首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic dissection of grain yield in bread wheat. I. QTL analysis   总被引:1,自引:0,他引:1  
Grain yield forms one of the key economic drivers behind a successful wheat (Triticum aestivum L.) cropping enterprise and is consequently a major target for wheat breeding programmes. However, due to its complex nature, little is known regarding the genetic control of grain yield. A doubled-haploid population, comprising 182 individuals, produced from a cross between two cultivars ‘Trident’ and ‘Molineux’, was used to construct a linkage map based largely on microsatellite molecular makers. ‘Trident’ represents a lineage of wheat varieties from southern Australia that has achieved consistently high relative grain yield across a range of environments. In comparison, ‘Molineux’ would be rated as a variety with low to moderate grain yield. The doubled-haploid population was grown from 2002 to 2005 in replicated field experiments at a range of environments across the southern Australian wheat belt. In total, grain yield data were recorded for the population at 18 site-year combinations. Grain yield components were also measured at three of these environments. Many loci previously found to be involved in the control of plant height, rust resistance and ear-emergence were found to influence grain yield and grain yield components in this population. An additional nine QTL, apparently unrelated to these traits, were also associated with grain yield. A QTL associated with grain yield on chromosome 1B, with no significant relationship with plant height, ear-emergence or rust resistance, was detected (LOD ≥2) at eight of the 18 environments. The mean yield, across 18 environments, of individuals carrying the ‘Molineux’ allele at the 1B locus was 4.8% higher than the mean grain yield of those lines carrying the ‘Trident’ allele at this locus. Another QTL identified on chromosome 4D was also associated with overall gain yield at six of the 18 environments. Of the nine grain yield QTL not shown to be associated with plant height, phenology or rust resistance, two were located near QTL associated with grain yield components. A third QTL, associated with grain yield components at each of the environments used for testing, was located on chromosome 7D. However, this QTL was not associated with grain yield at any of the environments. The implications of these findings on marker-assisted selection for grain yield are discussed.  相似文献   

2.
Summary Genetic control of tiller number, grain number, grain weight, harvest index and grain yield in six generations, along with the biparentals, F3s, F2xparental progeny, and F2xF1 progeny were investigated in an intervarietal cross of bread wheat involving two highly competitive varieties, WL711 and HD 2009. The performance of F1, B1, B2, F2, × p1, F2 × P2 and F2 × F1 progeny was midway between the parents involved with respect to all the evaluated characters. The biparental progeny excelled the mean performance of their corresponding F2 and F3 progeny in tiller number, seed weight and grain yield. The estimates of variance components obtained from the two models deployed were almost similar. Considerable additive genetic variance was observed for grains per spike, seed weight and grain yield while dominance variance was more pronounced for harvest index. The additive-dominance model was adequate for grains per spike and harvest index. Epistatic effects of additive × additive and additive × dominance type for tiller number and grain yield, and of additive × dominance type for seed weight were observed. The digenic epistatic model was inadequate for explaining the nature of gene action for tiller number, seed weight and grain yield. The studies indicated that non-allelic interactions should not be ignored in formulating wheat breeding programmes and that a biparental approach could be adopted as an extremely useful tool for enhancing genetic variability and the creation of transgressive segregants. The usefulness of breeding methodologies utilising a biparental approach is discussed.  相似文献   

3.
The grain yield of wheat is influenced by genotype, environment and genotype-by-environment interaction. A mapping population consisting of 182 doubled haploid progeny derived from a cross between the southern Australian varieties ‘Trident’ and ‘Molineux’, was used to characterise the interaction of previously mapped grain yield quantitative trait locus (QTL) with specific environmental covariables. Environments (17) used for grain yield assessment were characterised for latitude, rainfall, various temperature-based variables and stripe rust infection severity. The number of days in the growing season in which the maximum temperature exceeded 30°C was identified as the variable with the largest effect on site mean grain yield. However, the greatest QTL-by-environmental covariable interactions were observed with the severity of stripe rust infection. The rust resistance allele at the Lr37/Sr38/Yr17 locus had the greatest positive effect on grain yield when an environment experienced a combination of high-stripe rust infection and cool days. The grain yield QTL, QGyld.agt-4D, showed a very similar QTL-by-environment covariable interaction pattern to the Lr37/Sr38/Yr17 locus, suggesting a possible role in rust resistance or tolerance. Another putative grain yield per se QTL, QGyld.agt-1B, displayed interactions with the quantity of winter and spring rainfall, the number of days in which the maximum temperature exceeded 30°C, and the number of days with a minimum temperature below 10°C. However, no cross-over interaction effect was observed for this locus, and the ‘Molineux’ allele remained associated with higher grain yield in response to all environmental covariables. The results presented here confirm that QGyld.agt-1B may be a prime candidate for marker-assisted selection for improved grain yield and wide adaptation in wheat. The benefit of analysing the interaction of QTL and environmental covariables, such as employed here, is discussed.  相似文献   

