 4-difluoro-5-methyl-4-boro-3a, 4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero- 3-phospho choline and PPC, which was enhanced as a function of PE concentration, and by the polarization of 1,6-diphenyl-1,3, 5-hexatriene. In addition, PE reduced free volume and polarity of lipid bilayers as measured by the emission fluorescence of 1,2-bis PPC and 6-lauroyl-2-dimethylaminonaphthalene. When POPE analogs with a methylated head group instead of normal POPE were used, the diminished effect on the domain formation was shown in the order N-methyl PE > N,N-dimethyl PE. The results suggest that the mixing properties of POPE and POPC are not random but that lipid domains of phospholipids are formed.  相似文献   

12.
Abstract

The structural stability and transport properties of the cyclic peptide nanotube (CPN) 8?×?[Cys–Gly–Met–Gly]2 in different phospholipid bilayers such as POPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid), POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) and POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine) with water have been investigated using molecular dynamics (MD) simulation. The hydrogen bonds and non-bonded interaction energies were calculated to study the stability in different bilayers. One µs MD simulation in POPA lipid membrane reveals the stability of the cyclic peptide nanotube, and the simulations at various temperatures manifest the higher stability of 8?×?[Cys–Gly–Met–Gly]2. We demonstrated that the presence of sulphur-containing amino acids in CPN enhances the stability through disulphide bonds between the adjacent rings. Further, the water permeation coefficient of the CPN is calculated and compared with human aquaporin-2 (AQP2) channel protein. It is found that the coefficients are highly comparable to the AQP2 channel though the mechanism of water transport is not similar to AQP 2; the flow of water in the CPN is taking place as a two-line 1–2–1–2 file fashion. In addition to that, the transport behavior of Na+ and K+ ions, single water molecule, urea and anti-cancer drug fluorouracil were investigated using pulling simulation and potential of mean force calculation. The above transport behavior shows that Na+ is trapped in CPN for a longer time than other molecules. Also, the interactions of the ions and molecules in Cα and mid-Cα plane were studied to understand the transport behavior of the CPN. Abbreviations AQP2 Aquaporin-2

CPN Cyclic peptide nanotube

MD Molecular dynamics

POPA 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid

POPE 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

POPG 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol

POPS 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine

Communicated by Ramaswamy H. Sarma  相似文献   

13.
Ahn T  Oh DB  Lee BC  Yun CH 《Biochemistry》2000,39(33):10147-10153
The effect of phosphatidylethanolamine (PE) on the binding of apocytochrome c to model membranes was examined. When 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) of the standard vesicles composed of 80% of this lipid and 20% of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) was gradually replaced with upward of 50% of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), the binding increased appreciably. Ca(2+), causing the phase separation of PS, also brought about increased binding of apocytochrome c in the PC/PS system, underlining the importance of PS properties in membranes for the protein binding. The resonance energy transfer between Trp-59 in apocytochrome c and pyrene-PS incorporated into bilayers showed that the replacement of PC with PE increased the extent of apocytochrome c penetration into membranes by a PE concentration-dependent manner. However, in the absence of PS, PE had no apparent effect on these functions of apocytochrome c, suggesting that PE-induced change(s) of acidic membrane properties is important to the association of apocytochrome c with vesicles. From the observations that the excimer to monomer fluorescence ratio of pyrene-PS increased and the fluorescence of NBD-PS was quenched with increasing concentration of PE, it was deduced that PE caused PS-enriched domains in PC/PE/PS membranes. The colocalization of pyrene-PS with BODIPY-PS by PE further supported the possibility. We suggest that PE-induced formation of PS-enriched domains acts as binding sites for apocytochrome c in membranes.  相似文献   

14.
Bovine seminal plasma (BSP) contains a family of phospholipid-binding proteins. The affinity of the protein BSP-A1/-A2 for lipid membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and POPC containing 30% (mol/mol) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) or cholesterol, has been investigated by the isothermal titration calorimetry (ITC). This study confirms the association of these proteins to lipid bilayers, and provides a direct characterization of this exothermic process, at 37 degrees C. The measurements indicate that the protein affinity for lipid bilayers is modulated by the lipid composition, the lipid/protein ratio, and the temperature. The saturation lipid/protein ratio was increased in the presence of cholesterol and, to a lesser extent, of phosphatidylethanolamine, suggesting that it is modulated by the lipid acyl chain order. For all the investigated systems, the binding of BSP-A1/-A2 could not be modeled using a simple partitioning of the proteins between the aqueous and lipid phases. The existence of "binding sites", and lipid phase separations is discussed. The decrease of temperature, from 37 to 10 degrees C, converts the exothermic association of the proteins to the POPC bilayers to an endothermic process. A complementary 1-D and 2-D infrared spectroscopy study excludes the thermal denaturation of BSP-A1/-A2 as a contributor in the temperature dependence of the protein affinity for lipid bilayers. The reported findings suggest that changes in the affinity of BSP-A1/-A2 for lipid bilayers could be involved in modulating the association of these proteins to sperm membranes as a function of space and time; this would consequently modulate the extent of lipid extraction, including cholesterol, at a given place and given time.  相似文献   

