共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gregor Wernet Christopher Mutel Stefanie Hellweg Konrad Hungerbühler 《Journal of Industrial Ecology》2011,15(1):96-107
In many cases, policy makers and laymen perceive harmful emissions from chemical plants as the most important source of environmental impacts in chemical production. As a result, regulations and environmental efforts have tended to focus on this area. Concerns about energy use and greenhouse gas emissions, however, are increasing in all industrial sectors. Using a life cycle assessment (LCA) approach, we analyzed the full environmental impacts of producing 99 chemical products in Western Europe from cradle to factory gate. We applied several life cycle impact assessment (LCIA) methods to cover various impact areas. Our analysis shows that for both organic and inorganic chemical production in industrial countries, energy‐related impacts often represent more than half and sometimes up to 80% of the total impacts, according to a range of LCIA methods. Resource use for material feedstock is also important, whereas direct emissions from chemical plants may make up only 5% to 10% of the total environmental impacts. Additionally, the energy‐related impacts of organic chemical production increase with the complexity of the chemicals. The results of this study offer important information for policy makers and sustainability experts in the chemical industry striving to reduce environmental impacts. We identify more sustainable energy production and use as an important option for improvements in the environmental profile of chemical production in industrial countries, especially for the production of advanced organic and fine chemicals. 相似文献
3.
Tanizawa K 《Journal of biochemistry》2011,149(4):357-359
Hydrogen sulfide (H(2)S) has been established as the third gaseous signaling molecule following nitric oxide and carbon monoxide and participates in a variety of cellular functions such as modulation of neuronal transmission, endothelium-dependent vasorelaxation, stimulation of angiogenesis and regulation of insulin release. Although cystathionine β-synthase and cystathionine γ-lyase have been regarded as the main producers of H(2)S in many tissues including brain, liver and kidney, Kimura and his colleagues have recently communicated that 3-mercaptopyruvate sulphurtransferase coupled with cysteine (aspartate) aminotransferase is responsible for the production of H(2)S in the vascular endothelium of the thoracic aorta [Shibuya et al. (2009) J. Biochem. 146, 623-626]. This finding provides a new insight into the production of the physiologically important signaling molecule. 相似文献
4.
Ida G. Anemaet Martijn Bekker Klaas J. Hellingwerf 《Marine biotechnology (New York, N.Y.)》2010,12(6):619-629
High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps—after acid hydrolysis—as a complex, animal-free serum for growth of mammalian cells in vitro. 相似文献
5.
Mark Dörr Theodor Alpermann Wolfgang Weigand 《Origins of life and evolution of the biosphere》2007,37(4-5):329-333
The theory of chemoautotrophy, as developed by Wächtershäuser, has been subject to experimental studies, which show a possible carbon fixation pathway of several consecutive steps from simple CO2 to amino acids, using the redox system of iron sulphide and hydrogen sulphide. Main findings were a mimicking of the acetyl-CoA enzyme reaction using the mixed sulphide (Fe,Ni)S and the reduction of dinitrogen to ammonia. Present studies aim at a more detailed investigation of the mechanism of the redox system FeS/H2S and its properties. For these studies a method to produce and immobilise FeS nanoparticles has been developed. 相似文献
6.
Pramod Kumar Yadav Kazuhiro Yamada Taurai Chiku Markos Koutmos Ruma Banerjee 《The Journal of biological chemistry》2013,288(27):20002-20013
Mercaptopyruvate sulfurtransferase (MST) is a source of endogenous H2S, a gaseous signaling molecule implicated in a wide range of physiological processes. The contribution of MST versus the other two H2S generators, cystathionine β-synthase and γ-cystathionase, has been difficult to evaluate because many studies on MST have been conducted at high pH and have used varied reaction conditions. In this study, we have expressed, purified, and crystallized human MST in the presence of the substrate 3-mercaptopyruvate (3-MP). The kinetics of H2S production by MST from 3-MP was studied at pH 7.4 in the presence of various physiological persulfide acceptors: cysteine, dihydrolipoic acid, glutathione, homocysteine, and thioredoxin, and in the presence of cyanide. The crystal structure of MST reveals a mixture of the product complex containing pyruvate and an active site cysteine persulfide (Cys248-SSH) and a nonproductive intermediate in which 3-MP is covalently linked via a disulfide bond to an active site cysteine. The crystal structure analysis allows us to propose a detailed mechanism for MST in which an Asp-His-Ser catalytic triad is positioned to activate the nucleophilic cysteine residue and participate in general acid-base chemistry, whereas our kinetic analysis indicates that thioredoxin is likely to be the major physiological persulfide acceptor for MST. 相似文献
7.
