首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies on molecular evolution using nucleotide sequence data to clarify phylogenetic relationships among humans and the African great apes, have revealed that humans are more closely related to chimpanzees than to gorillas. However, the genetic basis of human uniqueness remains unclear. This is because phylogenetic studies have merely evaluated the degree of similarity by calculating the accumulation of nucleotide substitutions that have occurred in neutral DNA regions commonly present in all the species examined. In contrast, the genome subtraction method recently developed by us has revealed dissimilarity even among the genomes of the most closely related species. Here we describe the characteristics of the DNA sequences obtained by genome subtraction between humans and chimpanzees.  相似文献   

2.
Estimate of the mutation rate per nucleotide in humans   总被引:41,自引:0,他引:41  
Nachman MW  Crowell SL 《Genetics》2000,156(1):297-304
Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.  相似文献   

3.
Examining the pattern of nucleotide substitution for the control region of mitochondrial DNA (mtDNA) in humans and chimpanzees, we developed a new mathematical method for estimating the number of transitional and transversional substitutions per site, as well as the total number of nucleotide substitutions. In this method, excess transitions, unequal nucleotide frequencies, and variation of substitution rate among different sites are all taken into account. Application of this method to human and chimpanzee data suggested that the transition/transversion ratio for the entire control region was approximately 15 and nearly the same for the two species. The 95% confidence interval of the age of the common ancestral mtDNA was estimated to be 80,000-480,000 years in humans and 0.57-2.72 Myr in common chimpanzees.   相似文献   

4.
Nonneutral Mitochondrial DNA Variation in Humans and Chimpanzees   总被引:25,自引:4,他引:21       下载免费PDF全文
We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions. We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases.  相似文献   

5.
Keightley PD 《Genetics》2012,190(2):295-304
The human mutation rate per nucleotide site per generation (μ) can be estimated from data on mutation rates at loci causing Mendelian genetic disease, by comparing putatively neutrally evolving nucleotide sequences between humans and chimpanzees and by comparing the genome sequences of relatives. Direct estimates from genome sequencing of relatives suggest that μ is about 1.1 × 10(-8), which is about twofold lower than estimates based on the human-chimp divergence. This implies that an average of ~70 new mutations arise in the human diploid genome per generation. Most of these mutations are paternal in origin, but the male:female mutation rate ratio is currently uncertain and might vary even among individuals within a population. On the basis of a method proposed by Kondrashov and Crow, the genome-wide deleterious mutation rate (U) can be estimated from the product of the number of nucleotide sites in the genome, μ, and the mean selective constraint per site. Although the presence of many weakly selected mutations in human noncoding DNA makes this approach somewhat problematic, estimates are U ≈ 2.2 for the whole diploid genome per generation and 0.35 for mutations that change an amino acid of a protein-coding gene. A genome-wide deleterious mutation rate of 2.2 seems higher than humans could tolerate if natural selection is "hard," but could be tolerated if selection acts on relative fitness differences between individuals or if there is synergistic epistasis. I argue that in the foreseeable future, an accumulation of new deleterious mutations is unlikely to lead to a detectable decline in fitness of human populations.  相似文献   

6.
To examine the nucleotide diversity at silent (synonymous + intron + untranslated) and non-silent (nonsynonymous) sites in chimpanzees and humans, genes at six nuclear loci from two chimpanzees were sequenced. The average silent diversity was 0.19%, which was significantly higher than that in humans (0.05%). This observation suggests a significantly larger effective population size and a higher extent of neutral polymorphism in chimpanzees than in humans. On the other hand, the non-silent nucleotide diversity is similar in both species, resulting in a larger fraction of neutral mutations at non-silent sites in humans than in chimpanzees. Other types of polymorphism data were collected from the literature or databases to examine whether or not they are consistent with the nuclear DNA sequence polymorphism observed here. The nucleotide diversity at both silent and non-silent sites in mitochondrial (mt) DNA genes was compatible with that of the nuclear genes. Microsatellite loci showed a similar high extent of heterozygosity in both species, perhaps due to the combined effect of a high mutation rate and a recent population expansion in humans. At protein loci, humans are more heterozygous than chimpanzees, and the estimated fraction of neutral alleles in humans (0.84) is much larger than that in chimpanzees (0.26). These data show that the neutral fraction in non-silent changes is relatively large in the human population. This difference may be due to a relaxation of the functional constraint against proteins in the human lineage. To evaluate this possibility, it will be necessary to examine nucleotide sequences in relation to the physiological or biochemical properties of proteins.  相似文献   