15.
Yano Y  Yamamoto A  Ogura M  Matsuzaki K 《Biochemistry》2011,50(32):6806-6814
Thermodynamic parameters for the insertion and self-association of transmembrane helices are important for understanding the folding of helical membrane proteins. The lipid composition of bilayers would significantly affect these fundamental processes, although how is not well understood. Experimental systems using model transmembrane helices and lipid bilayers are useful for measuring and interpreting thermodynamic parameters (ΔG, ΔH, ΔS, and ΔC(p)) for the processes. In this study, the effect of the charge, phase, acyl chain unsaturation, and lateral pressure profile of bilayers on the membrane partitioning of the transmembrane helix (AALALAA)(3) was examined. Furthermore, the effect of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE) on the thermodynamics for insertion and self-association of the helix in host membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) was investigated in detail. Interbilayer transfer of the helix monomer from POPC to POPC/POPE (1/1) bilayers was unfavorable (ΔG = +4.5 ± 2.9 kJ mol(-1) at 35 °C) due to an increase in enthalpy (ΔH = +31.1 ± 2.1 kJ mol(-1)). On the other hand, antiparallel dimerization of the helices in POPC/POPE (1/1) bilayers was enhanced compared with that in POPC bilayers (ΔΔG = -4.9 ± 0.2 kJ mol(-1) at 35 °C) due to a decrease in enthalpy (ΔΔH = -33.2 ± 1.5 kJ mol(-1)). A greater thickness of POPC/POPE bilayers only partially explained the observed effects. The residual effects could be related to changes in other physical properties such as higher lateral pressure in the hydrocarbon core in the PE-containing membrane. The origin of the enthalpy-driven "lipophobic" force that modulates the insertion and association of transmembrane helices will be discussed.  相似文献   

16.
Cardiolipin (CL) is a phospholipid found in the energy-transducing membranes of bacteria and mitochondria and it is thought to be involved in relevant biological processes as apoptosis. In this work, the mixing properties of CL and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocoline (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) at the air-water interface, have been examined using the thermodynamic framework analysis of compression isotherms. Accordingly, the values of the Gibbs energy of mixing, the more stable monolayers assayed were: POPC:CL (0.6:0.4, mol:mol) and POPE:CL (0.8:0.2, mol:mol). The results reflect that attractive forces are the greatest contributors to the total interaction in these compositions. Supported planar bilayers (SPBs) with such compositions were examined using atomic force microscopy (AFM) at different temperatures. With the POPC:CL mixture, rounded and featureless SPBs were obtained at 4 degrees C and 24 degrees C. In contrast, the extension of the POPE:CL mixture revealed the existence of different lipid domains at 24 degrees C and 37 degrees C. Three lipid domains coexisted which can be distinguished by measuring the step height difference between the uncovered mica and the bilayer. While the low and intermediate domains were temperature dependent, the high domain was composition dependent. When cytochrome c (cyt c) was injected into the fluid cell, the protein showed a preferential adsorption onto the high domain of the POPC:CL. These results suggest that the high domain is mainly formed by CL.  相似文献   