Cyclic and Non-cyclic Photophosphorylation as Energy Sources for Active K Influx in Hydrodictyon africanum 总被引:5,自引:0,他引:5
Under anaerobic conditions in the light, active K influx inHydrodictyon africanum is supported by cyclic photophosphorylation.The use of selective inhibitors shows that, in the presenceof CO2, a considerable portion of the ATP used by the K pumpis supplied by noncyclic photophosphorylation. The rest of theATP in these conditions comes from cyclic photophosphorylation.This is true under light-limiting as well as light-saturatedconditions. If non-cyclic photophosphorylation is inhibited (by removalof carbon dioxide, by the addition of cyanide which interfereswith the carboxylation reaction, or by inhibition of photosystemtwo with DCMU or supplying only far-red light), the K influxat low light intensities is stimulated, and its characteristicsbecome those of a process powered by cyclic photophosphorylationalone. These results are interpreted in terms of a competitionfor ATP between K influx and CO2 fixation. Implicit in thisexplanation is a requirement for a switch of excitation energyabsorbed by photosystem one from cyclic photophosphorylationto non-cyclic photophosphorylation whenever conditions (presenceof CO2and photosystem two activity) allow CO2 fixation to occur. Further evidence for such a switch of excitation energy absorbedby photosystem one was obtained in experiments in which redand far-red light were applied separately and together. It wasfound that CO2 fixation showed the Emerson enhancement effect,while K influx (in the presence of CO2) shows a de-enhancement.This suggests that far-red light alone powers cyclic photophosphorylation;if red light is also present, some of the far-red quanta arediverted to non-cyclic photophosphorylation. The nature of the interaction between cyclic and non-cyclicphotophosphorylation is discussed in relation to these and otherpublished results. 相似文献
8.
9.
10.
Coolen MJ Talbot HM Abbas BA Ward C Schouten S Volkman JK Damsté JS 《Environmental microbiology》2008,10(7):1783-1803
Bacteriohopanoids are widespread lipid biomarkers in the sedimentary record. Many aerobic and anaerobic bacteria are potential sources of these lipids which sometimes complicates the use of these biomarkers as proxies for ecological and environmental changes. Therefore, we applied preserved 16S ribosomal RNA genes to identify likely Holocene biological sources of bacteriohopanepolyols (BHPs) in the sulfidic sediments of the permanently stratified postglacial Ace Lake, Antarctica. A suite of intact BHPs were identified, which revealed a variety of structural forms whose composition differed through the sediment core reflecting changes in bacterial populations induced by large changes in lake salinity. Stable isotopic compositions of the hopanols formed from periodic acid-cleaved BHPs, showed that some were substantially depleted in 13 C, indicative of their methanotrophic origin. Using sensitive molecular tools, we found that Type I and II methanotrophic bacteria (respectively Methylomonas and Methylocystis ) were unique to the oldest lacustrine sediments (> 9400 years BP), but quantification of fossil DNA revealed that the Type I methanotrophs, including methanotrophs related to methanotrophic gill symbionts of deep-sea cold-seep mussels, were the main precursors of the 35-amino BHPs (i.e. aminopentol, -tetrol and -triols). After isolation of the lake ∼3000 years ago, one Type I methanotroph of the 'methanotrophic gill symbionts cluster' remained the most obvious source of aminotetrol and -triol. We, furthermore, identified a Synechococcus phylotype related to pelagic freshwater strains in the oldest lacustrine sediments as a putative source of 2-methylbacteriohopanetetrol (2-Me BHT). This combined application of advanced geochemical and paleogenomical tools further refined our knowledge about Holocene biogeochemical processes in Ace Lake. 相似文献
11.