7.
It has become a truism that we humans are genetically about 99% identical to chimpanzees. The origins of this assertion are clear: among early studies of DNA sequences, nucleotide identity between humans and chimpanzees was found to average around 98.9%.(1) However, this figure is correct only with respect to regions of the genome that are shared between humans and chimpanzees. Often ignored are the many parts of their genomes that are not shared. Genomic rearrangements, including insertions, deletions, translocations and duplications, have long been recognized as potentially important sources of novel genomic material(2,3) and are known to account for major genomic differences between humans and chimpanzees.(4) Further, such changes have been implicated in a number of genetic disorders, such as DiGeorge, Angelman/Prader-Willi and Charcot-Marie-Tooth syndromes.(5)  相似文献   

8.
A 3.1-kb intergenic DNA fragment located between the psi beta-globin and delta-globin genes in the beta-globin gene cluster was cloned from gorilla, orangutan, rhesus monkey, and spider monkey, and the nucleotide sequence of each fragment was determined. The phylogeny of these four sequences, together with two previously published allelic sequences from humans and one from chimpanzee, was constructed, and the accumulation of mutations in the region was analyzed. The sites of base substitutions are not evenly distributed within the region: two Alu repeats have accumulated 0.21 + 0.02 substitutions/site with 0.15 + 0.008 substitutions/site in the remainder of the fragment. The occurrence of substitutions at neighboring sites is more frequent than would be expected if they were independent. The observed excesses disappear when ancestral -CG- dinucleotide sites are excluded. The phylogenetic relationships of the sequences indicate that the human sequence shares a most recent coancestor with the chimpanzee sequence. The data also show that great apes have accumulated fewer mutations in this part of the genome than has the rhesus monkey. The relative rates of accumulation of 12 kinds of nucleotide substitution in the region during primate evolution are asymmetric in the DNA strands. From these rates of accumulation, the origin of a simple stretch of sequence near the 3' end of the 3.1-kb fragment was deduced to be a sequence comprising 50% T and 50% C on one strand. The two oppositely oriented Alu sequences in the 3.1-kb region were inserted at their present positions before the divergence of the New-World monkeys from other lineages. Our analysis shows that the nucleotide sequences of the two Alu repeats in spider monkey are unexpectedly similar both to each other and to the deduced ancestral sequence of Alu repeats. The data suggest that there has been some type of recombinational event between the spider monkey Alu repeats but that it was not a simple gene conversion.   相似文献   

9.
Zhao Z  Zhang F 《Genomics》2006,87(1):68-74
A genome-wide view of sequence mutability in mice is still limited, although biologists usually assume the same scenario for mice as for humans. In this study, we examined the sequence context in the local environment of 482,528 mouse single nucleotide polymorphisms (SNPs). We found that CpG-containing short sequences, in general, had more representation in the local sequences of SNPs compared to the genome sequences. The extent of this overrepresentation was stronger in mice than in humans, which is inconsistent with previous observations of the weaker neighboring-nucleotide biases on mouse SNPs. To exclude the CpG effect, we compared the distribution patterns of short sequences among the six categories of SNPs. The results revealed an even stronger pattern in the CpG-containing group for C/G substitution compared to for A/G or C/T substitutions. We next performed the first genome-wide sequence context analysis of SNPs in the mouse CpG islands. SNPs occurring at CpG sites were 3.14-fold less prevalent than expected, suggesting the suppression of methylation-dependent deamination in the CpG islands. The extent of this suppression was less in mice than in humans. Finally, compared with humans, the observations of a greater deficit of CpG dinucleotides, a stronger overrepresentation of CpG-containing n-mers surrounding the polymorphic sites, and a higher SNP/genome ratio of CpG dinucleotides in the mouse genome support the "loss of CpG islands" model in the mouse lineage.  相似文献   