4.
This study, comprising three independent experiments, was conducted to optimize the zinc (Zn) application through seed coating for improving the productivity and grain biofortification of wheat. Experiment 1 was conducted in petri plates, while experiment 2 was conducted in sand-filled pots to optimize the Zn seed coating using two sources (ZnSO4, ZnCl2) of Zn. In the first two experiments, seeds of two wheat cultivars Lasani-2008 and Faisalabad-2008 were coated with 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 g Zn kg?1 seed using ZnSO4 and ZnCl2 as Zn sources. The results of experiment I revealed that seed coating with 1.25 and 1.50 g Zn kg?1 seed using both sources of Zn improved the seedling emergence. However, seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 was better regarding improvement in seedling growth and seedling dry weight. The results of the second experiment indicated that seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 improved the seedling emergence and seedling growth of tested wheat cultivars. However, seed coating beyond 1.5 g Zn kg?1 seed using either Zn source suppressed the seedling emergence. Third experiment was carried out in glass house in soil-filled earthen pots. Seeds of both wheat cultivars were coated with pre-optimized treatments (1.25, 1.50 g Zn kg?1 seed) using both Zn sources. Seed coating with all treatments of ZnSO4 and seed coating with 1.25 g Zn kg?1 seed using ZnCl2 improved the seedling emergence and yield-related traits of wheat cultivars. Seed coating with 1.25 g Zn kg?1 seed also improved the chlorophyll a and b contents. Maximum straw Zn contents, before and after anthesis, were recorded from seed coated with 1.5 g Zn kg?1 seed using either Zn source. Increase in grain yield from seed coating followed the sequence 1.25 g Zn kg?1 seed (ZnSO4) >1.25 g Zn kg?1 seed (ZnCl2) >1.5 g Zn kg?1 seed (ZnSO4). However, increase in grain Zn contents from seed coated was 1.5 g Zn kg?1 seed (ZnCl2) >1.25 and 1.5 g Zn kg?1 seed (ZnCl2, ZnSO4) >1.25 g Zn kg?1 seed (ZnSO4). Seed coating with Zn increased the grain Zn contents from 21 to 35 %, while 33–55 % improvement in grain yield was recorded. In conclusion, wheat seeds may be coated with 1.25 g Zn kg?1 seed using either source of Zn for improving the grain yield and grain Zn biofortification.  相似文献   

5.
Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing >20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat.  相似文献   

6.
In the water-limited bread wheat production environment of southern Australia, large advances in grain yield have previously been achieved through the introduction and improved understanding of agronomic traits controlled by major genes, such as the semi-dwarf plant stature and photoperiod insensitivity. However, more recent yield increases have been achieved through incremental genetic advances, of which, breeders and researchers do not fully understand the underlying mechanism(s). A doubled haploid population was utilised, derived from a cross between RAC875, a relatively drought-tolerant breeders' line and Kukri, a locally adapted variety more intolerant of drought. Experiments were performed in 16 environments over four seasons in southern Australia, to physiologically dissect grain yield and to detect quantitative trait loci (QTL) for these traits. Two stage multi-environment trial analysis identified three main clusters of experiments (forming distinctive environments, ENVs), each with a distinctive growing season rainfall patterns. Kernels per square metre were positively correlated with grain yield and influenced by kernels per spikelet, a measure of fertility. QTL analysis detected nine loci for grain yield across these ENVs, individually accounting for between 3 and 18% of genetic variance within their respective ENVs, with the RAC875 allele conferring increased grain yield at seven of these loci. These loci were partially dissected by the detection of co-located QTL for other traits, namely kernels per square metre. While most loci for grain yield have previously been reported, their deployment and effect within local germplasm are now better understood. A number of novel loci can be further exploited to aid breeders' efforts in improving grain yield in the southern Australian environment.  相似文献   

7.