Anisaldehyde and Veratraldehyde Acting as Redox Cycling Agents for H2O2 Production by Pleurotus eryngii
下载免费PDF全文

The existence of a redox cycle leading to the production of hydrogen peroxide (H2O2) in the white rot fungus Pleurotus eryngii has been confirmed by incubations of 10-day-old mycelium with veratryl (3,4-dimethoxybenzyl) and anisyl (4-methoxybenzyl) compounds (alcohols, aldehydes, and acids). Veratraldehyde and anisaldehyde were reduced by aryl-alcohol dehydrogenase to their corresponding alcohols, which were oxidized by aryl-alcohol oxidase, producing H2O2. Veratric and anisic acids were incorporated into the cycle after their reduction, which was catalyzed by aryl-aldehyde dehydrogenase. With the use of different initial concentrations of either veratryl alcohol, veratraldehyde, or veratric acid (0.5 to 4.0 mM), around 94% of veratraldehyde and 3% of veratryl alcohol (compared with initial concentrations) and trace amounts of veratric acid were found when equilibrium between reductive and oxidative activities had been reached, regardless of the initial compound used. At concentrations higher than 1 mM, veratric acid was not transformed, and at 1.0 mM, it produced a negative effect on the activities of aryl-alcohol oxidase and both dehydrogenases. H2O2 levels were proportional to the initial concentrations of veratryl compounds (around 0.5%), and an equilibrium between aryl-alcohol oxidase and an unknown H2O2-reducing system kept these levels steady. On the other hand, the concomitant production of the three above-mentioned enzymes during the active growth phase of the fungus was demonstrated. Finally, the possibility that anisaldehyde is the metabolite produced by P. eryngii for the maintenance of this redox cycle is discussed. 相似文献
12.
M. Kozubal R. E. Macur S. Korf W. P. Taylor G. G. Ackerman A. Nagy W. P. Inskeep 《Applied microbiology》2008,74(4):942-949
Novel thermophilic crenarchaea have been observed in Fe(III) oxide microbial mats of Yellowstone National Park (YNP); however, no definitive work has identified specific microorganisms responsible for the oxidation of Fe(II). The objectives of the current study were to isolate and characterize an Fe(II)-oxidizing member of the Sulfolobales observed in previous 16S rRNA gene surveys and to determine the abundance and distribution of close relatives of this organism in acidic geothermal springs containing high concentrations of dissolved Fe(II). Here we report the isolation and characterization of the novel, Fe(II)-oxidizing, thermophilic, acidophilic organism Metallosphaera sp. strain MK1 obtained from a well-characterized acid-sulfate-chloride geothermal spring in Norris Geyser Basin, YNP. Full-length 16S rRNA gene sequence analysis revealed that strain MK1 exhibits only 94.9 to 96.1% sequence similarity to other known Metallosphaera spp. and less than 89.1% similarity to known Sulfolobus spp. Strain MK1 is a facultative chemolithoautotroph with an optimum pH range of 2.0 to 3.0 and an optimum temperature range of 65 to 75°C. Strain MK1 grows optimally on pyrite or Fe(II) sorbed onto ferrihydrite, exhibiting doubling times between 10 and 11 h under aerobic conditions (65°C). The distribution and relative abundance of MK1-like 16S rRNA gene sequences in 14 acidic geothermal springs containing Fe(III) oxide microbial mats were evaluated. Highly related MK1-like 16S rRNA gene sequences (>99% sequence similarity) were consistently observed in Fe(III) oxide mats at temperatures ranging from 55 to 80°C. Quantitative PCR using Metallosphaera-specific primers confirmed that organisms highly similar to strain MK1 comprised up to 40% of the total archaeal community at selected sites. The broad distribution of highly related MK1-like 16S rRNA gene sequences in acidic Fe(III) oxide microbial mats is consistent with the observed characteristics and growth optima of Metallosphaera-like strain MK1 and emphasizes the importance of this newly described taxon in Fe(II) chemolithotrophy in acidic high-temperature environments of YNP. 相似文献
13.