17.
B Perly  I C Smith  H C Jarrell 《Biochemistry》1985,24(4):1055-1063
The thermotropic behavior and molecular properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-dihydrosterculoyl-sn-glycero-3-phosphoethanolamine (PDSPE) have been investigated by 2H NMR spectroscopy using samples selectively labeled at the 5'-, 9'-, 10'-, and 16'-positions of the sn-2 chains. Comparison with the corresponding phosphocholine analogues (POPC and PDSPC), obtained as intermediate synthetic products, was used to monitor the role of the polar head group. Replacement of the choline moiety by ethanolamine increased the gel to liquid-crystal transition temperature by 10-32 degrees C and led to a significantly higher ordering of the fatty acyl chains in the liquid-crystalline bilayer state. The lateral compression effect, due to the smaller area per polar head group in PE, results in a bilayer to hexagonal phase transition at elevated temperatures. The effects on both PC and PE due to replacement of the olefinic group by a cyclopropane unit are similar. A decrease in the temperature of the gel to liquid-crystal phase transition, Tc, is observed upon introduction of a cyclopropane ring; it goes from 26 degrees C in POPE to approximately 10 degrees C in PDSPE. In addition, a very significant broadening of the transition profile is observed. These observations are consistent with the poor packing ability of mixed saturated and cyclopropane-containing chains due to the bulky substituent effect. The temperature of the bilayer-hexagonal phase transition of PE samples was decreased by 15-20 degrees C on replacement of oleoyl chains by dihydrosterculoyl chains at the sn-2 position.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Cationic amphiphiles used for transfection can be incorporated into biological membranes. By differential scanning calorimetry (DSC), cholesterol solubilization in phospholipid membranes, in the absence and presence of cationic amphiphiles, was determined. Two different systems were studied: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) + cholesterol (1:3, POPC:Chol, molar ratio) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (POPS) + cholesterol (3:2, POPS:Chol, molar ratio), which contain cholesterol in crystallite form. For the zwitterionic lipid POPC, cationic amphiphiles were tested, up to 7 mol%, while for anionic POPS bilayers, which possibly incorporate more positive amphiphiles, the fractions used were higher, up to 23 mol%. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and DOTAP in methyl sulfate salt form (DOTAPmss) were found to cause a small decrease on the enthalpy of the cholesterol transition of pure cholesterol aggregates, possibly indicating a slight increase on the cholesterol solubilization in POPC vesicles. With the anionic system POPS:Chol, the cationic amphiphiles dramatically change the cholesterol crystal thermal transition, indicating significant changes in the cholesterol aggregates. For structural studies, phospholipids spin labeled at the 5th or 16th carbon atoms were incorporated. In POPC, at the bilayer core, the cationic amphiphiles significantly increase the bilayer packing, decreasing the membrane polarity, with the cholesterol derivative 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-chol) displaying a stronger effect. In POPS and POPS:Chol, DC-chol was also found to considerably increase the bilayer packing. Hence, exogenous cationic amphiphiles used to deliver nucleic acids to cells can change the bilayer packing of biological membranes and alter the structure of cholesterol crystals, which are believed to be the precursors to atherosclerotic lesions.  相似文献   

19.
Integral membrane proteins are characterized by having a preference for aromatic residues, e.g., tryptophan (W), at the interface between the lipid bilayer core and the aqueous phase. The reason for this is not clear, but it seems that the preference is related to a complex interplay between steric and electrostatic forces. The flat rigid paddle-like structure of tryptophan, associated with a quadrupolar moment (aromaticity) arising from the pi-electron cloud of the indole, interacts primarily with moieties in the lipid headgroup region hardly penetrating into the bilayer core. We have studied the interaction between the nitrogen moiety of lipid molecule headgroups and the pi-electron distribution of gramicidin (gA) tryptophan residues (W9, W11, W13, and W15) using molecular dynamics (MD) simulations of gA embedded in two hydrated lipid bilayers composed of 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE) and 1-palmitoyl-2-oleoylphosphatidyl-choline (POPC), respectively. We use a force field model for tryptophan in which polarizability is only implicit, but we believe that classical molecular dynamics force fields are sufficient to capture the most prominent features of the cation-pi interaction. Our criteria for cation-pi interactions are based on distance and angular requirements, and the results from our model suggest that cation-pi interactions are relevant for W(PE)1), W(PE)13, W(PE)15, and, to some extent, W(PC)11 and W(PC)13. In our model, W9 does not seem to engage in cation-pi interactions with lipids, neither in POPE nor POPC. The criteria for the cation-pi effect are satisfied more often in POPE than in POPC, whereas the H-bonding ability between the indole donor and the carbonyl acceptor is similar in POPE and POPC. This suggests an increased affinity for lipids with ethanolamine headgroups to transmembrane proteins enriched in interfacial tryptophans.  相似文献   

20.
The interaction of Saposin C (Sap C) with negatively charged phospholipids such as phosphatidylserine (PS) is essential for its biological function. In this study, Sap C (initially protonated in a weak acid) was inserted into multilamellar vesicles (MLVs) consisting of either 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-L-serine] (negatively charged, POPS) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (neutrally charged, POPC). The MLVs were then investigated using solid-state NMR spectroscopy under neutral pH (7.0) conditions. The (2)H and (31)P solid-state NMR spectroscopic data of Sap C-POPS and Sap C-POPC MLVs (prepared under the same conditions) were compared using the (2)H order parameter profiles of the POPC-d(31) or POPS-d(31) acyl chains as well as the (31)P chemical shift anisotropy width and (31)P T(1) relaxation times of the phospholipids headgroups. All those solid-state NMR spectroscopic approaches indicate that protonated Sap C disturbs the POPS bilayers and not the POPC lipid bilayers. These observations suggest for the first time that protonated Sap C inserts into PS bilayers and forms a stable complex with the lipids even after resuspension under neutral buffer conditions. Additionally, (31)P solid-state NMR spectroscopic studies of mechanically oriented phospholipids on glass plates were conducted and perturbation effect of Sap C on both POPS and POPC bilayers was compared. Unlike POPC bilayers, the data indicates that protonated Sap C (initially protonated in a weak acid) was unable to produce well-oriented POPS bilayers on glass plates at neutral pH. Conversely, unprotonated Sap C (initially dissolved in a neutral buffer) did not interact significantly with POPS phospholipids allowing them to produce well-oriented bilayers at neutral pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号