Key message

Genetic analysis of the yield and physical quality of wheat revealed complex genetic control, including strong effects of photoperiod-sensitivity loci.

Abstract

Environmental conditions such as moisture deficit and high temperatures during the growing period affect the grain yield and grain characteristics of bread wheat (Triticum aestivum L.). The aim of this study was to map quantitative trait loci (QTL) for grain yield and grain quality traits using a Drysdale/Gladius bread wheat mapping population grown under a range of environmental conditions in Australia and Mexico. In general, yield and grain quality were reduced in environments exposed to drought and/or heat stress. Despite large effects of known photoperiod-sensitivity loci (Ppd-B1 and Ppd-D1) on crop development, grain yield and grain quality traits, it was possible to detect QTL elsewhere in the genome. Some of these QTL were detected consistently across environments. A locus on chromosome 6A (TaGW2) that is known to be associated with grain development was associated with grain width, thickness and roundness. The grain hardness (Ha) locus on chromosome 5D was associated with particle size index and flour extraction and a region on chromosome 3B was associated with grain width, thickness, thousand grain weight and yield. The genetic control of grain length appeared to be largely independent of the genetic control of the other grain dimensions. As expected, effects on grain yield were detected at loci that also affected yield components. Some QTL displayed QTL-by-environment interactions, with some having effects only in environments subject to water limitation and/or heat stress.  相似文献   

8.
9.
A doubled haploid (DH) population derived from a cross between the Japanese cultivar 'Fukuho-kumogi' and the Israeli wheat line 'Oligoculm' was used to map genome regions involved in the expression of grain yield, yield components, and spike features in wheat (Triticum aestivum L). A total of 371 markers (RAPD, SSR, RFLP, AFLP, and two morphological traits) were used to construct the linkage map that covered 4190 cM of wheat genome including 28 linkage groups. The results of composite interval mapping for all studied traits showed that some of the quantitative trait loci (QTL) were stable over experiments conducted in 2004 and 2005. The major QTL located in the Hair-Xpsp2999 interval on chromosome 1A controlled the expression of grains/spike (R(2) = 12.9% in 2004 and 22.4% in 2005), grain weight/spike (R(2) = 21.4% in 2004 and 15.8% in 2005), and spike number (R(2) = 15.6% in 2004 and 5.4% in 2005). The QTL for grain yield located on chromosomes 6A, 6B, and 6D totally accounted for 27.2% and 31.7% of total variation in this trait in 2004 and 2005, respectively. Alleles inherited from 'Oligoculm' increased the length of spikes and had decreasing effects on spike number. According to the data obtained in 2005, locus Xgwm261 was associated with a highly significant spike length QTL (R(2) = 42.33%) and also the major QTL for spikelet compactness (R(2) = 26.1%).  相似文献   

10.
Several genotype-by-environment stability measures are in use, but little information exists about their inheritance or genetic inter-relationships. Among those measures in common use are the linear regression coefficient (b), deviations from regression (sb), coefficient of determination (R2), coefficient of phenotypic variation (CPV) and, more recently, interaction principal components (IPCA) of the additive-main-effect-and-multiplicative-interaction (AMMI) model. Because of the factorial structure of the data, the diallel cross is well suited to study these parameters and their relationship to quantitative traits. For this study a complete diallel cross, derived by mating eight lines from a broad based bread wheat breeding population, was grown for several growing seasons at two Ugandan locations, one of which was prone to yellow rust. Stability parameters and grain yield were measured for each cross. CPV had the highest narrow-sense heritability (h2=0.522) followed by IPCA1 of the AMMI (h2=0.461). Lowest narrow-sense heritabilities were calculated for b and R2 (h2=0.150 and 0.100 respectively). There were high additive genetic correlations (rA) between grain yield and CPV (rA=−0.933), grain yield and IPCA1 (rA=0.707), and grain yield and IPCA2 (rA=0.751). The genetic association between CPV and IPCA1 was also high and negative (rA= −0.934). These results suggest that it may be possible to select simultaneously for high and stable grain yield in this broad-based bread wheat breeding pool by selecting outyielders that exhibit a low CPV. Received: 25 July 2000 / Accepted: 7 December 2000  相似文献   