Sediment and water samples collected from one acidic and three alkaline high temperature hot springs at the Tengchong terrestrial geothermal field, Southwest China, were examined using mineralogical, geochemical, and molecular biological techniques. The mineralogical and geochemical analyses suggested that these hot springs contained relatively high concentrations of S, Fe and N chemical species. Specifically, the acidic water was rich in Fe2+, SO42? and NH4+, while the alkaline waters were high in NO3?, H2S and S2O3?. Analyses of 16S rRNA gene sequences showed their bacterial communities were dominated by phyla Aquificae, Cyanobacteria, Deinococci-Thermus, Firmicutes, Proteobacteria, and Thermodesulfobacteria, while the archaeal clone libraries were dominated by orders Desulfurococcales, Sulfolobales, and Thermoproteales. Potential S-, N- and Fe-metabolizing prokaryotes were present at a relatively high proportion, but with large differences in the diversity and metabolic functions of each sample. These findings provide implications for uncovering microbial functions in elemental biogeochemical cycles within the Tengchong geothermal environments: i). the distinct differences in abundance and diversity of microbial communities in geothermal sediments were related to different in situ physicochemical conditions; ii). the S-, N- and Fe-related prokaryotes would take advantage of the strong chemical disequilibria in the hot springs; and iii). in return, their metabolic activities could promote the transformation of the S, Fe and N chemical species, thereby forming the basis of biogeochemical cycles in the terrestrial geothermal environments. 相似文献
14.
Jae Kyu Lim Seung Seob Bae Tae Wan Kim Jung-Hyun Lee Hyun Sook Lee Sung Gyun Kang 《Applied and environmental microbiology》2012,78(20):7393-7397
Formate-dependent proton reduction to H2 (HCOO− + H2O → HCO3− + H2) has been reported for hyperthermophilic Thermococcus strains. In this study, a hyperthermophilic archaeon, Thermococcus onnurineus strain NA1, yielded H2 accumulation to a partial pressure of 1 × 105 to 7 × 105 Pa until the values of Gibbs free energy change (ΔG) reached near thermodynamic equilibrium (−1 to −3 kJ mol−1). The bioenergetic requirement for the metabolism to conserve energy was demonstrated by ΔG values as small as −5 kJ mol−1, which are less than the biological minimum energy quantum, −20 kJ mol−1, as calculated by Schink (B. Schink, Microbiol. Mol. Biol. Rev. 61:262-280, 1997). Considering formate as a possible H2 storage material, the H2 production potential of the strain was assessed. The volumetric H2 production rate increased linearly with increasing cell density, leading to 2,820 mmol liter−1 h−1 at an optical density at 600 nm (OD600) of 18.6, and resulted in the high specific H2 production rates of 404 ± 6 mmol g−1 h−1. The H2 productivity indicates the great potential of T. onnurineus strain NA1 for practical application in comparison with H2-producing microbes. Our result demonstrates that T. onnurineus strain NA1 has a highly efficient metabolic system to thrive on formate in hydrothermal systems. 相似文献
15.