10.
We have analyzed nucleotide sequence variation in an approximately 900-base pair region of the human mitochondrial DNA molecule encompassing the heavy strand origin of replication and the D-loop. Our analysis has focused on nucleotide sequences available from seven humans. Average nucleotide diversity among the sequences is 1.7%, several-fold higher than estimates from restriction endonuclease site variation in mtDNA from these individuals and previously reported for other humans. This disparity is consistent with the rapidly evolving nature of this noncoding region. However, several instances of convergent or parallel gain and loss of restriction sites due to multiple substitutions were observed. In addition, other results suggest that restriction site (as well as pairwise sequence) comparisons may underestimate the total number of substitutions that have occurred since the divergence of two mtDNA sequences from a common ancestral sequence, even at low levels of divergence. This emphasizes the importance of recognizing the large standard errors associated with estimates of sequence variability, particularly when constructing phylogenies among closely related sequences. Analysis of the observed number and direction of substitutions revealed several significant biases, most notably a strand dependence of substitution type and a 32-fold bias favoring transitions over transversions. The results also revealed a significantly nonrandom distribution of nucleotide substitutions and sequence length variation. Significantly more multiple substitutions were observed than expected for these closely related sequences under the assumption of uniform rates of substitution. The bias for transitions has resulted in predominantly convergent or parallel changes among the observed multiple substitutions. There is no convincing evidence that recombination has contributed to the mtDNA sequence diversity we have observed.  相似文献   

11.
Accelerated rate of gene gain and loss in primates   总被引:3,自引:0,他引:3       下载免费PDF全文
Hahn MW  Demuth JP  Han SG 《Genetics》2007,177(3):1941-1949
The molecular changes responsible for the evolution of modern humans have primarily been discussed in terms of individual nucleotide substitutions in regulatory or protein coding sequences. However, rates of nucleotide substitution are slowed in primates, and thus humans and chimpanzees are highly similar at the nucleotide level. We find that a third source of molecular evolution, gene gain and loss, is accelerated in primates relative to other mammals. Using a novel method that allows estimation of rate heterogeneity among lineages, we find that the rate of gene turnover in humans is more than 2.5 times faster than in other mammals and may be due to both mutational and selective forces. By reconciling the gene trees for all of the gene families included in the analysis, we are able to independently verify the numbers of inferred duplications. We also use two methods based on the genome assembly of rhesus macaque to further verify our results. Our analyses identify several gene families that have expanded or contracted more rapidly than is expected even after accounting for an overall rate acceleration in primates, including brain-related families that have more than doubled in size in humans. Many of the families showing large expansions also show evidence for positive selection on their nucleotide sequences, suggesting that selection has been important in shaping copy-number differences among mammals. These findings may help explain why humans and chimpanzees show high similarity between orthologous nucleotides yet great morphological and behavioral differences.  相似文献   

12.
A full genome analysis of differences between the gene expression in the human and chimpanzee brains revealed that the gene for transthyretin, the carrier of thyroid hormones, is differently transcribed in the cerebella of these species. A 7-kbp DNA fragment of chimpanzee was sequenced to identify possible regulatory sequences responsible for the differences in expression. One hundred and thirteen substitutions were found in the chimpanzee sequence in comparison with the human sequence. About 40% of the substitutions were revealed within the repeating elements of the genome; their location and sizes did not differ from those in the corresponding fragments of the human genome, and the nucleotide sequences had a high degree of identity. A comparison of nucleotide sequences of the transthyretin region of human, chimpanzee, and mouse genes revealed substantial differences in the distribution of G + C content along the examined fragment in the human (chimpanzee) and mouse genes and allowed us to localize three sequence tracts with a higher degree of identity in the three species. One of these tracts is located in the promoter region of the gene, and the other two probably determine the specificity of transthyretin gene expression in the liver and brain. One of the conserved tracts of the chimpanzee genome was found to have a single and a triple nucleotide substitution. The triple substitution distinguishes chimpanzees from humans and mice, which have identical sequences of this site. It is likely that these substitutions are responsible for the differences in the expression levels of the transthyretin gene in the human and chimpanzee brains.  相似文献   