11.
A reductionist approach to dissecting grain weight and yield in wheat   总被引:1,自引:0,他引:1  
Grain yield is a highly polygenic trait that is influenced by the environment and integrates events throughout the life cycle of a plant. In wheat, the major grain yield components often present compensatory effects among them, which alongside the polyploid nature of wheat,makes their genetic and physiological study challenging. We propose a reductionist and systematic approach as an initial step to understand the gene networks regulating each individual yield component. Here, we focus on grain weight and discuss the importance of examining individual subcomponents, not only to help in their genetic dissection, but also to inform our mechanistic understanding of how they interrelate. This knowledge should allow the development of novel combinations, across homoeologs and between complementary modes of action, thereby advancing towards a more integrated strategy for yield improvement. We argue that this will break barriers in terms of phenotypic variation,enhance our understanding of the physiology of yield, and potentially deliver improved on-farm yield.  相似文献   

12.
13.
 Two mapping populations were used for the analysis of the water-extractable arabinoxylans. One originated from a cross between the hexaploid cultivars ‘Courtot’ and ‘Chinese Spring’ and the other from a cross between an amphiploid (Synthetic) and cv ‘Opata’. Arabinose (Ara), and xylose (Xyl) contents were quantified for the 91 and 76 lines obtained from the two crosses, respectively. Relative viscosity (ηrel) of the wheat flour aqueous extract was evaluated by capillary viscometry. Both crosses gave similar correlation coefficients between sugar contents and relative viscosity. There were strong positive relationships between arabinose, xylose and arabinoxylan contents. The relative viscosity was strongly and positively related to the arabinoxylan content and strongly and negatively related to the Ara/Xyl ratio (arabinose content to xylose content). For one of the two crosses two measurements of relative viscosity were generated from 2 years of consecutive harvesting. As a strong correlation was observed between these two measurements, an important genotypic effect can be deduced for the relative viscosity of water-extractable arabinoxylans. QTL (quantitative trait locus) research did not reveal any chromosomal segments that were strongly implicated in variations in sugar content. However, a QTL was found for relative viscosity values and the Ara/Xyl ratio on the long arm of the 1B chromosome for the two crosses considered. This QTL explained 32–37% of the variations in relative viscosity and 35–42% of the variations in the Ara/Xyl ratio. Genes located at this QTL controlled relative viscosity through modifying the Ara/Xyl ratio. Variations in the Ara/Xyl ratio were supposedly related to differences in the molecular structure of water-extractable arabinoxylans. Minor QTLs were also obtained for relative viscosity and Ara/Xyl ratio, but the chromosomes concerned were different for the two populations evaluated. Received: 5 January 1998 / Accepted: 15 May 1998  相似文献   

14.
Combining ability for grain yield, yield components, and several agronomic and qualitative traits, was studied in a seven-parent diallel cross. The 21 F1 hybrids and the seven parental cultivars were grown in replicated plot trials sown at normal seed density in three locations in the years 1992 and 1993. The effects of general combining ability (gca) were highly significant for all the traits measured with the exception of seeds per spikelet, while the specific combining ability (sca) effects were statistically significant for grain yield, plant height, heading time, for all the yield components, and for the Chopin alveographic parameters P and P/L ratio. For the majority of the traits measured gca was greater than sca. Standard heterosis (sh) for grain yield, i.e., the superiority of the hybrids over the best pure line cultivar(cv Eridano), was only 3.3%, confirming previous finding which indicate sh effects in the range of 10%. The most interesting hybrid derived from the cross Maestra x Golia revealed a yield level approaching that of the highest yielding cv Eridano but appeared more interesting because of its reduced plant height and superior bread-making quality, signifying a selling price 30% higher. It was concluded, therefore, that the first generation of hybrids, likely to appear on the market in the next few years, will be characterized by a yield potential only slightly superior to that of the best standard cvs but associated with other desirable traits, such as bread-making quality.  相似文献   

15.
Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L?1 to 8 mg L?1) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. ‘Jordão’ when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L?1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L?1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L?1 of Fe and/or 8 mg L?1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L?1 Fe?+?2 mg L?1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.  相似文献   

16.
17.