Distinguishing between Nitrification and Denitrification as Sources of Gaseous Nitrogen Production in Soil 总被引:10,自引:2,他引:10
下载免费PDF全文

The source of N2O produced in soil is often uncertain because denitrification and nitrification can occur simultaneously in the same soil aggregate. A technique which exploits the differential sensitivity of these processes to C2H2 inhibition is proposed for distinguishing among gaseous N losses from soils. Denitrification N2O was estimated from 24-h laboratory incubations in which nitrification was inhibited by 10-Pa C2H2. Nitrification N2O was estimated from the difference between N2O production under no C2H2 and that determined for denitrification. Denitrification N2 was estimated from the difference between N2O production under 10-kPa C2H2 and that under 10 Pa. Laboratory estimates of N2O production were significantly correlated with in situ N2O diffusion measurements made during a 10-month period in two forested watersheds. Nitrous oxide production from nitrification was most important on well-drained sites of a disturbed watershed where ambient NO3− was high. In contrast, denitrification N2O was most important on poorly drained sites near the stream of the same watershed. Distinction between N2O production from nitrification and denitrification was corroborated by correlations between denitrification N2O and water-filled pore space and between nitrification N2O and ambient NO3−. This technique permits qualitative study of environmental parameters that regulate gaseous N losses via denitrification and nitrification. 相似文献
16.
Isolation, Characterization, and Ecology of Sulfur-Respiring Crenarchaea Inhabiting Acid-Sulfate-Chloride-Containing Geothermal Springs in Yellowstone National Park
下载免费PDF全文

Eric S. Boyd Robert A. Jackson Gem Encarnacion James A. Zahn Trevor Beard William D. Leavitt Yundan Pi Chuanlun L. Zhang Ann Pearson Gill G. Geesey 《Applied microbiology》2007,73(20):6669-6677
Elemental sulfur (S0) is associated with many geochemically diverse hot springs, yet little is known about the phylogeny, physiology, and ecology of the organisms involved in its cycling. Here we report the isolation, characterization, and ecology of two novel, S0-reducing Crenarchaea from an acid geothermal spring referred to as Dragon Spring. Isolate 18U65 grows optimally at 70 to 72°C and at pH 2.5 to 3.0, while isolate 18D70 grows optimally at 81°C and pH 3.0. Both isolates are chemoorganotrophs, dependent on complex peptide-containing carbon sources, S0, and anaerobic conditions for respiration-dependent growth. Glycerol dialkyl glycerol tetraethers (GDGTs) containing four to six cyclopentyl rings were present in the lipid fraction of isolates 18U65 and 18D70. Physiological characterization suggests that the isolates are adapted to the physicochemical conditions of Dragon Spring and can utilize the natural organic matter in the spring as a carbon and energy source. Quantitative PCR analysis of 16S rRNA genes associated with the S0 flocs recovered from several acid geothermal springs using isolate-specific primers indicates that these two populations together represent 17 to 37% of the floc-associated DNA. The physiological characteristics of isolates 18U65 and 18D70 are consistent with their potential widespread distribution and putative role in the cycling of sulfur in acid geothermal springs throughout the Yellowstone National Park geothermal complex. Based on phenotypic and genetic characterization, the designations Caldisphaera draconis sp. nov. and Acidilobus sulfurireducens sp. nov. are proposed for isolates 18U65 and 18D70, respectively. 相似文献
17.
Perdigoto R Furtado AL Porto A Rodrigues TB Geraldes CF Jones JG 《Biochimica et biophysica acta》2003,1637(2):156-163
Plasma glucose 2H enrichment was quantified by 2H NMR in patients with cirrhosis (n=6) and healthy subjects (n=5) fasted for 16 h and given 2H(2)O to approximately 0.5% body water. The percent contribution of glycogenolysis and gluconeogenesis to glucose production (GP) was estimated from the relative enrichments of hydrogen 5 and hydrogen 2 of plasma glucose. Fasting plasma glucose levels were normal in both groups (87+/-7 and 87+/-24 mg/dl for healthy and cirrhotic subjects, respectively). The percent contribution of glycogen to GP was smaller in cirrhotics than controls (22+/-7% versus 46+/-4%, P<0.001), while the contribution from gluconeogenesis was larger (78+/-7% versus 54+/-4%, P<0.001). In all subjects, glucose 6R and 6S hydrogens had similar enrichments, consistent with extensive exchange of 2H between body water and the hydrogens of gluconeogenic oxaloacetate (OAA). The difference in 2H-enrichment between hydrogen 5 and hydrogen 6S was significantly larger in cirrhotics, suggesting that the fractional contribution of glycerol to the glyceraldehyde-3-phosphate (G3P)-moiety of plasma glucose was higher compared to controls (19+/-6% versus 7+/-6%, P<0.01). In all subjects, hydrogens 4 and 5 of glucose had identical enrichments while hydrogen 3 enrichments were systematically lower. This reflects incomplete exchange between the hydrogen of water and that of 1-R-dihydroxyacetone phosphate (DHAP) or incomplete exchange of DHAP and G3P pools via triose phosphate isomerase. 相似文献
18.