13.
A full genome analysis of differences between the gene expression in the human and chimpanzee brains revealed that the gene for transthyretin, the carrier of thyroid hormones, is differently transcribed in the cerebella of these species. A 7-kbp DNA fragment of chimpanzee was sequenced to identify possible regulatory sequences responsible for the differences in expression. One hundred and thirteen substitutions were found in the chimpanzee sequence in comparison with the human sequence. About 40% of the substitutions were revealed within the repeating elements of the genome; their location and sizes did not differ from those in the corresponding fragments of the human genome, and the nucleotide sequences had a high degree of identity. A comparison of nucleotide sequences of the transthyretin region of human, chimpanzee, and mouse genes revealed substantial differences in the distribution of G + C content along the examined fragment in the human (chimpanzee) and mouse genes and allowed us to localize three sequence tracts with a higher degree of identity in the three species. One of these tracts was located in the promoter region of the gene, and the other two probably determine the specificity of transthyretin gene expression in the liver and brain. One of the conserved tracts of the chimpanzee genome was found to have a single and a triple nucleotide substitution. The triple substitution distinguishes chimpanzees from humans and mice, which have identical sequences of this site. It is likely that these substitutions are responsible for the differences in the expression levels of the transthyretin gene in the human and chimpanzee brains.  相似文献   

14.
Nucleotide diversity in gorillas   总被引:9,自引:0,他引:9  
Yu N  Jensen-Seaman MI  Chemnick L  Ryder O  Li WH 《Genetics》2004,166(3):1375-1383
Comparison of the levels of nucleotide diversity in humans and apes may provide valuable information for inferring the demographic history of these species, the effect of social structure on genetic diversity, patterns of past migration, and signatures of past selection events. Previous DNA sequence data from both the mitochondrial and the nuclear genomes suggested a much higher level of nucleotide diversity in the African apes than in humans. Noting that the nuclear DNA data from the apes were very limited, we previously conducted a DNA polymorphism study in humans and another in chimpanzees and bonobos, using 50 DNA segments randomly chosen from the noncoding, nonrepetitive parts of the human genome. The data revealed that the nucleotide diversity (pi) in bonobos (0.077%) is actually lower than that in humans (0.087%) and that pi in chimpanzees (0.134%) is only 50% higher than that in humans. In the present study we sequenced the same 50 segments in 15 western lowland gorillas and estimated pi to be 0.158%. This is the highest value among the African apes but is only about two times higher than that in humans. Interestingly, available mtDNA sequence data also suggest a twofold higher nucleotide diversity in gorillas than in humans, but suggest a threefold higher nucleotide diversity in chimpanzees than in humans. The higher mtDNA diversity in chimpanzees might be due to the unique pattern in the evolution of chimpanzee mtDNA. From the nuclear DNA pi values, we estimated that the long-term effective population sizes of humans, bonobos, chimpanzees, and gorillas are, respectively, 10,400, 12,300, 21,300, and 25,200.  相似文献   

15.
16.
Tempo and mode of synonymous substitutions in mitochondrial DNA of primates   总被引:3,自引:1,他引:2  
Nucleotide substitutions of the four-fold degenerate sites and the total third codon positions of mitochondrial DNA from human, common chimpanzee, bonobo, gorilla, and orangutan were examined in detail by three alternative Markov models; (1) Hasegawa, Kishino, and Yano's (1985) model, (2) Tamura and Nei's (1993) model, and (3) the general reversible Markov model. These sites are expected to be relatively free from constraint, and therefore their tempo and mode in evolution should reflect those of mutation. It turned out that, among the alternative models, the general reversible Markov model best approximates the nucleotide substitutions of the four-fold degenerate sites and the total third codon positions, while the maximum likelihood estimates of the numbers of nucleotide substitutions along each branch do not differ significantly among the three models. It was further shown that the transition rate of these sites during evolution, and therefore transitional mutation rate of mtDNA, are higher in humans than in chimpanzees and gorillas probably by about two times. However, transversional mutation rate and amino acid substitution rate do not differ significantly between humans and the African apes. These and additional observations suggest heterogeneity of the mutation rate as well as of the constraint operating on the mtDNA-encoded proteins among different lineages of Hominoidea.   相似文献   