Key message

GWAS on multi-environment data identified genomic regions associated with trade-offs for grain weight and grain number.

Abstract

Grain yield (GY) can be dissected into its components thousand grain weight (TGW) and grain number (GN), but little has been achieved in assessing the trade-off between them in spring wheat. In the present study, the Wheat Association Mapping Initiative (WAMI) panel of 287 elite spring bread wheat lines was phenotyped for GY, GN, and TGW in ten environments across different wheat growing regions in Mexico, South Asia, and North Africa. The panel genotyped with the 90 K Illumina Infinitum SNP array resulted in 26,814 SNPs for genome-wide association study (GWAS). Statistical analysis of the multi-environmental data for GY, GN, and TGW observed repeatability estimates of 0.76, 0.62, and 0.95, respectively. GWAS on BLUPs of combined environment analysis identified 38 loci associated with the traits. Among them four loci—6A (85 cM), 5A (98 cM), 3B (99 cM), and 2B (96 cM)—were associated with multiple traits. The study identified two loci that showed positive association between GY and TGW, with allelic substitution effects of 4% (GY) and 1.7% (TGW) for 6A locus and 0.2% (GY) and 7.2% (TGW) for 2B locus. The locus in chromosome 6A (79–85 cM) harbored a gene TaGW2-6A. We also identified that a combination of markers associated with GY, TGW, and GN together explained higher variation for GY (32%), than the markers associated with GY alone (27%). The marker-trait associations from the present study can be used for marker-assisted selection (MAS) and to discover the underlying genes for these traits in spring wheat.
  相似文献   

18.
19.
Complete diallel crosses with five parents of common wheat (Triticum aestivum L.) were conducted to analyse inheritance of 17 amino acid contents by using the genetic model including seed, cytoplasmic, maternal and environment interaction effects on quantitative traits of seeds in cereal crops. The results showed that inheritance of 17 amino acid contents, except tyrosine, was controlled by several genetic systems including seed, cytoplasmic, and maternal effects, and by significant gene × environment interaction effects. Seed-direct additive and maternal effects constituted a major part of genetic effects for lysine, tyrosine, arginine, methionine, and glutamic acid content. Seed-direct additive effect formed main part in inheritance of isoleucine and serine contents. Threonine content was mainly governed by maternal additive effect. The other nine amino acid contents were almost entirely controlled by dominance effects. High general heritability of tyrosine (36.3%), arginine (45.8%), lysine (24.7%) and threonine (21.4%) contents, revealed that it could be effective to improve them by direct selection in progenies from appropriate crosses. Interaction heritability for phenylalanine, proline, and histidine content, which was 36.1%, 39.5% and 25.7%, respectively, was higher than for the other amino acids.  相似文献   

20.
Genetic analysis of kernel hardness in bread wheat using PCR-based markers   总被引:4,自引:0,他引:4  
In wheat, kernel hardness is a complex genetic trait involving various directly and indirectly contributing components such as kernel hardness per se, protein content, hectolitre weight and 1,000-kernel weight. In an attempt to identify DNA markers associated with this trait, 100 recombinant inbred lines (RILs) derived from a cross between a hard grain land-race, NP4, and a soft grain variety, HB 208, were screened with 100 ISSR and 360 RAPD primers. Eighteen markers were assigned to seven linkage groups covering 223.6 cM whereas 11 markers remained unlinked. A multiple-marker model explained the percentage of phenotypic variation for kernel hardness as 20.6%, whereas that for protein content, hectolitre weight and 1,000-kernel weight was 18.8%, 13.5% and 12.1%, respectively. Our results indicate that phenotypic expression of kernel hardness is controlled by many QTLs and is interdependent on various related traits. Received: 25 July 2000 / Accepted: 24 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号