Angela Pitcher Stefan Schouten Jaap S. Sinninghe Damsté 《Applied and environmental microbiology》2009,75(13):4443-4451
Crenarchaeol, a membrane-spanning glycerol dialkyl glycerol tetraether (GDGT) containing a cyclohexane moiety in addition to four cyclopentane moieties, was originally hypothesized to be synthesized exclusively by the mesophilic Crenarchaeota. Recent studies reporting the occurrence of crenarchaeol in hot springs and as a membrane constituent of the recently isolated thermophilic crenarchaeote “Candidatus Nitrosocaldus yellowstonii,” however, have raised questions regarding its taxonomic distribution and function. To determine whether crenarchaeol in hot springs is indeed synthesized by members of the Archaea in situ or is of allochthonous origin, we quantified crenarchaeol present in the form of both intact polar lipids (IPLs) and core lipids in sediments of two California hot springs and in nearby soils. IPL-derived crenarchaeol (IPL-crenarchaeol) was found in both hot springs and soils, suggesting in situ production of this GDGT over a wide temperature range (12°C to 89°C). Quantification of archaeal amoA gene abundance by quantitative PCR showed a good correspondence with IPL-crenarchaeol, suggesting that it was indeed derived from living cells and that crenarchaeol-synthesizing members of the Archaea in our samples may also be ammonia oxidizers.Numerous groups of the Archaea synthesize isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) as a major component of their core membrane lipids, which can contain up to eight cyclopentane moieties (e.g., see reference 7) (Fig. (Fig.1).1). An increase in the number of cyclopentane moieties results in denser packing of membrane lipids, allowing for the maintenance of both cellular membrane integrity at high temperatures and stable proton gradients under low-pH conditions (8). This biophysical characteristic is hypothesized to be among those traits essential for the survival and persistence of the Archaea in the “extreme” environments in which they are commonly found (42). GDGTs are synthesized by a large number of cultivated members of the Archaea (see overviews in references 20 and 34), and in nature, they are abundant in hot springs (24, 25, 34, 46), for example, where members of the Archaea are known to thrive at high temperatures and over a wide pH range (3, 21).Open in a separate windowFIG. 1.Structures of GDGTs referred to in the text. “IS,” C46 internal standard.Crenarchaeol is unique among the GDGTs in that it contains a cyclohexane moiety in addition to four cyclopentane moieties (Fig. (Fig.1).1). It was first reported in large abundances from Holocene and ancient sediments collected from various marine settings as supporting evidence for the widespread distribution of low-temperature relatives of the hyperthermophilic Archaea (31). It was later proposed that crenarchaeol was synthesized exclusively by marine group I Crenarchaeota (36), a hypothesis further supported by core lipid analysis of the mesophilic marine group I.1a crenarchaeotes “Cenarchaeum symbiosum” (38) and “Candidatus Nitrosopumilus maritimus” SCM1 (30), which showed that both of these organisms synthesize crenarchaeol at moderate temperatures. In addition to this, the apparent absence of crenarchaeol in cultures of (hyper)thermophilic members of the Archaea (see overviews in references 20 and 34) and molecular modeling (8, 37) led to the hypothesis that crenarchaeol decreases lipid density, effectively allowing archaeal membranes composed of membrane-spanning GDGTs to function at mesophilic temperatures (37). Hence, crenarchaeol synthesis was thought to be instrumental in the evolution and radiation of mesophilic Crenarchaeota from thermophilic habitats (17).Recent studies, however, have reported the occurrence of crenarchaeol in hot springs with temperatures of up to 86.5°C (24, 25, 34, 46). That work has been debated to some extent, as