17.
Four cloned unique sequences from the human Y chromosome, two of which are found only on the Y chromosome and two of which are on both the X and Y chromosomes, were hybridized to restriction enzyme-treated DNA samples of a male and a female chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and pig-tailed macaque (Macaca nemestrina); and a male orangutan (Pongo pygmaeus) and gibbon (Hylobates lar). One of the human Y-specific probes hybridized only to male DNA among the humans and great apes, and thus its Y linkage and sequence similarities are conserved. The other human Y-specific clone hybridized to male and female DNA from the humans, great apes, and gibbon, indicating its presence on the X chromosome or autosomes. Two human sequences present on both the X and Y chromosomes also demonstrated conservation as indicated by hybridization to genomic DNAs of distantly related species and by partial conservation of restriction enzyme sites. Although conservation of Y linkage can only be demonstrated for one of these four sequences, these results suggest that Y-chromosomal unique sequence genes do not diverge markedly more rapidly than unique sequences located on other chromosomes. However, this sequence conservation may in part be due to evolution while part of other chromosomes.  相似文献   

18.
Comparisons of levels of variability on the autosomes and X chromosome can be used to test hypotheses about factors influencing patterns of genomic variation. While a tremendous amount of nucleotide sequence data from across the genome is now available for multiple human populations, there has been no systematic effort to examine relative levels of neutral polymorphism on the X chromosome versus autosomes. We analyzed ~210 kb of DNA sequencing data representing 40 independent noncoding regions on the autosomes and X chromosome from each of 90 humans from six geographically diverse populations. We correct for differences in mutation rates between males and females by considering the ratio of within-human diversity to human-orangutan divergence. We find that relative levels of genetic variation are higher than expected on the X chromosome in all six human populations. We test a number of alternative hypotheses to explain the excess polymorphism on the X chromosome, including models of background selection, changes in population size, and sex-specific migration in a structured population. While each of these processes may have a small effect on the relative ratio of X-linked to autosomal diversity, our results point to a systematic difference between the sexes in the variance in reproductive success; namely, the widespread effects of polygyny in human populations. We conclude that factors leading to a lower male versus female effective population size must be considered as important demographic variables in efforts to construct models of human demographic history and for understanding the forces shaping patterns of human genomic variability.  相似文献   

19.
Gene diversity patterns at 10 X-chromosomal loci in humans and chimpanzees   总被引:5,自引:1,他引:4  
We have investigated the pattern and extent of nucleotide diversityin 10 X-chromosomal genes where mutations are known to causemental retardation in humans. For each gene, we sequenced theentire coding region from cDNA in humans, chimpanzees, and orangutans,as well as about 3 kb of genomic DNA in 20 humans sampled worldwideand in 10 chimpanzees representing two "subspecies." Overallnucleotide diversity in these genes is about twofold lower inhumans than in chimpanzees, and nucleotide diversity withinand between species is low, suggesting that a high level offunctional constraint acts on these genes. Strikingly, we findthat a summary of the allele frequency spectrum is significantlycorrelated in humans and chimpanzees, perhaps reflecting verysimilar levels of constraint at these genes in the two species.A possible exception is FMR2, which shows a higher number ofnonsynonymous than synonymous substitutions on the human lineage,suggesting the action of positive selection.  相似文献   

20.
Evidence for a complex demographic history of chimpanzees   总被引:16,自引:4,他引:12  
To characterize patterns of genomic variation in central chimpanzees(Pan troglodytes troglodytes) and gain insight into their evolution,we sequenced nine unlinked, intergenic regions, representinga total of 19,000 base pairs, in 14 individuals. When theseDNA sequences are compared with homologous sequences previouslycollected in humans and in western chimpanzees (Pan troglodytesverus), nucleotide diversity is higher in central chimpanzeesthan in western chimpanzees or in humans. Consistent with alarger effective population size of central chimpanzees, levelsof linkage disequilibrium are lower than in humans. Patternsof linkage disequilibrium further suggest that homologous geneconversion may be an important contributor to genetic exchangeat short distances, in agreement with a previous study of thesame DNA sequences in humans. In central chimpanzees, but notin western chimpanzees, the allele frequency spectrum is significantlyskewed towards rare alleles, pointing to population size changesor fine-scale population structure. Strikingly, the extent ofgenetic differentiation between western and central chimpanzeesis much stronger than what is seen between human populations.This suggests that careful attention should be paid to geographicsampling in studies of chimpanzee genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号