there exists the potential for the allochtonous input of fossilized lipid material from weathering of nearby soils where mesophilic Crenarchaeota may thrive: Schouten et al. (34) previously found large relative amounts of specific soil bacterium biomarkers in tandem with crenarchaeol in Yellowstone hot springs. In contrast, Reigstad et al. (28) reported the occurrence of crenarchaeol in the absence of soil-specific biomarkers in Icelandic hot springs. Furthermore, the recently isolated thermophilic crenarchaeote “Candidatus Nitrosocaldus yellowstonii” was shown to synthesize crenarchaeol at a growth temperature of 72°C (6).Core lipids (CLs) that occur in biological membranes generally contain polar head groups such as sugars and phosphates, which are rapidly cleaved upon cell senescence (10, 44). The loss of head groups from intact polar lipids (IPLs) leaves relatively recalcitrant CLs to accumulate in the environment over time as fossil biomarkers. Therefore, depending on the extraction and/or analytical protocols, CLs present in environmental lipid extracts may be derived from both living cells and fossil biomass, including a mixture of both CL-derived GDGTs (CL-GDGTs) and IPL-derived GDGTs (IPL-GDGTs). Most studies of the presence of crenarchaeol in hot springs reported to date have analyzed directly extracted CL-crenarchaeol or CL-crenarchaeol released by the acid hydrolysis of Bligh-Dyer IPL lipid extracts, i.e., without prior separation of CL-GDGTs from IPL-GDGTs (24, 25, 28, 34, 46). In these cases, the reported GDGT distributions represent an integrated signal of both “living” and fossilized material, rendering it impossible to distinguish what proportion (if any) of the observed crenarchaeol was derived from local living archaeal communities. Thus, the in situ production of crenarchaeol in hot springs and its importance relative to that of the in situ production of other archaeal GDGTs remain uncertain.Here we have used a recently described chromatographic method (22, 26) to separately quantify the potential contributions of both in situ-produced and fossilized crenarchaeol (as well as other archaeal GDGTs) in two Californian hot springs and their surrounding soils. In addition, we have quantified the amounts of archaeal amoA and archaeal 16S rRNA gene copies from one site to make quantitative comparisons between gene abundance and IPL-GDGT concentrations. 相似文献
19.
20.
Hydrogen sulfide (H2S) has been observed in relatively high concentrations in the mammalian brain and has been shown to act as a neuromodulator. However, there is confusion in the literature regarding the actual source of H2S production. Reactions catalyzed by the cystathionine beta-synthase enzyme (CBS) are one possible source for the production of H2S. Here we show that the CBS enzyme can efficiently produce H2S via a beta-replacement reaction in which cysteine is condensed with homocysteine to form cystathionine and H2S. The production of H2S by this reaction is at least 50 times more efficient than that produced by hydrolysis of cysteine alone via beta-elimination. Kinetic studies demonstrate that the Km and Kcat for cysteine is 3-fold higher and 2-fold lower, respectively, than that for serine. Consistent with these data, in vitro reconstitution studies show that at physiologically relevant concentrations of serine, homocysteine, and cysteine, about 5% of the cystathionine formed is from cysteine. We also show that AdoMet stimulates this H2S producing reaction but that there is no evidence for stimulation by calcium and calmodulin as reported previously. In summary, these results confirm the ability of CBS to produce H2S, but show in contrast to prior reports that the major mechanism is via beta-replacement and not cysteine hydrolysis. In addition, these studies provide a biochemical explanation for the previously inexplicable homocysteine-lowering effects of N-acetylcysteine treatments in humans. 相似文献